Torsion group Z/7Z, rank = 6


Klagsbrun (2020)

y2 + xy = x3 - 326034514850898538462143577535732108974101688866x 
	   + 126139807177463916084745782524191445068029238338478785879968870214064452

	Torsion points: 

O, [1051169831707617676888332, 972070312188486608578007494208516526], 
[261128989506241684485156, -242505048365488244642094664608377394], 
[-459534130824818233238556, 422993178343374888295956229647650574], 
[-459534130824818233238556, -422993178342915354165131411414412018], 
[1051169831707617676888332, -972070312189537778409715111885404858], 
[261128989506241684485156, 242505048365227115652588422923892238]

	Independent points of infinite order: 

P1 = [349621108430722643628612, 234280103165415296096052964651107726]
P2 = [408970490120129839927524, 247395296205394205764203536688391182]
P3 = [-394276731764242099773348, -439767756206926097966811118650051474]
P4 = [15487208600555969620583619/4, 60348540330823105469521400748864009759/8]
P5 = [488457152640052085194896, 288837495697090305635327960027037486]
P6 = [6109083865034034966377150522923236/6323271361, 424558236702135759868877367327409557236105861623602/502820215355359]

Some curves with torsion group Z/7Z and rank = 5
High rank curves with prescribed torsion Andrej Dujella home page