Torsion group Z/2Z × Z/2Z, rank = 14


Elkies (2005)

y2 = x3 + x2 - 126805284556646749335939083075808898286800006041x
    + 6437933136993997783664151467830511224300392764380156814845149031129959	 

	Torsion points: 

O, [-379187943064907952152101, 0], 
[51870834651609429682821, 0], 
[327317108413298522469279, 0]

	Independent points of infinite order:

P1 = [-81970142887190856673101, 127598646111012566660826968605543800]
P2 = [-189841345734961210155471, 153847284398716351048583584847780100]
P3 = [-169978767562208206585641, 151924256617426548755962219254153720]
P4 = [330146201149265817802419, 23631234300896247709645396196927880]
P5 = [33932177644287702305715, 46628563736499124960967519990139912]
P6 = [5040642034464253787296671, 11288943893314536628860892480063576320]
P7 = [870039962976637951825425, 744785886114577052424857904897681972]
P8 = [-94766107666974777578601, 132679005282070753002699166761858600]
P9 = [36383241902220788682821, 43272482685006943024094711026446000]
P10 = [327328151981619918488919, 1466030136187066302988802308829880]
P11 = [-351953105333062185489054, 86433024924668666503453219833567375]
P12 = [8755000490564937382613510769/64, 819186508720383208130501627010616119714345/512]
P13 = [-214921905990474863361741, 154154524218964374569895225646078920]
P14 = [-306381817107001718214441, 128564230144636012650749795989468680]

Torsion group Z/2Z × Z/2Z, rank = 13


Elkies - Klagsbrun (2020)

y2 + xy + y = x3 - x2 - 202005056277292663263513760789382619682414593967562330105x
    + 770439162017176757138055457316491496826827238138704381947622393803259781488125439897	 

	Torsion points: 

O, [-63329870653606707215038809909/4, 63329870653606707215038809905/8], 
[11658530191263753827516756199, -5829265095631876913758378100], 
[4173937472137922976242946279, -2086968736068961488121473140]

	Independent points of infinite order:

P1 = [762870113297247612198430263, 785353111654802046764543402601528014747596]
P2 = [4168162418933490475143845893, 29413818245215366220907515941603396894410]
P3 = [4107053622366715081855349073, 100353826001624351414611123613630827244446]
P4 = [-41325087153210616631266828713833/3249, -209690418567431145571041561170400610393851875572/185193]
P5 = [11915232410255703414557862565, 234820016500728000273496797333145175760298]
P6 = [-223506517543524294695064321, -903093263936397937644077793797402925424340]
P7 = [-338457101860107491361386883179937/42436, -11967742170791738447639842337226410034417195280555/8741816]
P8 = [4295752555967723363394377133455511/124609, 259399686176340689575227508390139078960386306489820/43986977]
P9 = [33205293626153157816205163002311/2209, 110387839542451286039116175323936541036615657780/103823]
P10 = [177226431461093427509206035469873191/5166529, 68681629153954408568654604463705981077699354900190220/11743520417]
P11 = [-6428597138148307402337461418409/529, -14552765423665100560184122065265449222293294380/12167]
P12 = [-6348050130892353500673966821, -1340509346975971333377834849998180895776340]
P13 = [40191679308677973308288898357589009345599/1000602090601, 
     7587331956886768673413367418744917199432803216023462171643900/1000903271830270901]

Elkies - Klagsbrun (2020)

y2 + xy + y = x3 + x2 - 62768067307229828411090203757990603067021720929984465938x 
      + 189210859514269843332267105356636723832238980724137875777900357363399313479474032031

	Torsion points:

O, [-36546345141459730529024133325/4, 36546345141459730529024133321/8], 
[4968493835823913496219706905, -2484246917911956748109853453], 
[4168092449541019136036326425, -2084046224770509568018163213]

	Independent points of infinite order:

P1 = [3280729318743406140525683305, 136370513532909637993573542450302805757747]
P2 = [2004420905155556863813989325, 267302079008248225017960350719027728841587]
P3 = [4167302806802540767185656479, 2901166605421247653833323707845538575513]
P4 = [1594719740810079241267534139, 305235916593368997675449375746375537201863]
P5 = [4159068832062780178143336129, 9854475564997651078774897662499918040107]
P6 = [-368460890602040778403875111, -460747668449992266016725220241972232130637]
P7 = [-300349767685302549201917854295/81, -444016091633685419507358580969391174683002437/729]
P8 = [262296782150445561938555032425/49, 27868436696218284877796990576042324733548341/343]
P9 = [439602668904339871098967269241/49, 202393404152642614469373652108396656784837509/343]
P10 = [6009592539382691305043373561, 170405404702691084827965143341646595941395]
P11 = [2536517566056527740222292575, 215216887714970925692769354472305841893337]
P12 = [33680437410443933381567796925425/8281, 26112538631039482546133388969804078396623576377/753571]
P13 = [47416392206571753268924573660825/26569, 1246742575128868590454528409506092945429297864889/4330747]

Elkies - Klagsbrun (2020)

y2 + xy + y = x3 + x2 - 678876005230095721881793359044232088047786825892457820384x 
      + -4283665841626318052298369662438708349320976911262254997412844078356382776145465697279

	Torsion points:

O, [28770902478781736212037010709, -14385451239390868106018505355], 
[-88018650764810371848290875565/4, 88018650764810371848290875561/8], 
[-6766239787579143249964291819, 3383119893789571624982145909]

	Independent points of infinite order:

P1 = [446059616549795336909017463365, 297397064504812433163596573335178838956530037]
P2 = [-12375836719772420568752222073, -1490802832147565877844033230089121413962233]
P3 = [1826959670585843499691417248829/9, 2448347819170965988658492784709565357814094423/27]
P4 = [65680589109961745673557899717, 15312395786439360534357639416024257430997365]
P5 = [116369842053518295182201621233, 38634040376262857464278035411127739147629641]
P6 = [-5304037150262150068604301209971031/758641, -229797015182989218517592150128496662267403389914505/660776311]
P7 = [81859978737699074920339817337, 22106376234493431270895170596857175205301317]
P8 = [2038570694390088224370464288236054069/45468049, 2282126856567974939581448420041453571269955254035126643/306591054407]
P9 = [-1074783225295629767199693215015/64, -790026108343960965832009941959060355936858911/512]
P10 = [-7194279452306502868997617367, -477492205565902502106161306809817097689659]
P11 = [3471366374694413821628748408829/9, 6452696333648245255627881053225028423216647063/27]
P12 = [-347533664927181860863766546611/25, -196342541868617824039422661069511659059238623/125]
P13 = [10939967420343528192620066958384464463237/178360094929, 
     1024087302667911690474786432818003065724749335695951654616435/75326283811079783]

Torsion group Z/2Z × Z/2Z, rank = 12


Eroshkin (2008)

y2 + xy = x3 - 1209873315556653510389989204544209972082084x
	   + 331058311839965956052748107957148273288865814054655695750098704	 

	Torsion points: 

O, [922497435957373507528, -461248717978686753764], 
[294808274612286630856, -147404137306143315428], 
[-4869222842278640553537/4, 4869222842278640553537/8]

	Independent points of infinite order:

P1 = [954313888714465110856, 6750361075472140689319787650972]
P2 = [-19227536967843022106, -18823232648923373557639136562398]
P3 = [7181676589197025172320, 601704020748289548363284118568708]
P4 = [-128930895710341262696, -22020561326941424170553666911796]
P5 = [5837278004406510341704, 438368588436251112531715221250204]
P6 = [2030263244364035071672, 79015054400461400817522323077804]
P7 = [983416510666458000520, 9608273788334829529339520513308]
P8 = [-477578685523836137672, -28283231850374324028595134427604]
P9 = [224964958024936465672, 8382393215379522545608441887004]
P10 = [7048140466716542287624/25, 439674172988024494810579430888108/125]
P11 = [-76496145458495433471695/64, -4271175174781071803481436995763861/512]
P12 = [-29781155673654532760, -19158896731680436660803850599908]

Dujella - Peral (2014)

y2 + xy + y = x3 + x2 - 3303894515586689289541165506478574062530571840x 
      + 73094841061617585831898118162636503049865840051589473263026790881505

	Torsion points:

O, [132610937849047910347091/4, -132610937849047910347095/8], 
[-66371614633295279650987, 33185807316647639825493], [33218880171033302064213, -16609440085516651032107] 

	Independent points of infinite order:

P1 = [10964158046678425550933, 6179680504792198696394524466665173]
P2 = [33106810035885536256585, 22627223537078412857384144067409]
P3 = [-24822770633695769418097, -11824196026778126896329141995533857]
P4 = [-14044424885259044094617, -10803977721389302939133739550788857]
P5 = [74232009144658178109029, 15391150761185424682638070662574725]
P6 = [33572549493331599248623, 121816581295680995324783410946193]
P7 = [31510749310311982725029, 523959123598909555301109331041045]
P8 = [33222091076171388326533, 4709487224076442373866152631573]
P9 = [30092098610217933296363, 960807953463745240613272147906593]
P10 = [62902156519285575854053, 10684406264237425296602564682658053]
P11 = [-260497096364741168846953/4, -27776692903862857085922317803170321/8]
P12 = [4922128977127785626713, 7546648016739846598291203921457893]

Dujella - Peral (2019)

y2 + xy + y = x3 - x2 - 1444491707528591356856089186460491195711268950880x 
      + 559921583779625421248683584939561762456224290170437461555851482041439747

	Torsion points:

O, [910954389920845836020349, -455477194960422918010175], 
[-5448727291190824028230629/4, 5448727291190824028230625/8], 
[451227432876860171037309, -225613716438430085518655] 

	Independent points of infinite order:

P1 = [158850932500649609134809, 578334775816714524616276221704042845]
P2 = [351104017200784386392209, 309897966944945116194624198332593845]
P3 = [-427722660290928813983135, -1048576645526111528109185629948786727]
P4 = [954500781939375762742909, 225326008863345220543071618783370945]
P5 = [423679598259676591990909, 154829810959547852593332987635966145]
P6 = [1535808449095818094207905, 1401421444080498380369785533616999513]
P7 = [444801887422056021535383, 73569216148613399817347986859758945]
P8 = [-1206006015871044278678751, -740210245609217615143269452335454375]
P9 = [-192562292438693523617091, -911556889640548767064630159456313855]
P10 = [10508879668527356682921249, 33851800053181168926568362825476385625]
P11 = [951514410733369555670349, 216676520921276805299703311439049825]
P12 = [-7355680099955426717481581/81, -605705671933225602690651446390633849125/729]

Dujella - Peral (2023)

y2 = x3 - 2241400793004128647394643238117533637889417292x 
      + 40774547849544973581800981372433536925107999761595109335509492547824

	Torsion points:

O, [26408749475085698515958, 0], 
[-54657170256973734556666, 0], 
[28248420781888036040708, 0] 

	Independent points of infinite order:

P1 = [20698136552699007358133, 1802519341546011002190400906037025]
P2 = [-12639425973343582744792, 8190564976169068564057598492809500]
P3 = [1672713813713336562708, 6085228507344789506702040460847000]
P4 = [21768378070621916955158, 1515948985738596662719425367178400]
P5 = [30419413532795218967108, 860681267992582782880942238569200]
P6 = [122343554400210398554457/4, 7298469374913191741919339352111875/8]
P7 = [26359932137087906791891702/729, 52093846333020283584128963946604466720/19683]
P8 = [8389393781171822909915912/289, 2032682714372102094821266788050772300/4913]
P9 = [7599281910580065215973, 4917353244391814489675155359913495]
P10 = [-1260172694603470380537994/25, 633441974992982834318081165167176096/125]
P11 = [57405502790318115083079718/1521, 187032801571048599680128735702954820800/59319]
P12 = [-44993181106077147334522, 7109058880347357568412037838818240]

Torsion group Z/2Z × Z/2Z, rank = 11


Elkies (2005)

y2 + xy + y = x3 + x2 - 16343354562559064151871130832020659x
	       - 42639589563151841387449703830240754991749490260239	 

	Torsion points: 

O, [-2610074357776989, 1305037178888494], 
[129126182520511139, -64563091260255570], 
[-506064432650936605/4, 506064432650936601/8]

	Independent points of infinite order:

P1 = [130653317274865511, 7234420939567848633102594]
P2 = [-22186804067557677, 17579694740469962775028750]
P3 = [139775106390969155, 20093873983693962817243182]
P4 = [-25647634107593293, 18964644631530992733687630]
P5 = [328271798465596355, 173111658097482014177029902]
P6 = [37556087469341550939, 230153718733724867674760556670]
P7 = [-8335220673475395, 9644002299480703776331702]
P8 = [-168173352412951833/4, 191026199012339077271762783/8]
P9 = [-448462446268693391341/4225, 6117521820747245553485300994318/274625]
P10 = [142310393908805129683363/316969, 51449713188219030031744775657252370/178453547]
P11 = [46369806753984224395499/25, 9985111709083325589339263583856758/125]

Dujella - Kulesz (2006)

y2 = x3 - 315631503507622339923146392582227x 
      + 2072228053755856864158196203880686412361893003346

	Torsion points:

O, [-20422955991534194, 0], [11887382209472497, 0], [8535573782061697, 0] 

	Independent points of infinite order:

P1 = [-20230370204964983, -421816927565146336143480]
P2 = [-18385457713072919, -1288608689198829837436920]
P3 = [15615691751642497, -975349962521333965224000]
P4 = [301276352453444473/4, -161112473370726659001899595/8]
P5 = [33000572294573513/4, 1380268510109424490727725/8]
P6 = [6179239441242217, 598169974517352025641720]
P7 = [41142281826465527544193/2879809, 3381886289254955378457102713670240/4887035873]
P8 = [299042790321073687, -163248467182728124569159690]
P9 = [6486704984610865, 545676559760580599572704]
P10 = [204594166513207396346233/24039409, 5800730753279830273971505975698120/117865222327]
P11 = [-548808587980476047/64, 1042804094168807838620125065/512]

Aguirre - Dujella - Peral (2010)

y2 + xy = x3 - 73574518277152391654805918684486692802992607569057295x 
         + 7681347096250434784704271660546179938634013485442212852416929087393007502428025

	Torsion points:

O, [156339069543247893509361990, -78169534771623946754680995], 
[-1252832082037678783947311665/4, 1252832082037678783947311665/8], 
[156868950966171802477465926, -78434475483085901238732963] 

	Independent points of infinite order:

P1 = [-96490147198544316312605178, -3725883290848296167242298847189026772963]
P2 = [157045999711359776806728390, 7671864836708298150632180846298640605]
P3 = [156997883028776883959095590, 6319835063397019056722778710751189405]
P4 = [46698769733548625705560422, 2085029285874296056233476777571739979037]
P5 = [-308896882882315715474855610, -966532344180489061861271440873059295395]
P6 = [156136150103191936263340590, 8354116508674144913183660215852240005]
P7 = [156267757321845292813316826, 4486377025536891950549477651414740257]
P8 = [343825750096694436690459462, 4798988266425140641310061251070226699101]
P9 = [-739295378354559649250200650/361, -19195414211852131925770222856440783984142145/6859]
P10 = [-220105363296685351294652280, -3634857231341067718879240177092394435995]
P11 = [141495941651991315141372662765910/896809, 21063189699840212421691167743932058274169131615/849278123]

Aguirre - Dujella - Peral (2010)

y2 + xy = x3 + x2 - 85410148429528838113064973147497868527637x 
         + 9417959408910091992056619228397233938042315542716439821913629

	Torsion points:

O, [187730162413280809858, -93865081206640404929], 
[595956685687388521131/4, -595956685687388521131/8], 
[-336719333835127940142, 168359666917563970071]

	Independent points of infinite order:

P1 = [-88291577656194741642, -4033694058765621728866261579929]
P2 = [132528792265728660983, 652974346675488175822158820071]
P3 = [189017660415735476733, 164604668668583485247330704446]
P4 = [231479176857636247358, 1431973063223311302410325407571]
P5 = [-180297353866722177267, -4353875583289214026458585211554]
P6 = [909604797725054454039, 26159474457841141855998719225058]
P7 = [756047350491789564987/4, 1313753394405646302437152995393/8]
P8 = [55630593261979172358, 2199705816140670969296027170071]
P9 = [-1273208682650879588693/4, -16694920515417325034029558911307/8]
P10 = [1080524808274356861913, 34331901735067855866097775725846]
P11 = [204885642862796148902747/2209, 157250952026186871978974423595399558/103823]

Dujella - Peral (2014)

y2 = x3 - x2 - 29797021265017436449821856011551140x 
         + 1979714607796490905256544266377400528772910804668100

	Torsion points:

O, [-199322010981537695, 0], [99931595077156130, 0], [99390415904381566, 0] 

	Independent points of infinite order:

P1 = [1635170664867066994/9, 1367012517430167116484033520/27]
P2 = [4801548950187728127505/44944, 37789618017822058196180161162065/9528128]
P3 = [1441987883963814347705/10816, 21836052079526707962074209333875/1124864]
P4 = [51212457254422639753/144, 329521504537790114570319446819/1728]
P5 = [159263309184052522901186/96721, 63222455934640328170016207725064640/30080231]
P6 = [92243213779408575750337/913936, 593383405779682938739547907965433/873722816]
P7 = [10456416529466843265421825/87385104, 9225413026793955032809843534418269145/816875952192]
P8 = [13105214273528788108960542337/109881642256, 403034662539770654675464082423270984188953/36424006301587904]
P9 = [458541098155493436693560856857/4569487668496, 3379258894998752686987148704375575405602997/9767901341733115456]
P10 = [128311697709064629898695634/506565049, 1178456149617053271044446551664287699120/11401259557843]
P11 = [25543503174858602102085200705345/236001736073104, 17229429638555197348560541356131924702080613625/3625540798159177088192]

Dujella - Peral (2017)

y2 = x3 + x2 - 174258153488574589211899386409790816x 
         + 27756676145085235899292977120423523763162467559408820

	Torsion points:

O, [-481557415530090293, 0], [259081580478353122, 0], [222475835051737170, 0] 

	Independent points of infinite order:

P1 = [-35466797989096244, 184098998935230450190970526]
P2 = [189678220163764642, 39088488994282012946173920]
P3 = [222473647690393420, 237434476071108132209250]
P4 = [134978404950407284, 81821653717813796960012994]
P5 = [-196911027537259253, 233313114343097192019257400]
P6 = [214143573932293612, 16139855712475798887153570]
P7 = [-480359307836711708, 24953208402585559438804770]
P8 = [195006133672111879996/49, 2708736034275744821127185002542/343]
P9 = [259257208441353274, 2187588221159705993845944]
P10 = [-217114530079972958, 235278882160710356570303520]
P11 = [654563868068042332, 440617747407732849762768450]

Dujella - Peral (2017)

y2 = x3 + x2 - 3383044565362668792508854542324233x 
         + 75737263950801942103904570668638566598532431572663

	Torsion points:

O, [33569207139800813, 0], [-67161937901586997, 0], [33592730761786183, 0] 

	Independent points of infinite order:

P1 = [21966937543749263, 3467304529380020399592600]
P2 = [33560959657313363, 5137371389991712861800]
P3 = [34582038915915083, 319292566508771961823200]
P4 = [134483428957332077/4, 96800241541200000930525/8]
P5 = [31780818196317203, 566228347995386167907400]
P6 = [1413627031281777887/49, 502860429284713027048333800/343]
P7 = [9700355475181684787/289, 16274604587975225427493800/4913]
P8 = [33623189883813803, 12873137085655241194800]
P9 = [33548281734503453, 9678428398238096687400]
P10 = [173923494287946441475667/2809, 72533258254815185975583870670539600/148877]
P11 = [-2251179780875766539120038/34421689, 839055527133163935536879014270829625/201952049363]

Dujella - Peral (2017)

y2 = x3 - x2 - 50163588986898268948468352064401x 
         + 56737927985190239949496934742877437522545251185

	Torsion points:

O, [-7591907754445915, 0], [1162364791415103, 0], [6429542963030813, 0] 

	Independent points of infinite order:

P1 = [-484475637910219, 284477152446001008858672]
P2 = [822401256637789, 126647366250077572729312]
P3 = [-88753886282765, 247364998172561245002740]
P4 = [655741766959016, 155323966831302141321603]
P5 = [-5488330501674989, 408330803557522089307228]
P6 = [-212692404682652593/49, 150567701835014156375424720/343]
P7 = [7765644111643485, 368095491563641938713760]
P8 = [7319361658766048, 285819949391879004486615]
P9 = [6669922931624063, 137409361129262555031600]
P10 = [23004955806770853, 3328301870374901578219200]
P11 = [-3789712578770227, 438652434015468631229040]

Dujella - Peral (2017)

y2 = x3 + x2 - 7977969604102927092836990269613644680x 
         + 8553536385785243169364523949398289188905449283550594100

	Torsion points:

O, [1471642492697005494, 0], [-3256470147796170685, 0], [1784827655099165190, 0] 

	Independent points of infinite order:

P1 = [-984048142486506540, 3930819100635430521717292170]
P2 = [219865813990815990, 2609613406782334033646479200]
P3 = [198981032492693190, 2640823754547721254370236000]
P4 = [-523046431458595410, 3547293495901125966835824600]
P5 = [1912284366471788790, 538787101369161261182781600]
P6 = [1344208620899451150, 508258934492965396363625640]
P7 = [119178038488651140, 2757613161989370207496135050]
P8 = [-1285194642769862610, 4084604229675007831346026200]
P9 = [414364460128605390, 2306272930055777531757724200]
P10 = [558514518367003140, 2066868814798457862205063050]
P11 = [3112434946707344508, 3724723407453925712515593606]

Dujella - Peral (2017)

y2 = x3 + x2 - 1621126547570611447901153715482511450x 
         + 23851513456705965717588828081350863606218774264994743

	Torsion points:

O, [-462285056032426069, 0], [273944981028670887, 0], [188340075003755181, 0] 

	Independent points of infinite order:

P1 = [-5714769778455894, 157409540118993556876297725]
P2 = [-144813395183020629, 210453622806182761925599680]
P3 = [363708800700491181, 114028954933146099514668000]
P4 = [322612042172589741, 71617078089077958031533120]
P5 = [295175056500019631, 41448841131666940568196600]
P6 = [-390854057272601694, 165844330421969502629195625]
P7 = [-21222793176088569, 165173962555521029360250000]
P8 = [110074166094996098931, 1154849004975857549983750125000]
P9 = [731028307645895349/4, 144972752653065279671024625/8]
P10 = [146851413844943106, 56673990876326273794023225]
P11 = [3115351550792201586, 5454777187231038900363949665]

Dujella - Peral (2017)

y2 + xy + y = x3 - 440474450756994110470755811415987126x 
         + 112359700106827942022431270950796422996711199577222648

	Torsion points:

O, [371312081826959037, -185656040913479519], 
[-3064933201397142697/4, 3064933201397142693/8], 
[394921218522326637, -197460609261163319]

	Independent points of infinite order:

P1 = [-83834698092714168, -385613188183090474813206929]
P2 = [401385324022728537, 15065891830395937652029981]
P3 = [868269806925678012, 620073456836630055811410931]
P4 = [405323867587784637, 20359561954665515268295681]
P5 = [394921523865119673, 91491516624926721794857]
P6 = [324408915685454637, 60058527517639096320574681]
P7 = [78666748193455428297/121, 422560149937742892038202881651/1331]
P8 = [312484280266626033897/3481, 55696097314215749153564988126599/205379]
P9 = [410238599647675881, 26485355885556302980359901]
P10 = [-1712444706383958194507043/3083536, -2333342889415351179295310121678598979/5414689216]
P11 = [25523416744002046908417/52441, 1383419659065873235093739250155509/12008989]

Dujella - Peral (2017)

y2 = x3 + x2 - 18994872123691599212568265878179540233x 
         + 29136999095328082299683180266492926133473237614663660663

	Torsion points:

O, [1888547062005002333, 0], [-4984064938938782797, 0], [3095517876933780463, 0] 

	Independent points of infinite order:

P1 = [875382756532580153, 3630429310597183177708986900]
P2 = [1343403667993427219, 2458394537293674207439522416]
P3 = [1707167326846524554, 1298066681650456642925396781]
P4 = [5783205269785650707, 10616389853233654701153877968]
P5 = [1339509523181665913, 2469139497975686080704630900]
P6 = [-2941648019324076337, 7717401417348964921743147600]
P7 = [-1993020799864768817, 7686197552417191028211051600]
P8 = [111955265998625753, 5197290292003387681754643300]
P9 = [1694454830078034233, 1347637304444759326591233300]
P10 = [15169348224246468967/9, 37311547652856067006985307200/27]
P11 = [-3110667670876497523, 7623917970768635006408263128]

Dujella - Peral (2019)

y2 + xy + y = x3 - x2 - 1335811801322141513540787185263873821221402x 
         + 345057444917149397029867455639655112110194631892187293462221401

	Torsion points:

O, [994387677231994548401, -497193838615997274201], 
[-5072167413476946953605/4, 5072167413476946953601/8], 
[273654176137242190001, -136827088068621095001]

	Independent points of infinite order:

P1 = [-46570066191657724879, -20178337124533411730717649793881]
P2 = [193317845521174671701, 9697722375455385339926467418799]
P3 = [145331493192275361011, 12409331286416332403091239372079]
P4 = [179448687613598898521, 10541648195050073728109411554959]
P5 = [249266196661458640529, 5250955443933739186509370980231]
P6 = [65588894011282820561, 16053821455380255722821832773479]
P7 = [1670313988929399950001, 52668043932175037429380758680999]
P8 = [-3965554884004438822021/4, -210899515224859084447412065687983/8]
P9 = [123739852533370366961, 13478091062288138945930526448359]
P10 = [-922606598287065820879, -28145350990195010561839766609241]
P11 = [1028794547116178376905, 7725052829657829464328542477367]

Dujella - Peral (2019)

y2 = x3 - 1492954291326015714936165698559783658632624300x 
         + 14187300659162023085271540615477301302057757142908345146303180658000

	Torsion points:

O, [10217262380859086825570, 0], 
[32503334371164375942290, 0], 
[-42720596752023462767860, 0]

	Independent points of infinite order:

P1 = [7070000047807473899420, 1996373461625272687520532164995800]
P2 = [931472121227985924066, 3577354265555288619646228549756736]
P3 = [-40316187871976902436110, 2974524497090340656763991663116000]
P4 = [-13314408601626258110830, 5630702675355924329643769923004800]
P5 = [45094753691780490690290, 6210051224619884351528913602508000]
P6 = [42934269686373014048540, 5406602398311776729912561258685000]
P7 = [-7362538215843309878224, 4977964724953222710088036717413924]
P8 = [298275171743998085637394/9, 28448267776829232956182243398757472/27]
P9 = [8353312476066952322765, 1516266125541907731212608306198125]
P10 = [-482124371080364286232516/25, 747982773694151053239846523657446648/125]
P11 = [33534410205785160515570, 1353995433772394233529709324324000]

Dujella - Peral (2019)

y2 + xy + y = x3 - x2 - 5848533572998633133970232243386693764441717x 
         + 5439127559473435124465238874414131991661626005965758256304020109

	Torsion points:

O, [5447926075849390745867/4, -5447926075849390745871/8], 
[-2792219863463589875233, 1396109931731794937616], 
[1430238344501242188767, -715119172250621094384]

	Independent points of infinite order:

P1 = [729633805410237191327, 39500273554040057968467627627216]
P2 = [1349235021340683151527, 2067870415589960484517281257256]
P3 = [529599599953436441567, 49902769027363307501102268876816]
P4 = [47321389894516721432503/9, 9354942670842347606912546512738832/27]
P5 = [1329484757042350863347, 3673573522165958218092442947516]
P6 = [33459363111674540142791/25, 374118244768774130947180132111824/125]
P7 = [282815184786133052222363/289, 125538340798221743449727586564541908/4913]
P8 = [5261635833747442968843/4, 37495328470958744427051345808753/8]
P9 = [3956589573366846028043/4, 199496976999608562756975361810353/8]
P10 = [1494365070060774586527, 6032429597135396522876556122256]
P11 = [5743365343860245048783/4, 10582169492738634924350840253603/8]

Dujella - Peral (2019)

y2 = x3 - x2 - 1195364158708632186420472502166033x 
         + 15823209428289198577068263787846917629174435793937

	Torsion points:

O, [-39899173416020663, 0], 
[18763783500321687, 0], 
[21135389915698977, 0]

	Independent points of infinite order:

P1 = [21349740897066721, 184256415571566123151392]
P2 = [27842727329378481, 2031053815354352993276688]
P3 = [18187882712729337, 314008176732366060450000]
P4 = [-3850615432050288, 4513203198243227693757375]
P5 = [47937121011972327, 8287269914001253525673400]
P6 = [12616722517196937, 1658307180987975960468000]
P7 = [-14755980954997273, 5499911638908231286651000]
P8 = [18728393648724587, 70668848553905017916500]
P9 = [12571749389540168, 1668035293552115577188099]
P10 = [-4259751744481813, 4564851446386533671220500]
P11 = [16213801932188337, 839175500122668603414000]

Dujella - Peral (2019)

y2 = x3 - 34628441413316884287622589712900994886397x 
         + 2050733442239504566506670506280666680039951971270942619170564

	Torsion points:


O, [-210629215568028510611, 0], 
[142124138821703615743, 0],
[68505076746324894868, 0]


	Independent points of infinite order:

P1 = [67215597744925771333, 163822652525810218851266936580]
P2 = [-31057473215438976257, 1759615961299846038374403132000]
P3 = [-167456377098095123132, 1775876020401967755311252569500]
P4 = [-118014343720920196787, 2119847869769058824422772847960]
P5 = [145951151901053106943, 325093580692798774916432973600]
P6 = [156793445158332276343, 689825911416618501223482197700]
P7 = [151076407513188332653, 517081293384636869513434386720]
P8 = [50257685653634086468, 661309865956364732694715263300]
P9 = [-207571235460147182432, 543346463029008171782171572650]
P10 = [41432533307532048068, 828923849245138299151036489900]
P11 = [-147128592566664052987, 1990150930285238584127342585140]

Dujella - Peral (2019)

y2 + xy + y = x3 - 3407057062402816202952638990971926674x 
         + 1748175609133884346590293028318269585038956220718284016

	Torsion points:


O, [566451004996356785, -283225502498178393], 
[-8250662339317413993/4, 8250662339317413989/8], 
[1496214579832996713, -748107289916498357]


	Independent points of infinite order:

P1 = [312764334178118379, 844490829164664873461502457]
P2 = [-21036600911096247, -1349014158302704681723618157]
P3 = [-1876131447958556496, -1239566532685397386980985712]
P4 = [117587576961384681, 1161539447831067073913151547]
P5 = [-836728556883137922, -2003285202462542998100372732]
P6 = [57170504500692361773/16, 379678704962134211245863490177/64]
P7 = [-6031226430843922281/4, -14875245339295472103415409227/8]
P8 = [-62672080893234465, -1400520189827195547540728993]
P9 = [3065755686292591443, 4485261772776367766919469273]
P10 = [98807362910876183001/64, 209839688959764774051517385591/512]
P11 = [101183313474044387835/1156, 47338572295128520850698706797603/39304]

Dujella - Peral (2019)

y2 + xy + y = x3 - x2 - 360101972731337871925011429354496534130x 
         + 2604858022061874854038998013421555177095681435785537340872

	Torsion points:


O, [11822481725188736999, -5911240862594368500], 
[-21888526837518946741, 10944263418759473370], 
[40264180449320838971/4, -40264180449320838975/8]


	Independent points of infinite order:

P1 = [2785311124531537284, 40292310906979396105530025995]
P2 = [8891587601382347159, 10293281140523001468676752120]
P3 = [2888569433296158359, 39859505926155900235314501720]
P4 = [10044226382271056768, 1113089218492164090383700471]
P5 = [23127598275097821374, 81530290125149050169468054625]
P6 = [-11734895448431284876, -72212400075685776539048646000]
P7 = [10063168899229915034, 402095316861456915482223720]
P8 = [192862929125681175509/16, 252916659011226009349575986325/64]
P9 = [3601177755815704434329/256, 73604095044875248457838227563995/4096]
P10 = [-2541244385841309466, -59190826804537883761396628880]
P11 = [5239552835179857762485/16, 378640526683995215123151191659269/64]

Dujella - Peral (2019)

y2 + xy = x3 - x2 - 21252276640652798739707819217x 
         + 938627524108684110053910801619511357084941

	Torsion points:


O, [200295080970611/4, -200295080970611/8], 
[-164219282682646, 82109641341323], 
[114145512439994, -57072756219997]


	Independent points of infinite order:

P1 = [19017299960234, 735761064017992960283]
P2 = [139834465497809, 837319973368878505283]
P3 = [3252657614678, 932488902903515289863]
P4 = [12675419128250, 819318321492432776771]
P5 = [44878398411779, 274313029862925460148]
P6 = [222075911530490, 2677925266366399108499]
P7 = [-48164331466741, -1360329887527677896767]
P8 = [257065481913530, 3530293363328357073251]
P9 = [46090868872710, 238758440802567342931]
P10 = [-163796334743607, -158560586391641489941]
P11 = [1768050577343369967/12769, 1163867358320331630990007181/1442897]

Dujella - Peral (2019)

y2 + xy = x3 - 383374717580497363154900202498080x 
         + 2879389675529515659996623813736834069739008230400

	Torsion points:


O, [11839178438953536, -5919589219476768], 
[10761241335338560, -5380620667669280], 
[-90401679097168385/4, 90401679097168385/8]


	Independent points of infinite order:

P1 = [10222582257296860, 169062350496870992799220]
P2 = [1372813218934720, 1534820842725334778184160]
P3 = [10219419373199620, 169715584061380857068620]
P4 = [12096824883468160, 109268524171575891121120]
P5 = [-3348848459627990, -2031181154480665510223780]
P6 = [10733752821040392, 31826227508330885362392]
P7 = [9253378175289580, 352418791701523131041200]
P8 = [16540018728322540, 1031142223146984238763440]
P9 = [9045526143720352, 389464439425823252056192]
P10 = [-22525101328090064, -293519745534554811980048]
P11 = [107172210905879890, 34536353639961300559387090]

Dujella - Peral (2019)

y2 + xy + y = x3 + x2 - 1591201661154516965640012774986533778749279758895x 
         + 771461676492780226987926706152246247692465808604789192609333542667363957

	Torsion points:


O, [-1456340554952197395575589, 728170277476098697787794], 
[2822720927097888305027363/4, -2822720927097888305027367/8], 
[750660323177725319318747, -375330161588862659659374]


	Independent points of infinite order:

P1 = [-213072434443597089026853, -1049204188391172118184352865141016174]
P2 = [701475959916380002726107, 21123514560176759789279186027797906]
P3 = [3764288659516781488546267, 6936944349938558628723055602310807186]
P4 = [781430326228216901704347, 72220945225868930011572153267870226]
P5 = [666986533095456305470607, 82913126785509524888793553763756406]
P6 = [691448653849844347791147, 42542793931643897048506874699907826]
P7 = [460871039988935262334747, 368799262405395940384261933219100626]
P8 = [-1440371304800394868367653, -274022774290833413016673047240561774]
P9 = [355896930291920638887607, 500236673215183099894578500262067486]
P10 = [-956183177987229316640053, -1191098982688926750550955011860036174]
P11 = [-9484804414987238278558727/9, -30522112464687569800962063103030509898/27]

Dujella - Peral (2019)

y2 = x3 + x2 - 1842106434852354867035220994629886864578848864609100065x 
         + 962310202756421491693012192799714743169371564622784353396174776042214776954499775

	Torsion points:


O, [785796228172851036254749995, 0], 
[-1567206272405333451861068741, 0], 
[781410044232482415606318745, 0]
 

	Independent points of infinite order:

P1 = [308775094106825969604784315, 20565817954559640984738377064321197277120]
P2 = [682847622373955410432897195, 4778178593419414456786369886360254123200]
P3 = [775980061026829752273959995, 353405763917342067139110580022099040000]
P4 = [468304599209025651568191145, 14224865306438871690651592548071003879400]
P5 = [-1162378081923621616059692327, 39153784137539393790902553123876773677776]
P6 = [208187123916699616923377197405/289, 14849552535936372598382502846516005844617700/4913]
P7 = [-1037025364895106334812669778805/961, 1225979925477718465659379043066961089476836000/29791]
P8 = [4475789097014051233553477138995/22201, 80969095189208117537091435891960866016709500000/3307949]
P9 = [787424034401638958683478170, 151825274395721984715679751055803821575]
P10 = [194304143305360334465459446555/289, 25865542290910789509387601755234121177896000/4913]
P11 = [57148115618365037476632351424105/452929, 8246481243059275589197501106968340948809317885000/304821217]

Dujella - Peral (2019)

y2 + xy + y = x3 - x2 - 114844575062047817421572820160664336526651137x 
         + 439650564496801698999188244677703290388031537458295488008943557649

	Torsion points:


O, [4778032440114884566007, -2389016220057442283004], 
[29985787289430704463947/4, -29985787289430704463951/8], 
[-12274479262472560681993, 6137239631236280340996]
 

	Independent points of infinite order:

P1 = [4476949798982153632919, 123405948026017733860565366298852]
P2 = [-71510358566709106873, -669225504261543708036667793526924]
P3 = [-1771573895782997464393, -798464887778887944872296974116604]
P4 = [4653919587605748493007, 77280271158503604319843495560996]
P5 = [4592655122115989216207, 95286566828135595042420164630796]
P6 = [1229753879929943745527, 547977876271491514082760461537796]
P7 = [4725834555357869459447, 49584141427058269785356702193156]
P8 = [11252882737578795302007, 756466108417847319339947115092996]
P9 = [501334660347618700907, 618224071138134310444535188896996]
P10 = [9705501177458496259607, 489135057200222641722734997360996]
P11 = [18418301274491538902007, 2138344994226134378628588086804996]

Dujella - Peral (2019)

y2 = x3 - x2 - 144711614144426061955896779720349730467680x 
         + 20220891873104152843280526596323994702395097953815787886211072

	Torsion points:


O, [256913806829799863328, 0], 
[180101172220127441024, 0],
[-437014979049927304351, 0]
 

	Independent points of infinite order:

P1 = [365513111871034961509, 4019874485751625747435943263510]
P2 = [269037508210017924624, 872520672985451991531757412400]
P3 = [155837953922598865824, 1205789219103372651044986180800]
P4 = [325991304015794251664, 2772970901873248145956205402160]
P5 = [165342670039157113178, 902251597248793958869806593490]
P6 = [278608855168253279202, 1236681207345105544577547703854]
P7 = [160962635987376291744, 1047905119256970432392683869120]
P8 = [-97664312373076140016, 5781219499458048349023193233360]
P9 = [-203322282777809165438, 6421732979847016055369241039086]
P10 = [155633306561437892434, 1211879610886738290375049767310]
P11 = [147176178007297094474, 1452841139034339361463622415950]

Dujella - Peral (2019)

y2 + xy = x3 + x2 - 519378513301609953424377996126755250x 
         + 130980885580496751680483379131500635273640485145462500

	Torsion points:


O, [308985206949358300, -154492603474679150], 
[-3294608961678992805/4, 3294608961678992805/8], 
[514667033470389900, -257333516735194950]
 

	Independent points of infinite order:

P1 = [129324254395828800, 256857088750073083756799850]
P2 = [300587711762300400, 44956422884508007906802550]
P3 = [-505219156891568100, -514223191507475156812237950]
P4 = [526714530015887900, 59515863035281353266890050]
P5 = [-257984316172750600, -497797163295908231173805450]
P6 = [288843960020077900, 71133896908660852764767050]
P7 = [268338790110006300, 104562936968725563980174850]
P8 = [8092355947030749436/9, 16881357937125367045717865302/27]
P9 = [3339712092549022976, 5970466954402974526682032426]
P10 = [5481764598625189579/9, 5440102292706616326569864881/27]
P11 = [26323997008458662389400/22801, 3561739215240191335851523479341050/3442951]

Dujella - Peral (2019)

y2 = x3 - x2 - 97271487732431202565768131857179608x 
         + 11591008694901626688530447618552758144008759595763712

	Torsion points:


O, [167307294329477992, 0], 
[-359837806161129063, 0],
[192530511831651072, 0]
 

	Independent points of infinite order:

P1 = [132394642032716142, 32147213881416318431797050]
P2 = [13749960950154717, 101272548719994811987741650]
P3 = [282430182637135612, 81530109893633461331571300]
P4 = [-179954599459767988, 152538100578833293569796100]
P5 = [-327965998437487188, 90643092529453692483898500]
P6 = [23578742186373565512, 114483565547983621867994252400]
P7 = [129572207188931872, 34098526825335057507193200]
P8 = [-356048688434082488, 32982784297913782219364400]
P9 = [152750167558338572, 17228850678671886413802500]
P10 = [85235891758104012, 62603824578283189109115900]
P11 = [48744933552219368, 83458599271125326639674976]

Dujella - Peral (2019)

y2 = x3 + x2 - 6745545034761078593267159160912413536800x 
         + 213230264476722966741704395996890669153370553043532304872500

	Torsion points:


O, [47710997488197115275, 0], 
[-94836415713182684926, 0], 
[47125418224985569650, 0]
 

	Independent points of infinite order:

P1 = [38356651294537055628, 104524185610124140778104135806]
P2 = [9397930277046835650, 388157362467841672775316324000]
P3 = [22111319693882837775, 273656385190509993633209613750]
P4 = [47068765142041248060, 2272254579866560398579330210]
P5 = [47031551757200470740, 3007978988505431471229049890]
P6 = [25976178556077283275, 235657625711302824518702367000]
P7 = [45906879789188799375, 17590002764138381069053392150]
P8 = [47859783011081850900, 3948593821791092341149318750]
P9 = [-32508158224569321300, 631000417522663616605463231550]
P10 = [47124706311620681100, 243419274571438899925426050]
P11 = [46832795681187699540, 6033770565390392441193771810]

Dujella - Peral (2019)

y2 + xy + y = x3 - 19456264985411172949425601033985526x 
         + 1038625706384719578607695459357140473466593262043448

	Torsion points:


O, [-160962314527402003, 80481157263701001], 
[75519810481076797, -37759905240538399], 
[341770016185300823/4, -341770016185300827/8]
 

	Independent points of infinite order:

P1 = [73277806127533172, 2527548660478220909918976]
P2 = [34923279985788797, 20043522336245804393231601]
P3 = [-30200651028145828, -39983398867319924061679149]
P4 = [101588883233084797, 10512532841707595423815601]
P5 = [74991561276197297, 1141328610732902046253101]
P6 = [87004390347194012, 2109011464336415323162131]
P7 = [-32601117794600039, -40475574754821530434792483]
P8 = [29472748939601297, 22153947447579757877729601]
P9 = [-31752994785473863, -40303912263072101878346019]
P10 = [140698846137206297, 32961330137332578633307101]
P11 = [-25725967897414378, -39014495436710888767736124]

Dujella - Peral (2020)

y2 + xy = x3 + x2 - 38571071591410009853076102166713x 
         + 92080247327630793222539238086556781671613495893

	Torsion points:


O, [3691567969594794, -1845783984797397], 
[13914869990307691/4, -13914869990307691/8], 
[-7170285467171718, 3585142733585859]
 

	Independent points of infinite order:

P1 = [2805623144749566, 77128970464110215021391]
P2 = [3323630218922198, 24470566189147100521855]
P3 = [481068969899454, 271359971324787336123123]
P4 = [3761147067952439, 14656590861460502403363]
P5 = [6461205431245551/4, 1474931527803400182716799/8]
P6 = [3305642756265693, 26452373852286949182705]
P7 = [681748693262835946/25, 549425082947725528720834391/125]
P8 = [12874806296226731/4, 285920811786033964445309/8]
P9 = [39872343899331846, 7870410730613798345082303]
P10 = [26762119889759109, 4269328140533857610422338]
P11 = [12935850320720133466/3481, 1636391970361286513248038257/205379]

Dujella - Peral (2023)

y2 + xy + y = x3 + x2 - 403865195899926007182298021x 
         + 3046183357238948170531314413152231717154

	Torsion points:


O, [40296404764163/4, -40296404764167/8], 
[-23140905427971, 11570452713985], 
[13066804236929, -6533402118465]
 
	Independent points of infinite order:

P1 = [9513259854381, 8067146003345303365]
P2 = [42871705437178, 254026089162033870964]
P3 = [32514137709991/4, 138662942682026328755/8]
P4 = [9985369441873, 3009550205515476307]
P5 = [894558886228, 51822948284690120482]
P6 = [19035977301086, 47500010459972673513]
P7 = [33589653269504, 165464526581627998110]
P8 = [-1683476358403, -61002537945968435439]
P9 = [15782103206204, 24561446943804745785]
P10 = [-39277743912539/9, -1856062517580014869805/27]
P11 = [-3545324823869308/169, -105050371046016812598246/2197]
log(N)=85.086929531800752592

Voznyy (2023)

y2 + xy = x3 - 1894034708782161397859898445391439660840x 
         - 24965016703598553227577391083076701696774653385041938046400

	Torsion points:


O, [49023288473106126480, -24511644236553063240], 
[-136324006169006490241/4, 136324006169006490241/8], 
[-14942286930854503920, 7471143465427251960]
 

	Independent points of infinite order:

P1 = [-16745950059494222838, -45347326547673076304121455934]
P2 = [53321628352517886480, 160143097196239487027436512760]
P3 = [494049032180169813550/9, 5157010765154606187710441287370/27]
P4 = [103106306232661336080, 935874971448040793738445507960]
P5 = [-26867453008797642304, -80798090093829338932384083688]
P6 = [-15044419948211310720, -11160847101384441759054910440]
P7 = [56504339523838864530, 220039745855027239768267236660]
P8 = [2543393364464294926560/49, 44152490327754549127418509356600/343]
P9 = [-15914693112147350220, -33869328777406442677932364440]
P10 = [14563440067437878508192, 1757494677415053099688701492142536]
P11 = [-70792919169890218232004/2401, -8522475449266102287568487015104152/117649]

Voznyy (2023)

y2 + xy = x3 - 1338030238082603163014505436054497501770x 
         + 18838529738538375647591054661737968540822087057943137668900

	Torsion points:


O, [84472981369579984479/4, -84472981369579984479/8], 
[-42237901424905984460, 21118950712452992230], 
[21119656082510988340, -10559828041255494170]
 

	Independent points of infinite order:

P1 = [21152356780018546420, 265913118225172225737648550]
P2 = [21179645095372911940, 483307882468085970195790630]
P3 = [21136795800471537940, 141950547256832033503239430]
P4 = [21142165402740377410, 184730517503850764726086330]
P5 = [80785820692642778050, 661801408840131194304145224580]
P6 = [20303445031318607193100/961, 2000072802954319266074273408530/29791]
P7 = [21219916136115753940, 804275118624928417412271430]
P8 = [24968265025452597680785/1024, 873014799351909109695462460245815/32768]
P9 = [6111263275863800372980/289, 1067037007009502823821618970950/4913]
P10 = [21203263576034947752, 671528128349018266841271462]
P11 = [784278431849658206056/25, 10994920297321104154545254568206/125]

Voznyy (2023)

y2 + xy + y = x3 - x2 - 39974143692225071353019320368277463579304047x 
         - 93485599610388421872677319402859407612112625383551208581674399881

	Torsion points:


O, [7268794189892050459827, -3634397094946025229914], 
[-16895950390905374942613/4, 16895950390905374942609/8], 
[-3044806592165706724173, 1522403296082853362086]
 

	Independent points of infinite order:

P1 = [-3705109967085001518861, -61317552845398285125000484179098]
P2 = [-3207803289308924452173, -41656787361384220384220423565914]
P3 = [-3483738138096279671733, -59107531901865019013099755543154]
P4 = [-3263485870261404800973, -47034235599984552727974436721114]
P5 = [-3853570109009813099673, -57723821551666705767922130564414]
P6 = [-4223243085557832843597, -3175320041084985062421128479322]
P7 = [-3893098016602291043661, -55973568645517731162205736350298]
P8 = [425736394498445262930343/9, 275170320522029524331235909219610322/27]
P9 = [19911262548038349547827, 2646613978117778006508510024434086]
P10 = [-3081384802699388533473, -20798537561663162676058454015414]
P11 = [-7520533994484839431947093/2116, -5914711572797132630872094832207568229/97336]

Voznyy (2023)

y2 + xy = x3 - 21906390297814432263288170749935924256686088x 
         + 9083357239267359891526501593710396419636972744091639970715721792

	Torsion points:


O, [417977585459918866832, -208988792729959433416], 
[-19501586197533110816897/4, 19501586197533110816897/8], 
[4457418963923358837392, -2228709481961679418696]
 

	Independent points of infinite order:

P1 = [-983533443543742474318, -172271922889686487829096958236716]
P2 = [117248229929268959432, 80724739587075750783599963065784]
P3 = [-4592796302155682581258, -113205656122320165448373387746396]
P4 = [-351868607949030565108, -129413920859680343095599419682196]
P5 = [120619625973344499368432, 41860160532161366056684820235985784]
P6 = [-43727878405966926546362/9, -774604961587295590586318352593332/27]
P7 = [787957952128975851200042, 699434268411425467586331740636017154]
P8 = [-6345565362670731066194128/7921, -113931766045717845351245857216115683304/704969]
P9 = [3489246962729829766922474/625, 3852340583620263203004436920087582068/15625]
P10 = [2534817949838242119107873912/185761, 120121016011891861924642448702405808357064/80062991]
P11 = [-3703770794502744352168, -198523503452410132875687567257416]

Voznyy (2023)

y2 + xy + y = x3 - x2 - 1060782949216038329262375848436468363024926914782774467x 
         + 420519802995751124724111740218478048655771772712848510327017985388378553526801859

	Torsion points:


O, [-1189275498476761161663125733, 594637749238380580831562866], 
[2374994013564696008458221867/4, -2374994013564696008458221871/8], 
[595526995085587159548570267, -297763497542793579774285134]
 

	Independent points of infinite order:

P1 = [592956609612030929240706927, 60230258412700795549576235489541906466]
P2 = [-436734433220160874819380333, -28293088249921936802589938164894290098534]
P3 = [943761977533361257795812723, 16124186874880072112430362466499497697978]
P4 = [600063163348588085716705947, 226394480835950194109038817627919353266]
P5 = [31665730364831043623185530783/49, 758179669686627925274481608909512448810638/343]
P6 = [1144633740799437323916772773, 26570574109242575524335780925217155355308]
P7 = [117481540787410813337656350123/169, 9586339424559835657883179877024096496140602/2197]
P8 = [5334142501100574453905426953/9, 1984697618671546632867759951587488245632/27]
P9 = [-674961478669528787682117597408837/667489, -11686236773379743627851226061707212959618039133742/545338513]
P10 = [582902349976211147946152343227987653/999002449, 14780704271829756573451305132426827242044821881726148/31575470405543]
P11 = [29845279517348098850431220061087361659/16096250641, 141899700815745295938897922457789683381972585388080327102/2042147415074311]

Voznyy (2023)

y2 + xy + y = x3 - 3548818984538903893936299908730878473x 
         - 1458326273185123343429141360947073979888405493321482244

	Torsion points:


O, [8251772546385561639/4, -8251772546385561643/8], 
[-1628981564797240205, 814490782398620102], 
[-433961571799150205, 216980785899575102]
 

	Independent points of infinite order:

P1 = [-1468691540759199434, -765340413620007861964092346]
P2 = [2371201556937649500, 1859843800749159458824454947]
P3 = [-4880100341959553945/4, -8218464660620209020639021059/8]
P4 = [-1300170199593944345, -978713128588793115243864958]
P5 = [-596194726048175165, -667491254976187186853261938]
P6 = [-1294390181300798480, -983132441959319488065975748]
P7 = [-471680367434311370, -332628025991111242983984058]
P8 = [13690623692332680835, 50160075983798966752843092062]
P9 = [5093412454608054295, 10611489639065848368908228102]
P10 = [-630002763100796105, -726215672044387972296386398]
P11 = [227824790330482393585/64, 2851509176484268592912518580299/512]

Voznyy (2023)

y2 + xy + y = x3 - x2 - 341028288631925619255862529986918076734891191227x 
         + 11958344258090135357107222075346466514765426831863562447599675830871851

	Torsion points:

O, [-2403108265506338506958421/4, 2403108265506338506958417/8], 
[35193367284227913096555, -17596683642113956548278], 
[565583699092356713643051, -282791849546178356821526]
 

	Independent points of infinite order:

P1 = [-206042570983051824399549, -271067247890490520959549360698504126]
P2 = [25945979216614184512804459, 132128108145891219905400805477970741386]
P3 = [675051464854225079510511, 298937994986269538502382867421258854]
P4 = [34561608021384242762091, 14599391326523598181128239265664714]
P5 = [-62700928198064545329449, -181919299874665751119859812305729026]
P6 = [89130889755708393387579/4, 528870153880306324461523502620971917/8]
P7 = [-96428308371613652374449, -209634192001783364229601294013004026]
P8 = [-1900724466143215499792529/4, -2066324771603262355685779241519924617/8]
P9 = [2830679389076066569926831, 4661344333245006069726520333621832614]
P10 = [638369399134359729942051, 233241803471321247912702693813460474]
P11 = [1316991065888357012521951, 1359081550118723096888827696302085674]

Voznyy (2023)

y2 + xy = x3 - 102812364812633731850605646208675231977647462100x 
         + 12167508463723925912278977317426206869256513580773249167860386181829375

	Torsion points:

O, [214965820066090458555550, -107482910033045229277775], 
[-1474189362843341123513601/4, 1474189362843341123513601/8], 
[153581520644744822322850, -76790760322372411161425]
 

	Independent points of infinite order:

P1 = [153576662439921999358825, 394612262653099355544521728412500]
P2 = [-5659199592595583713550, -112912191158450418399333288851484125]
P3 = [1507947756148981537702606, 1812750380058626508888890297521437037]
P4 = [144392709703691922323815, 18238225972545379068682561311858250]
P5 = [866522369627428905400063/4, 62697573277827441326694846806984033/8]
P6 = [16800433603448301856132848925/24649, 1968442052466084155730480931574575200055375/3869893]
P7 = [1761279839087803396019900155/7921, 12216897832831750361755411054857852750950/704969]
P8 = [209521965322266556645612688845/22801, 95848030820918591915813071470402091750991605/3442951]
P9 = [5039607735988827997388095/4, 10976463485225022596548824078227656025/8]
P10 = [2441300956828029425777516626/625, 120228772849943739333242531292068167136299/15625]
P11 = [2450244149980185673394656779380967725265/5564825647822081, 94900911692879903541854439744310168924385139081519094282740/415123522553250473316479]

Voznyy (2023)

y2 + xy = x3 - 1459970401640676352579376906257934718034044x 
         + 320987301586854733330789085776409688960966170493687125337640464

	Torsion points:

O, [227974235384144462712, -113987117692072231356], 
[-5224161910020248206273/4, 5224161910020248206273/8], 
[1078066242120917588856, -539033121060458794428]
 

	Independent points of infinite order:

P1 = [-32654679716720695176, -19199670487924421630328135136188]
P2 = [126500774346354280056, 11761132473284318540802171495492]
P3 = [-1031571560887108914720, -27005829097037701489152778598052]
P4 = [1294476919170303217770, 24499103920751027488399528549062]
P5 = [-898517231745238257576, -30122965643615801662707702132636]
P6 = [-4494639322983400489590114/80089, -454856423579728595452677746471142459306/22665187]
P7 = [-202699146700978494331656/625, -430856432520173595912952478729993628/15625]
P8 = [-9279049039455138242117163144/20912329, -2839218750294827497035650105617742303189676/95632080517]
P9 = [-82666630130351097667618315848/64432729, -4689949402069136496436464426220817206371252/517201515683]
P10 = [22400839648759684963916098668408/9960638809, 91176415140284066472755456065120812326073436428/994101635054627]
P11 = [-40850304854088836231380704/42025, -246952661175867529256946600408807592884/8615125]

Voznyy (2023)

y2 = x3 + x2 - 109986054404072035905718914436733889x 
         + 14037140715375786147567700636361626091030503635127071

	Torsion points:

O, [189402954952122819, 0], [-382939130976823063, 0], [193536176024700243, 0]
 

	Independent points of infinite order:

P1 = [-38354375227539645, 134904283110181335197634624]
P2 = [188751776693886387, 1334579037208263241593120]
P3 = [187378172652573018, 2666658505958348921762985]
P4 = [102163092379413866, 62184659377226854093687743]
P5 = [114151167484675146, 54493575169142482695940527]
P6 = [323383823096555475, 110851122701540183206585536]
P7 = [21007989630488394, 108332019270665812334749905]
P8 = [2101494994087935843, 3010597092544364967796981920]
P9 = [207748538431974521, 12410173513475749753816152]
P10 = [199703836642078035, 6084132844628597646940416]
P11 = [1542279124225394721315/5329, 31235117631075023389603095853728/389017]

Voznyy (2023)

y2 + xy + y = x3 + x2 - 12980816973425563651934842940321413834x 
         + 2735969070118707315872873850038434985085925706214368471

	Torsion points:

O, [211498999823693609, -105749499911846805], 
[-14815922985615039565/4, 14815922985615039561/8], 
[3492481746580066281, -1746240873290033141]
 

	Independent points of infinite order:

P1 = [8338320235039049513, 21777075640785168330156437355]
P2 = [34097358633693501481, 197996797658101000599010532779]
P3 = [5137903369827841409, 8465956599178016032031925435]
P4 = [446432100112433347/4, 9081307229596529860478909405/8]
P5 = [-125616630979434043, -2089160930378356511025773025]
P6 = [209741780956901777, 150254049580279498731542067]
P7 = [-12329600173746452489/4, -29352011237083191775669584145/8]
P8 = [708369481443189602609/64, 17846692804875640371254577266733/512]
P9 = [325650897923491841641/25, 5651153152207879851259707736271/125]
P10 = [29979947122620966953, 162970749434785815491014183851]
P11 = [-133607775107287637749/100, -4206460792694367899589210849879/1000]

Voznyy (2023)

y2 + xy = x3 - 219045904855545533248287021290864537240x 
         + 958410865019162015568275571339857856218598670068189825600

	Torsion points:

O, [11714641655473042480, -5857320827736521240], 
[4918637738369669680, -2459318869184834840], 
[-66533117575370848641/4, 66533117575370848641/8]

	Independent points of infinite order:

P1 = [67204264211372926432, 538293426598581102836771720296]
P2 = [16252189221991234096, 41124025864288206071041205992]
P3 = [4862913814475665282, 2864848598019302011699197946]
P4 = [14746969240109176096, 30581314324700091309122171512]
P5 = [3692596744363877950, 14139032006730305857675273390]
P6 = [3631143588428172052, 14522434371455171294317833076]
P7 = [-15175182993571802420, -28068445793219424577948194440]
P8 = [232021261330094913370/9, 3012074877022810132898099976070/27]
P9 = [160605145194234302320/9, 1411297566477032221196000494520/27]
P10 = [12013120442601574840, 7788469564446086754231217960]
P11 = [657764504832577714000, 16865391085018026838804400500840]

Voznyy (2023)

y2 + xy + y = x3 + x2 - 23671323727237963827709029432581002734x 
         + 32479411170253864847996755216329958698104110437129185946

	Torsion points:

O, [3923377744258200859, -1961688872129100430], 
[-21776093755143449165/4, 21776093755143449161/8], 
[1520645694527661431, -760322847263830716]

	Independent points of infinite order:

P1 = [1093696783255105506, 2810411132713847361197599554]
P2 = [1438281976840859032, 1186879164482714307497308625]
P3 = [27848624512408100647, 144814197531329067245797799960]
P4 = [6478567527512546215, 12289854493337272010275159112]
P5 = [15528680139343562365/16, 206588098583993511122607751073/64]
P6 = [38752344237719848252/9, 87009977406831033430354677727/27]
P7 = [175443380950200850099/4, 2309944797696831461559906135097/8]
P8 = [154403032760651075421427/3844, 60239957963752834235918993439454423/238328]
P9 = [-230297737838007748, -6157812043466535859549796970]
P10 = [298598724626357239744/25, 4765843994871628475030605920862/125]
P11 = [193659029724021025735/49, 278463689318401679538946363676/343]

Voznyy (2023)

y2 + xy + y = x3 - x2 - 9978029353641888566131786978681328913618084650282x 
         + 12131151121741358591772238579040028131778041440986508930372063198247403881

	Torsion points:

O, [1831958925052581716127441, -915979462526290858063721], 
[7261995732809195702276475/4, -7261995732809195702276479/8], 
[-3647457858254880641696559, 1823728929127440320848279]

	Independent points of infinite order:

P1 = [433815871221688064807521, 2807875732198613115512741623714334119]
P2 = [1121452611092093677631041, 1533514137051454560122993752590591879]
P3 = [603065450701357845214641, 2516559950133573007591163529045445879]
P4 = [8506794735226412907566289, 23299121013827072934510053880927640471]
P5 = [425589096141306858548931, 2821647729961515147157841379542491069]
P6 = [19449972665402704240417425, 84711341364313731939227003201988657367]
P7 = [73640203433901656432218761/121, 3336531431060089887190641800335972833749/1331]
P8 = [3557055610944349937331921, 4652408662158956223642540348888711319]
P9 = [1274804483245493266437082715421/703921, 13389499471578000777229725277420307321828921/590589719]
P10 = [3856475046927323879641201757901/2070721, 264161883355535462261417751650085020606917661/2979767519]
P11 = [5921636314345676005261155327609/2550409, 4956115127273471815835332481025645114815279347/4073003173]

Voznyy (2023)

y2 + xy + y = x3 + x2 - 2475534555539215368217047352627195213840859838x 
         + 44636253372774745448826509445383423713422239248108305481606377768906

	Torsion points:

O, [-228301316031920956063565/4, 228301316031920956063561/8], 
[34224462329860357632475, -17112231164930178816238], 
[22850866678119881383415, -11425433339059940691708]

	Independent points of infinite order:

P1 = [22730795805881925479290, 331868659015187228148871762973042]
P2 = [40962554997159086233390, 3458955081225252606128883431380367]
P3 = [-20379958291141232240360, -9307141207764579828800816193115258]
P4 = [11787627153857086606024, 4134421852889066878048424134521713]
P5 = [-46521282035122648709110, -7688859160131477385677831067787133]
P6 = [1762260308431544749068664/81, 756136307350124244517105260909007577/729]
P7 = [38383869008227893237415, 2483432079543434463479713332656792]
P8 = [3584252339356049849515, 5984092183132981687020857371696742]
P9 = [-12201181962271281285650, -8545427146595324595446455247672113]
P10 = [-34729438181909625506175401/900, -245540944654936760392216470615031936367/27000]
P11 = [416802728937606190279875/121, 8002595252146689219814420760429157822/1331]

Voznyy (2023)

y2 = x3 - 88027440704943205209713903944072452x 
         - 469435073596985955704179266146861379743440533656704

	Torsion points:

O, [-293990941302817778, 0], [-5334551106797294, 0], [299325492409615072, 0]

	Independent points of infinite order:

P1 = [-279435508010180090, 48052664520221986884742824]
P2 = [-130711033083491803, 93826839082937498525420125]
P3 = [300416841924434062, 14083428582239701374819360]
P4 = [957782121138395182, 890975656426646480240841840]
P5 = [342185843911818382, 97343491953265290042092640]
P6 = [-283421596875301178, 41386096021213264158387000]
P7 = [429850638563675662, 202771031744176326921821760]
P8 = [-34500453121387118, 50264164917316070288900640]
P9 = [-11240660196260558, 22773475590085603908209520]
P10 = [-62095067379739028, 68972521987586106241159500]
P11 = [-8345166558694138, 16266143008103134885529560]

Voznyy (2023)

y2 = x3 - 6471600729124446568604333138291652x 
         - 917122040913371619991977065053051586271999234304

	Torsion points:

O, [80517023918520256, 0], [-80375308611071378, 0], [-141715307448878, 0]

	Independent points of infinite order:

P1 = [-12793660406913038, 8932205912895850161472560]
P2 = [189574190785056362, 74734346455668439058889160]
P3 = [-21158691994093838, 11249041934869266241178640]
P4 = [633406205880926122, 500024667298475430178425000]
P5 = [-19509817281953428, 10858938530195004680340700]
P6 = [-31804645144040603, 13142994960732677323962525]
P7 = [2445339151125378922, 3821848787524139938190896200]
P8 = [1407641774730283622, 1667353812254388502362965000]
P9 = [-70444197244197338, 10266371010350440733177640]
P10 = [90876608801761522, 12707300944402098128211600]
P11 = [2230001413660476202, 3327935620485059992848683880]

Torsion group Z/2Z × Z/2Z, rank = 10


Kulesz - Stahlke (2001)

y2 + xy + y = x3 - x2 - 1714604749904870754796311792512x
	       + 863987846305894182849576319611944263064789411	 

	Torsion points: 

O, [-6047860411049445/4, 6047860411049441/8],
[764694378197181, -382347189098591], [747270724565181, -373635362282591]

	Independent points of infinite order:

P1 = [28938350114721, 28537593568952503295929]
P2 = [-637831177169139, -41208351270686047267151]
P3 = [470288287017981, 12713908706455000970209]
P4 = [739467975814461, 665703362939606895649]
P5 = [743194936713661, 444536775384045149089]
P6 = [662227192376181, 4352732643753765396409]
P7 = [319642835865381, 18670434308982518434609]
P8 = [833269414637091, 3718964491188868456819]
P9 = [899477403080961, 7033522514292006656389]
P10 = [-87365822154179, -31829527996324779555551]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 177811805092842843270403396x 
      + 908565466670939591164880997140344023104

	Torsion points:

O, [8113905279824, 0], [-15389878604789, 0], [7275973324964, 0] 

	Independent points of infinite order:

P1 = [7275481150736, 96710276948572560]
P2 = [6994209806714, 2657431313702542650]
P3 = [28957986627413/4, 6796589901911347881/8]
P4 = [-76626273303344/9, 1147194850000603770080/27]
P5 = [330481368118784, 6003052352837864856840] 
P6 = [-1020775285665845/81, 24699786707243866390172/729]
P7 = [12378192719054, 24579647949527544510]
P8 = [2470884588424004/361, 23933898459839013307200/6859]
P9 = [-5710474628265074/1089, 1480317346886703231882430/35937]
P10 = [106519546457641552/14641, 180289796523464571293952/1771561]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 1773535921942955477718336x
      + 892419113191216158578012716419272964

	Torsion points: 

O, [852402965934, 0], [-1534620541669, 0], [682217575734, 0]

	Independent points of infinite order: 

P1 = [879730445262, 114155723149620048]
P2 = [888709182510, 134786983339820448]
P3 = [155666537634, 787471294356578700]
P4 = [246484957697976/289, 69149649256554891150/4913]
P5 = [116338786482, 829254308619428748]
P6 = [3414262679634, 5885389465456907700]
P7 = [110286793997136129/99856, 16723051335641584117067625/31554496]
P8 = [18166546926006879/21025, 217236971956647194216658/3048625] 
P9 = [1860239690354633839689/24641296, 
     80220658918990503622110222057075/122319393344]
P10 = [97633026878740853250/4923961, 962583308829785569066230795228/10926269459] 

Dujella - Kulesz (2001)

y2 + xy = x3 - 9035181921539049674277655x 
	   + 10331090455438547826922930169998866152

	Torsion points: 

O, [1579880391368, -789940195684], [1886468850644, -943234425322]
[-13865396968049/4, 13865396968049/8]

	Independent points of infinite order:

P1 = [-1192655789981, -4405732679347000322]
P2 = [-1535894425831, -4537073679302325922]
P3 = [1573951946219, 96634425169578503]
P4 = [-3046688303548, -3094860249041875702]
P5 = [659123427857, 2159199149931114113]
P6 = [-2519972651731, -4134852402819764947]
P7 = [1046346772519, 1422230454617674678]
P8 = [1504053209435011/25, 58258911526403305422326/125]
P9 = [7863439448351/4, 3263960924390316949/8]
P10 = [40714222883260469/26896, 1545195960311326667536447/4410944]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 4606624676289246397190189696x 
      + 113598678161642896194701558402619903762180 

	Torsion points:

O, [46534348593022, 0], [-77879814564645, 0], [31345465971622, 0] 

	Independent points of infinite order: 

P1 = [-15090247413986, 423883828452966419376]
P2 = [-71642150261978, 275530107577406724000]
P3 = [-39074051985278, 483674093819629215300] 
P4 = [-19697719570286, 443504183666086856124]
P5 = [222003712421104, 3167413423656405436926] 
P6 = [1878093565229377/16, 69820844271189305236425/64]
P7 = [1419449833614206887/121, 1691113741998196935902568750/1331]
P8 = [3732300648948870348396658/2800208889,
     7201311058645710164287060305265973900/148178653779213]
P9 = [886482953733305572714421391481/3803028559690000,
     802390273911857071606703116093751381266195371/234527827338954703000000]
P10 = [651256496300027473958625664459259143/5586888520056836939769,
      449875231656415727585303190343504598798975136676833850/
      417594729152759612246176462211853] 

Dujella - Kulesz (2001)

y2 = x3 - 4292197293121987521684762003x 
    + 102563406884828594588366535559935065416802

	Torsion points: 


O, [44690115590821, 0], [-75206125411202, 0], [30516009820381, 0]

	Independent points of infinite order: 

P1 = [22594640844211, 130834692777220587090]
P2 = [44690290560091, 545298754337383410]
P3 = [25791249573811, 94964831925628318290]
P4 = [2157335941321, 305472970736872740900]
P5 = [26091503878798, 91300319199867878100]
P6 = [47066102144398, 69340363145729332020]
P7 = [530334366313441/256, 1253673805558980502358865/4096]
P8 = [28443761855507161, 4797106935767373757516740]
P9 = [851201222334569/4, 23766363023190689688995/8]
P10 = [25036684812851621/361, 2552344924324355292955840/6859]

Dujella - Kulesz (2001)

y2 = x3 - 165148751775900930482647947x  
    + 769509705521956124189618772191862664714

	Torsion points: 

O, [8834187458993, 0], [5908437769193, 0], [-14742625228186, 0]

	Independent points of infinite order: 

P1 = [106505058467318, 1091467859636811523500]
P2 = [-5832830289747, 39170784071317447220]
P3 = [8839656979089, 614881853659883920]
P4 = [729259097571701/25, 18016233420097643840676/125]
P5 = [4770420274733, 9499514442219135180]
P6 = [-10869593185623/4, 276922364209655320445/8]
P7 = [99632043884097/4, 880332200035664156375/8]
P8 = [8854347742843817/2209, 1361398265477517939653520/103823]
P9 = [733632783518854853/3481, 627230433907168813668036060/205379]
P10 = [301054395864809963/961, 165046827467757996625715730/29791]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 7154303033322414272772961396x 
    + 207987888867609948871673404388414684413280 

	Torsion points: 

O, [35133404225852, 0], [61354372157192, 0], [-96487776383045, 0]

	Independent points of infinite order: 

P1 = [62060625997562, 54910717671858868170]
P2 = [-82375377984968, 488212519633005487320]
P3 = [433460770870934, 8862790727457788870826]
P4 = [28954500508082, 158470826494120214130]
P5 = [284646495230366/25, 44722413870743794074714/125]
P6 = [33235974157682, 83193218145911707470]
P7 = [483168558022626824/361, 335195310642093579760328784/6859]
P8 = [-20550896500938418/361, 4501807569182868717184230/6859]
P9 = [1161416228300178782/17161, 413202712276155539549327670/2248091]
P10 = [123335518261674818575681/1838351376, 
      13648621528659127397570995798116809/78821153597376]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 95579963030600848576013536x 
    + 294629049317302418236572527320388001860 

	Torsion points:

O, [3551022402182, 0], [7504717403582, 0], [-11055739805765, 0] 

	Independent points of infinite order:

P1 = [7504732473506, 33254655409906164]
P2 = [-2554580193274, 22850051335823353824]
P3 = [-246707131390, 17838001349121918900]
P4 = [2233119045074, 9608526305192221836]
P5 = [10292222458232, 20028787225234753950]
P6 = [-143955446454391/16, 1321346629606249579629/64]
P7 = [7511140022032, 687194329353954450]
P8 = [1753605435180482, 73432968844243376603700]
P9 = [2916249747813993376/8649, 4978013910364951587254765798/804357]
P10 = [1405122649160548649/115600, 1197771072630973688504553507/39304000]

Dujella - Kulesz (2002)

y2 = x3 - 23406172222978952620352987816667x 
    + 35275722165104375010694416367459957873101998426 
 	
	Torsion points:

O, [3737286973865617, 0], [1727282927666041, 0], [-5464569901531658, 0]

	Independent points of infinite order:

P1 = [-463245560138918, 214520667244512317878590]
P2 = [328631406798037, 166190284289016193347180]
P3 = [479420752434187, 155449379456489770166970]
P4 = [-5453815505683334, 26642333054562291606150]
P5 = [3738205609187717, 4123145593125006428500]
P6 = [1511494401272965, 57884429406888054442836]
P7 = [4036081505849795, 80957304107655518862506]
P8 = [7165118232276445/121, 245026628721682067597794236/1331]
P9 = [2049516245180593/4, 1224219736293715538895375/8],
P10 = [5548856780496793/9, 3920047502266131355034720/27]

Dujella - Kulesz (2002)

y2 + xy = x3 - 1850530119008207127042731890x  
         + 22943233038968028247403054507391264079475 	

	Torsion points:

O, [34404364149230, -17202182074615],
[-192923830659041/4, 192923830659041/8], [13826593515530, -6913296757765]

	Independent points of infinite order:

P1 = [59164743598847, 347219380531931276972]
P2 = [-48229506944530, -2727465612667084855]
P3 = [496004341421914/9, 8025284813619971341289/27]
P4 = [8519781717181370/121, 654397656909552779709745/1331]
P5 = [35678881191827, 48342328081164373976]
P6 = [15510081677634085/16, 1929738913078097372153365/64]
P7 = [-1452833486098, -160089594909074690599]
P8 = [309669520911295/9, 64547913616059966295/27]
P9 = [467688127575264738425/2209, 10114269199785558686588769074170/103823]
P10 = [259353636576880655/3481, 112238015685035270100221215/205379]

Dujella - Kulesz (2002)

y2 = x3 - 459164104850925949083307023x  
    + 3721574285318517916249384572865336624978

	Torsion points:

O, [-24695407438858, 0], [13676892728759, 0], [11018514710099, 0]

	Independent points of infinite order:

P1 = [22375471102881, 68191661401827129166]
P2 = [14610015866069, 11477141162562814830]
P3 = [-21299294075401, 61958125894491867600]
P4 = [17927575390019, 35380239201055952280]
P5 = [11005002355269, 1135302093868119970]
P6 = [-21950631936883, 56780615018880018630]
P7 = [22860777684563, 71917415605198814976]
P8 = [384795994998389/49, 8402139316645731061938/343] 
P9 = [101902470831619549/9801, 8205520234055973728261050/970299]
P10 = [192496513433729414/10201, 43426133295599147645429280/1030301]

Dujella - Kulesz (2002)

y2 = x3 - x2 - 19613351862529095444140500x  
    + 32417180218045560823093188132585778852

	Torsion points:

O, [2183808720334, 0], [2912666336834, 0], [-5096475057167, 0]

	Independent points of infinite order:

P1 = [3013492508709, 823668580909281250]
P2 = [-2220108328736, 8063392356960348870]
P3 = [-5007963311516, 2245423496309241150]
P4 = [3738925387308, 3369401164461607990]
P5 = [32962572923769/16, 55587408935053070075/64]
P6 = [-7591682767, 5706669617723376120]
P7 = [118751937876781/9, 1228664171759974412050/27] 
P8 = [1594274253771181/484, 20066760097614444730425/10648]
P9 = [294657034603858, 5057389897199959832520]
P10 = [-239839870368159/49, 1145407301143481615800/343]

Elkies (2005)

y2 + xy + y = x3 + x2 - 221524013053903269535173188x  
               + 446695004412134084758084598242369075781

	Torsion points:

O, [-63218668159725/4, 63218668159721/8], 
[2055677392605, -1027838696303], [13748989647325, -6874494823663]

	Independent points of infinite order:

P1 = [-490313617331, 23562541906342172513]
P2 = [-15561673930275, 11201609122794149137]
P3 = [50999575489725, 348993888418180301137]
P4 = [70001671142605, 572681560892726953697]
P5 = [1633509373901, 9444163094253548513]
P6 = [1820977940001, 7024453137233309185]
P7 = [178292392757725, 2372454513920207781137] 
P8 = [64741483317005, 507411258000111894097]
P9 = [-2446756685925, 31209976650183073837]
P10 = [79599117281205, 697964956566483567697]

Dujella - Kulesz (2005)

y2 + xy = x3 + x2 - 256713612058275239239169224283x  
         + 50063495182088203255489466307435135598268937

	Torsion points:

O, [292721772794426, -146360886397213], 
[-2340204314958133/4, 2340204314958133/8], [292329305945106, -146164652972553]

	Independent points of infinite order:

P1 = [-161755542736436, 9346445095386927230501]
P2 = [293144175143249, 17385972755282025680]
P3 = [467566271403017281/1600, -421652576908287236403691/64000]
P4 = [3929697976168511816/12769, -656454755447106195383437205/1442897]
P5 = [65600161507000696/225, -94849165929965756920589/3375]
P6 = [290153737291994, 69926349480979202411]
P7 = [13523676452725451/25, -1042000530560426034240491/125]
P8 = [952165940916700639/3249, -2753611922118177707480339/185193]
P9 = [1252590148188177146/2209, -967388985715335857911159715/103823]
P10 = [2140236562044620231/7225, -67378055653943992687063759/614125]

Dujella - Kulesz (2005)

y2 = x3 - 141914560118510666842590063x  
    + 649593502561127362329127391346645108338

	Torsion points:

O, [7109340940819, 0], [6643736937559, 0], [-13753077878378, 0]

	Independent points of infinite order:

P1 = [9155606949533, 10851248377175915014]
P2 = [6611600560321, -570740477922978174]
P3 = [18305963323754, 64700779708783425130]
P4 = [79816181489674561/9409, 6840606222900417784126590/912673]
P5 = [15689789029693, -47805137774227113894]
P6 = [2369606516204803, 115347683077364742842376]
P7 = [162572150297338111/6889, 58431022418980962316835640/571787]
P8 = [106309810349629, -1089519308205289793370]
P9 = [1129744728094369/49, 33665972536603161782082/343]
P10 = [57327665626075021/5329, -7461453432103140527084790/389017]

Dujella - Kulesz (2005)

y2 + xy + y = x3 - 1201780089828535280941830929x  
             + 15930373701000492601648355896832051393456

	Torsion points:

O, [21324526097463, -10662263048732], 
[-160001753390425/4, 160001753390421/8], [18675912250143, -9337956125072]

	Independent points of infinite order:

P1 = [4351294318308, -103843447786589658737]
P2 = [25202302992258, -40621972483300322522]
P3 = [21355447066548, 2254666476564147343]
P4 = [97409979950890932/289, 30247339363430129154468959/4913]
P5 = [-228215434571678/9, 4684304690047320844781/27]
P6 = [-10547491753361831398/310249, 22856532911331474432475948899/172808693]
P7 = [25831101110826156118407/1211179204, 27964225295130036776858286343529/42151458657608]
P8 = [59927017782482091/3844, 7475515290643696522159901/238328]
P9 = [-167629774002571506283652532/4411516330321, 760222261040605884309612102018971173828/9265776851069345881]
P10 = [2721812273045400730395318/49920518041, 3740874270980625865843740877241035627/11153691425382589]

Dujella - Kulesz (2005)

y2 + xy + y = x3 - 11303247961627273626159263x  
             + 14522016996201389320585192293938087138

	Torsion points:

O, [2073786262623, -1036893131312], 
[-15516164954809/4, 15516164954805/8], [1805254976079, -902627488040]

	Independent points of infinite order:

P1 = [1455915619779, 1073093834384542660]
P2 = [682222211619, 2669871361846133380]
P3 = [32349447761979, 183035874577813973860]
P4 = [27046101035599719/11881, -992766016436500162882280/1295029]
P5 = [1472388782542291/3249, 570582527806390991276900/185193]
P6 = [-1313849330901, -5206227821359807280]
P7 = [9443484246324306/4489, 69501674655672127607155/300763]
P8 = [8326153144791/4, -903905644603571095/8]
P9 = [34874428006414797219/1038361, 204954652917717149364486117440/1058089859]
P10 = [-108149668526163189/27889, -930511084858193804143840/4657463]

Dujella - Kulesz (2005)

y2 = x3 + x2 - 15458107396493793445976576x  
    + 23265483073814739719758614652271227140

	Torsion points:

O, [2131803669982, 0], [-4537164894885, 0], [2405361224902, 0]

	Independent points of infinite order:

P1 = [-1123310385953, 6261973583280061290]
P2 = [1437080495746, 2004693886298575836]
P3 = [-1456566767768, 6533836227413221650]
P4 = [21725045120232, 99705424840471181550]
P5 = [1411301714536, 2064078871420636434]
P6 = [-2780337846014, 6689653063999189284]
P7 = [10927547193640, 34047301896526537710]
P8 = [2128741741840, 75139533281546370]
P9 = [114081239820373/4, 1207471302278126991945/8]
P10 = [1765882795390, 1214456151572860560]

Dujella - Kulesz (2005)

y2 = x3 + x2 - 51842480912718829051424450176x  
    + 4369264394238409935774766530920437221081524

	Torsion points:

O, [-261787336968149, 0], [151941793461434, 0], [109845543506714, 0]

	Independent points of infinite order:

P1 = [258476183232812, 2870190828771702046722]
P2 = [166552782500714, -595735438157294660400]
P3 = [1674442357423348/9, 29129652429728946122006/27]
P4 = [-236815277984998, -1834504189420282179072]
P5 = [701813310369934522/3721, 258872732974570601958703632/226981]
P6 = [-32330246679329206/169, -5930186113285865685078720/2197]
P7 = [19451679477980, 1835265910439861203038]
P8 = [-15099048625776988/961, 67802672827473451110235902/29791]
P9 = [-73764324880763684/729, 57651322943308177426460390/19683]
P10 = [-190570235560164610769/6880129, -43401851933433456984785773713750/18046578367]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 27576645475830145153904x  
             + 1729915126735191359803368719620106

	Torsion points:

O, [-765422362825/4, 765422362821/8], 
[106351309533, -53175654767], [85004281173, -42502140587]

	Independent points of infinite order:

P1 = [701564334429, 572439898182939937]
P2 = [202305800739, 66564890849359843]
P3 = [-182192216332, 26579710796451438]
P4 = [278734730043, 125295900226327393]
P5 = [162942170538, 39530360962167883]
P6 = [1485480872781/25, 2169098217958859489/125]
P7 = [57264035646, 18399526044504991]
P8 = [155600970168, 34732045952930518]
P9 = [-139942098681, 53370960528399307]
P10 = [617285342297925/5776, 807886298510133737857/438976]

Dujella - Kulesz (2006)

y2 = x3 - 1847328012902153498242621563x  
    + 29507539334265430770255537905996796279162

	Torsion points:

O, [-49438645846122, 0], [28486714006881, 0], [20951931839241, 0]

	Independent points of infinite order:

P1 = [292978291973601, 4963511570504551140960]
P2 = [115928557117919611/441, 38973001436437075457562190/9261]
P3 = [15513146436090459/361, 1177643512752581244089538/6859]
P4 = [100335192796907721/676, 30569649181074834692362515/17576]
P5 = [34973407349824749/121, 6471762075691854446667708/1331]
P6 = [3502702882341741/121, 22630872460498486608060/1331]
P7 = [36219358421974, 100561308505935484168]
P8 = [487430203045298041/13689, 150885385820957102294268784/1601613]
P9 = [-766912524462279/16, 5699540736493283718675/64]
P10 = [28586933662251, 7726797426561555510]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 2527427104077534556054022038x  
             + 47355671625689337837748701149990440355156

	Torsion points:

O, [33149032816225, -16574516408113], 
[-231381478322601/4, 231381478322597/8], [24696336764425, -12348168382213]

	Independent points of infinite order:

P1 = [35352434995060, 46778756374468748252]
P2 = [1824652408390058545/12544, 2332966625856584664267692561/1404928]
P3 = [43437587712481, 139747676813065838399]
P4 = [10987507793800, 144609873485512726787]
P5 = [43526726028341695/529, 7660909384024753073625019/12167]
P6 = [419169835396495, 8522762203297987688237]
P7 = [62245047921382, 362216653717779451928]
P8 = [2217036264204688249/55225, 1335638930533044585211794773/12977875]
P9 = [21290402126401084300/966289, 46189904590560418106744766769/949862087]
P10 = [60567006501967954/2809, 7995334784463820333245328/148877]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 2095665816571588568797400x  
    + 1124962987529349713405567597055502500

	Torsion points:

O, [701601988450, 0], [-1664757539901, 0], [963155551450, 0]

	Independent points of infinite order:

P1 = [961248978649690/5041, 306276905122607136722160/357911]
P2 = [-27974846195/4, 8540235603969152235/8]
P3 = [7295460956775, 19342386334530745050]
P4 = [5767532982550/121, 1347653238826929852900/1331]
P5 = [642688629075, 208720106542837500]
P6 = [4296390926841430/961, 268309864661550292745580/29791]
P7 = [-411219864331520/361, 9782372921255366841630/6859]
P8 = [321470470377887400/458329, 3498396695445412509523950/310288733]
P9 = [2686255641325/4, 1144405381680090075/8]
P10 = [5368307441672215/5329, 73945254159228534130230/389017]

Dujella - Kulesz (2006)

y2 = x3 - 3100863785002943696173810803x  
    + 66427343005484655864100186401547159095602

	Torsion points:

O, [-64296256390802, 0], [31550344288681, 0], [32745912102121, 0]

	Independent points of infinite order:

P1 = [35309684865673, 30984052711401709920]
P2 = [39332750459602609/1024, 2070277890560288957452905/32768]
P3 = [-64067666039159, 46000964206630873440]
P4 = [-34536570365796359/625, 4105672576469455102371936/15625]
P5 = [5639646735631247187319/199459129, 103724040155573660563560464574930/2816961278867]
P6 = [1836963087158702/361, 1545639256734732259294012/6859]
P7 = [125459743157226097/3364, 10052861884739276244777135/195112]
P8 = [-211343209870289441/36481, 2021847117957383544294968358/6967871]
P9 = [10392958795177, 187943540125362248448]
P10 = [227658014566057, 3340597176320784412032]

Dujella - Kulesz (2006)

y2 = x3 - 6280507251241335798861762831x  
    + 186425809547577812432369910732392928652210

	Torsion points:

O, [39484794891035, 0], [51750402755279, 0], [-91235197646314, 0]

	Independent points of infinite order:

P1 = [54277502633183, 73753985212864731432]
P2 = [-75687001101403, 477706926466 126510326]
P3 = [63963204131018, 215398594373144567922]
P4 = [642014985539911214753/5276209, 13407493835528883204466071636378/12119452073]
P5 = [303352769631342767/289, 166615657515725784605946144/4913]
P6 = [-90720460435615, 97716986879616663930]
P7 = [2669902606744402451/75625, 1939741997899199565731206176/20796875]
P8 = [15908687661546227723753/405257161, 157643354109231062874003815058978/8158231908091]
P9 = [2337083594500582644954/1247689, 112882987246002303624589472927990/1393668613]
P10 = [-108921030276580834133417602761190135/5139093322454788671529, 
      205127115538038452816882283680266872236422889191269630/368408597214103805049338013192917]

Dujella - Kulesz (2006)

y2 + xy = x3 - 2670166555674217082947943798165685x  
         + 52878128871493544998260665592160035849161863056225

	Torsion points:

O, [-238555790682287761/4, 238555790682287761/8], 
[28218381634847970, -14109190817423985], [31420566035723970, -15710283017861985]

	Independent points of infinite order:

P1 = [-57995505071935180, 3559374439279487416453415]
P2 = [44227254929853216, 4614619939666569027467217]
P3 = [81765521253735855/4, 20919151206463255684118745/8]
P4 = [61680535740769182, 11083488293603533305500307]
P5 = [32029028543187150, 461025632815368879585135]
P6 = [25339126542208950, 1219822682588552502541215]
P7 = [27560262085920780, 470673132516620018439255]
P8 = [1652332882016576505/64, 548927671128600790594370055/512]
P9 = [632714276175357986870/19321, 2001142976684787975336601338785/2685619]
P10 = [26684108177440422, 792029979265052963324607]

Dujella - Kulesz (2006)

y2 + xy = x3 - 5506040231557883468932766850390x  
         + 4908472221374778356914283342498849265100430100

	Torsion points:

O, [-10822372890515041/4, 10822372890515041/8], 
[1478749843932180, -739374921966090], [1226843378696580, -613421689348290]

	Independent points of infinite order:

P1 = [1220491800283470, 2537742226864107247260]
P2 = [296018036421630857190/243049, 361766838810855827158639233870/119823157]
P3 = [2189709254943546, 57888868271374850580582]
P4 = [5198293274759312347428/896809, 347836487882959066297301779560906/849278123]
P5 = [-204653734737312845820/78961, 933036655679863226903706468510/22188041]
P6 = [230200501640281112130/64009, 2879757654326665300408692606270/16194277]
P7 = [143550928142322750/121, 9032602877238597803549940/1331]
P8 = [230589428143104825/256, 106791866943047036249057835/4096]
P9 = [5489708062823562, 374332298993260576360422]
P10 = [743968187078702340/289, 433737131220537594156315390/4913]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - x2 - 54006420424320643845071809947713x  
             + 149350163573370676609380429389684902810993129617

	Torsion points:

O, [4750617860740103, -2375308930370052], 
[-33858622405682101/4, 33858622405682097/8], [3714037740680423, -1857018870340212]

	Independent points of infinite order:

P1 = [2886005944181117, 132381810707779150933242]
P2 = [3501662046952673, 56338618369474831204488]
P3 = [7473595143669035, 403934262719170848544788]
P4 = [-7427623090211833, 375114142636686076006140]
P5 = [7501325516633993, 407834698609299494770638]
P6 = [13498928796598350787/2601, 12480836932215545359294471840/132651]
P7 = [104326015458962253/16, 17459659140444357597500697/64]
P8 = [1906926548670716510823887/238733401, 1759780289282407054587696367904840772/3688669778851]
P9 = [-5371648021270504576342851/1100580625, 19887159956194199093715121045367186168/36511762234375]
P10 = [28076356766197917502493267/8107741849, 45340335683040311203640392035431145276/730045399309507]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 1646798478200731455951780206240x  
    + 810450381726359418240260982572840154346977588

	Torsion points:

O, [-1481200902178293, 0], [777088719620146, 0], [704112182558146, 0]

	Independent points of infinite order:

P1 = [-1455770132153918, 11074533333029002627200]
P2 = [-1353954154553009, 23623765534623520228410]
P3 = [33077231011254964/49, 867426790517975865680910/343]
P4 = [1208680370588026, 24202654763635704877560]
P5 = [782888194315389181/36, 691527301306639562971931725/216]
P6 = [98002896970431113986/9025, 963704221172095704070185122784/857375]
P7 = [6565596286747367938/9409, 953135818403350483897924320/912673]
P8 = [389488530929448431788/564001, 675333211156762700495006184222/423564751]
P9 = [231015012120140119614882834/230329925329, 1431516891993488388806348851361896840800/110541550073370983]
P10 = [88146970794472357309223219284/23671367894329, 
      24785149475816658649630156259856255641055750/115168850657740453267]

Dujella - Kulesz (2006)

y2 = x3 - 166477435590420718988594907x  
    + 822409022576847684085477323335087731594

	Torsion points:

O, [7886478190013, 0], [7003451359613, 0], [-14889929549626, 0]

	Independent points of infinite order:

P1 = [1518938469935903, 59196312498916593686070]
P2 = [939753018175889/100, 9373460920049141092287/1000]
P3 = [-1165039360777, 31855618975719168630]
P4 = [21364925675596097/2704, 77250122641829136977505/140608]
P5 = [1422355918967431407/134689, 769028793494478490800548150/49430863]
P6 = [6362865919613, 4554427507047792000]
P7 = [387797438584301/49, 260423998413625837440/343]
P8 = [3298864965533, 17581876291583192160]
P9 = [219899218795061/25, 776757992213594514816/125]
P10 = [705059072322290618/89401, 75708400030084354499010/26730899]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 128138869724315629885857078x  
             + 555277284945263391493519434335136232756

	Torsion points:

O, [6924470940905, -3462235470453], 
[6138683567105, -3069341783553], [-52252618032041/4, 52252618032037/8]

	Independent points of infinite order:

P1 = [1089765713877995, 35972975803803938829807]
P2 = [3097744092155, 13713563551987534047]
P3 = [7054658858345, 1548875883096343707]
P4 = [7869584534420, 5851818570187614447]
P5 = [188046773760113977295/26822041, 170887047173205402781748942823/138911350339]
P6 = [15838416209585791871/1267876, 42923276124544332745762790379/1427628376]
P7 = [505487845549360415/68644, 59643068564319015237642051/17984728]
P8 = [512860020497067561905/1957201, 11603776457329541614854140656353/2738124199]
P9 = [1046489223400286866017755/22888361521, 1040413420813611142232171432001680493/3462757326150569]
P10 = [3286723573267846570775/16630084, 188125165940161755815887449528879/67817482552]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 67610525824594003037372633360x  
    + 6765721856966365986971860849272847750385508

	Torsion points:

O, [148735703756686, 0], [151505549932486, 0], [-300241253689173, 0]

	Independent points of infinite order:

P1 = [287269769152486, 3324137367238106622000]
P2 = [181315914671368, 683887265104569185478]
P3 = [1498440378015382936, 1834252815835349581269039750]
P4 = [818208618809114506/5041, 93227346541702623592201860/357911]
P5 = [12897759064086586/81, 140716704208075401065660/729]
P6 = [145598385384058, 90898804190274285348]
P7 = [3839704814088406/25, 8465371013329012075104/125]
P8 = [148018466818426, 33483228868721251620]
P9 = [-366059418286222682486/1896129, 9276483361405155812859936829220/2610969633]
P10 = [11430505508830969/64, 318719033440949535713235/512]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 125381643350820044555047895296x  
    + 15369896659737727744798583569349841806575604 

	Torsion points:

O, [255301005093554, 0], [-404232662039189, 0], [148931656945634, 0]

	Independent points of infinite order:

P1 = [538661793621514, 10204304558314702715880]
P2 = [323743339160804, 2951251107664831621650]
P3 = [3211745878308530, 180949814569917579618432]
P4 = [895329398652962, 24916285063224414841632]
P5 = [62146819104644508506/76729, 448434617228530372943257514760/21253933]
P6 = [134897095008524, 954479000052249084270]
P7 = [6374661846704714, 508191757702322077664280]
P8 = [87076813150753656842/201601, 585193431728004057900282054168/90518849]
P9 = [-885880855341120214/2209, 111585336965619266642092200/103823]
P10 = [3041037062347841649122/6497401, 127446031506164507280869512768032/16561875149]

Dujella - Kulesz (2006)

y2 = x3 - 3580337493699884709593350441412523x  
    + 82126769332530027586016964349828016686393237143722 

	Torsion points:

O, [36319566283980121, 0], [-69061691970712442, 0], [32742125686732321, 0]

	Independent points of infinite order:

P1 = [157316863139667409/4, 11727114790127068142913375/8]
P2 = [8931640493413819, 7131689595444004075814238]
P3 = [-13951755483315079, 11373787088040422406446800]
P4 = [32294383104405421, 427397440183627118505300]
P5 = [47564804161042739, 4409062767926226374941262]
P6 = [171110168988850454, 66928142045638986044235212]
P7 = [8097401269076060581/361, 24828689182315063846225124700/6859]
P8 = [30886012259579021, 1003992948205847349358700]
P9 = [20224952174351754829, 90955581859510169552227264788]
P10 = [-39099868672260158207/2304, 1299158197403764605396724657279/110592]

Dujella - Kulesz (2006)

y2 + xy = x3 - 90484566933849488551552142531x  
         + 10059776284195031930661353899532163975354720

	Torsion points:

O, [201227532432928, -100613766216464], [144570199566508, -72285099783254], 
[-1383190927997745/4, 1383190927997745/8]

	Independent points of infinite order:

P1 = [-40581773951367, -3696615620860607702979]
P2 = [-242563665166484, -4211447869324493069630]
P3 = [-302693482110612, -3116901492067387819614]
P4 = [-7227258761777, -3273126049568670706769]
P5 = [471770180549383, 8507195441429882225671]
P6 = [77555547944863, 1873147609483194844351]
P7 = [201647818346613, 114597573898274810601]
P8 = [577489814535349, 12263585211166164834601]
P9 = [19601688646692673, 2744033282395686066522106]
P10 = [5798932744770736/25, 155698791070001985480476/125]

Dujella - Peral (2020)

y2 = x3 + x2 - 193936360896469946772176x 
         + 29453641253718130506136229522416740

	Torsion points:


O, [183987603262, 0], [318551911147, 0], [-502539514410, 0]
 

	Independent points of infinite order:

P1 = [161914581802, 47930396230252620]
P2 = [68453757114, 128447410733500404]
P3 = [365432019646, 85924863183911136]
P4 = [631026137512, 397926553049036550]
P5 = [-433647631493, 178902575071840620]
P6 = [177816655990, 24307793270717040]
P7 = [339616933690, 52543993541144820]
P8 = [-73308253094, 208030793878151244]
P9 = [32325641272, 152375531521162950]
P10 = [176375192827, 27107093217274980]
log(N)=70.616089488616280949

Dujella - Peral (2023)

y2 = x3 - 43957892034985974408867x 
         + 3504959683923441655614250399616674

	Torsion points:


O, [-241774124767, 0], [110077507358, 0], [131696617409, 0]
 

	Independent points of infinite order:

P1 = [107768287313, 4394796747081840]
P2 = [94555380033, 13924714157729600]
P3 = [31812992183, 46246345487877150]
P4 = [41570646023, 41826316133193570]
P5 = [-11735013087, 63397082640559360]
P6 = [-116884679742, 83940943569093050]
P7 = [109609638033, 1905554145664400]
P8 = [-90570410497, 82117568157173010]
P9 = [136668620753, 7073495137391760]
P10 = [134998901009, 5568436197379440]
log(N)=66.576371408757576392

High rank curves with prescribed torsion Andrej Dujella home page