Elkies - Klagsbrun (2024)
y2 + xy = x3 - 27006183241630922218434652145297453784768054621836357954737385x + 55258058551342376475736699591118191821521067032535079608372404779149413277716173425636721497 Independent points of infinite order: P1 = [2891195474228537189458255536634, 1159930748096124706459835910727318679593425283] P2 = [3402542165322127811451484642234, 1661508223164691055862657623730465560755290883] P3 = [4298760026558467240422107564794, 4313142249890236204790986787384907722927474563] P4 = [3728756667770947009884455714554, 2530180219584734091116528693531660545660397443] P5 = [5991744132052078230511185130234, 10418901628842034362301273055728300669218858883] P6 = [3236493534632768520540227223034, 1324626796262167243658687198416201825373745283] P7 = [78226686134991174232380689386234, 690394210062759896503429654125516779999512554883] P8 = [11492605643548859374635605140234, 35536316911450952155461624238308456029618940883] P9 = [-5143303362384229804906088118566, 7622356511107986864120352355674305680222368483] P10 = [443985655575065435281568435002, 6584468124388858623214803939643557365635620355] P11 = [-979565018904269680752629749766, 8987348422104537684966706438714038633832170883] P12 = [5184894285212178249566461261834, 7390536788003150201273204464695859875505480483] P13 = [-4469171023687146502067179612166, 9310658892841458934133221137392081403414455683] P14 = [3606405835110925482450522970234, 2183644666981703632482662193390480040127898883] P15 = [16151744576785317732688993162234, 61908882092472338946519909276455831463747210883] P16 = [3573684355943766387962362869754, 2094467155115749424853047283659077805560259203] P17 = [-759376049938858166436491644166, 8679171135458197195914024161800061810952119683] P18 = [-5328058719935886182106003119366, 6920588147379497633202935557367499676224350083] P19 = [5380268474895377355583039694554, 8105660240030025092450118297303424395856037443] P20 = [17069233487425098088940203248484, 67583677272795299213867443505411893525786510633] P21 = [5215432542403430758248050783794, 7501515746204716855921710958364078294243814643] P22 = [2838942178046024039763692432122, 1212346280964590308944175800544505700108208003] P23 = [243146882395382015946366404808154/81, 811625272160726332199288136187427505366582108107/729] P24 = [2558229016839511149831260080762, 1706598395830079994387505244133382709649637123] P25 = [2361253942905600810977556672634, 2157503396243552448798851089310708763298766083] P26 = [2678312077644931683114439906234, 1462722361020796436741527433473386115047618883] P27 = [3379397084927230910084852603902, 1608494167359575995485655188349208450365853755] P28 = [3632407730870998917912491355514, 2255654937037700801978158381185619053396712963] P29 = [2428778263277521959543043930234, 1998325023610603606161737305486867803334410883]
High rank curves with prescribed torsion | Andrej Dujella home page |