Martin - McMillen (1998)
y2 + xy + y = x3 - 19252966408674012828065964616418441723x
+ 32685500727716376257923347071452044295907443056345614006
Independent points of infinite order:
P1 = [16902136044621724275584661392595/119224493521,
-69455519784971993679807552308609739430858248812/41166906143372569]
P2 = [6647882272466103821634772046571/30891226081,
-17137023844710987140049387309945953892946213544/5429411004770479]
P3 = [1277229332035649706664846727592/2961427561,
1443380843339272397458721030742392016696304046/161157926442059]
P4 = [1754834771916476982132090651/369369961,
49412130720987886904443301152758710388796/7098921280459]
P5 = [902743031953703698667092998/307406089,
6538434104009303265024749952830709029353/5389750958437]
P6 = [103579510135061476534950819/45091225,
230697883363551870088729854504374414548/302787575875]
P7 = [31762044569407766003397375255/14054813809,
1411381089291349753164768808558921002947204/1666240341498377]
P8 = [29436984213667648723395/17956,
5657335012046240705357319452802233/2406104]
P9 = [1127027270330215920, 3523978127407100674110377602]
P10 = [686464244502821899711515/139129,
-394563651945882403580468873435105816/51895117]
P11 = [11962675953816366561795/1369,
-1167962768316319592876571517317044/50653]
P12 = [30520680805402695175757355/3345241,
-151915114589061403100759698106532333112/6118445789]
P13 = [11449775538050756019357635316/967521025,
-1150775031908416918955115365651634494501651/30094741482625]
P14 = [4969418243982621661795591770/1285294201,
184569435055535326363669745422918052707327/46079082400051]
P15 = [480465113537612829840777315/160801,
-10531550647702714814852169224678207441368/64481201]
P16 = [97907154284679777917982542166035/57601436172721,
964874722537391293613786748114488474882993683572/437169613520472565481]
P17 = [249989354826313432718977195/4397409,
3941156276776007263792745630379334937996/9221366673]
P18 = [54840074123086507808388135/3996001,
387496978790653709721061294119215460988/7988005999]
P19 = [9690141319063801580189469420/87590881,
-953144078079942906360903670036536669593542/819763055279]
P20 = [882142442406602738753880/76729,
-775394556680837651292166377698874734/21253933]
P21 = [2812175950395226936581984/24025,
4712624271973109965160039085789391367/3723875]
P22 = [7126269737101017406079752337071371/2947180538019481,
83015454575998684006900205726968222686505350799684/159996363164349841378621]
P23 = [2143448685801212487450/841,
10099849221189668277354753748208/24389]
| Rank records history | Andrej Dujella home page |