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1 Introduction

Let n be a nonzero integer. A set of m positive integers {a1,az,...,am}
is said to have the property D(n) if a;a; + n is a perfect square for all
1 <i < j < m. Such a set is called a Diophantine m-tuple (with the
property D(n)), or P,-set of size m.

Diophantus found the quadruple {1, 33, 68, 105} with the property
D(256). The first Diophantine quadruple with the property D(1), the set
{1, 3, 8, 120}, was found by Fermat (see [8, 9]). Baker and Davenport [3]
proved that this Fermat’s set cannot be extended to the Diophantine quin-
tuple, and a famous conjecture is that there does not exist a Diophantine
quintuple with the property D(1). The theorem of Baker and Davenport
has been recently generalized to several parametric families of quadruples
[12, 14, 16], but the conjecture is still unproved.

On the other hand, there are examples of Diophantine quintuples and
sextuples like {1, 33, 105, 320, 18240} with the property D(256) [11] and
{99, 315, 9920, 32768, 44460, 19534284} with the property D(2985984) [19].

The purpose of this paper is to find some upper bounds for the numbers
M, defined by

M,, = sup{|S| : S has the property D(n)},

where |S| denotes the number of elements in the set S.

Considering congruences modulo 4, it is easy to prove that My;4o = 3
for all integers k (see [6, 21, 29]). In [10] we proved that if n # 2 (mod 4)
and n ¢ {—4, =3, —1, 3, 5, 8, 12, 20}, then M,, > 4. Recently, we were able
to prove that M; < 8 (see [15]). (As we said before, the conjecture is that
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M; = 4.) Since a set with the property D(4) may contain at most two odd
elements, this result implies My < 10.
Since the number of integer points on the elliptic curve

y? = (a1 + n)(agz + n)(azx + n) (1)
is finite, we conclude that there does not exist an infinite set with the prop-
erty D(n). However, bounds for the size [2] and for the number [33] of
solutions of (1) depend not only on n but also on ay, ag, as.

On the other hand, we may consider the hyperelliptic curve

y? = (a12 + n)(agz + n)(azz + n)(asgz + n)(asz 4+ n) (2)
of genus g = 2. Caporaso, Harris and Mazur [7] proved that the Lang
conjecture on varieties of general type implies that for ¢ > 2 the number
B(g,K) = max¢ |C(K)| is finite. Here C runs over all curves of genus g over
a number field K, and C(K) denotes the set of all K-rational points on C.
However, even the question whether B(2,Q) < oo is still open. An example
of Keller and Kulesz [26] shows that B(2,Q) > 588 (see also [17, 34]). Since
M, <54+ B(2,Q) (by [23] we have also M,, <4+ B(4,Q)), we see that the
Lang conjecture implies that

M =sup{M,, : ne€ Z\ {0}}

is finite.

At present we are able to prove only the weaker result that M, is finite
for all n € Z \ {0}. In the proof of this result we will try to estimate the
number of "large” (greater than |n|3), "small” (between n? and |n|3) and
"very small” (less that n?) elements of a set with the property D(n). Let
us introduce the following notation:

A, = sup{|SN[n|>,+00)| : S has the property D(n)},
B, = sup{|Sn(n%|n|*)| : S has the property D(n)},
C, = sup{|SN[1,n?%]] : S has the property D(n)}.

In estimating the number of ”large” elements, we used a theorem of
Bennett [4] on simultaneous approximations of algebraic numbers and a
very useful gap principle. We proved

Theorem 1 A, <21 for all nonzero integers n.
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For the estimate of the number of "small” elements we used a ”weak”
variant of the gap principle and we proved

Theorem 2 B, < 0.65 log|n|+ 2.24 for all nonzero integers n.

Finally, in the estimate of the number of ”very small” elements we used
a large sieve method due to Gallagher [18] and we proved

Theorem 3 C,, < 265.55 log |n| (loglog |n|)? + 9.01 loglog |n| for |n| >
400.

Since we checked that C,, <5 for |n| < 400, we may combine Theorems
1, 2 and 3 to obtain

Theorem 4

M, < 32 for |n| <400,
M, < 267.81 log|n|(loglog|n|)?  for |n| > 400.

2 Large elements

Assume that the set {a,b,c,d} has the property D(n). Let ab +n = 72,
ac+n = s%, bc+n = t2, where r, s,t are nonegative integers. Eliminating d
from the system

2

ad+n=2x? bd+n=19y> «cd+n=2>

we obtain the following system of Pellian equations
az? —ca® = nla—c), (3)

bz2 —cy® = n(b—c). (4)

We will apply the following theorem of Bennett [4] on simultaneous ap-
proximations of square roots of two rationals which are very close to 1.

Theorem 5 ([4]) If ¢;, pi, ¢ and L are integers for 0 < i < 2, with ¢y <
c1 < ¢, ¢; =0 for some 0 < j <2, q nonzero and L > M?, where

M = max{|co|, |e1], |cal},
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then we have

C  Pi

pax {1+ 7 -

log(33L~)
log (17L2 H0§i<jﬁ2(ci - Cj)_2>

} > (130Ly) 71

where
A=1+

and

(c2—c0)?(c1—cp)?

(ca—cp)?(ca—c1)®
Y= DT y—— if c2—c12>c1— co,
c1+co—2co

if co—cC1 <cC1— Q.

We will apply Theorem 5 to the numbers
6, = Sf:\/ac+”:,/1+":,/1+w,
alV c ac ac abc
t /b bc+n \/ n \/ na
O = —4/= =1/ =4/1+—=4/1+ —.
2 b\/; be +bc +abc

Lemma 1 Assume that a < b < ¢ and ac > n. Then all positive integer
solutions x,y, z of the system (3) and (4) satisfy

b .
sbx ﬂ)<c |n|2_2.

fmax (|01 B %L 102 - abz

a

Proor. We have

s [a  sbr| s s In(c —a)]
‘a\fc abz’_az\ﬁ‘z\/a x\/a_az c zyataeo

If n <0, then s = \/ac — |n| < \/ac and we obtain

o0 N el

abz’ av/acz? a
If n > 0, then x+/c > zy/a and we obtain

sbx vac+n-n-c nocn _y cn _,
0 — ——| < —F——F—=5— =1+~ 2 "< —2z "
abz 2a+/acz ac 2a a
In the same manner, we obtain |62 — Z“TZ| < %z_Q < @z‘z. ]
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Lemma 2 Let {a,b,c,d}, a < b < ¢ < d, be a Diophantine quadruple with
the property D(n). If ¢ > bY|n|t, then d < c!3L.

PROOF. Let r,s,t,x,y, z be defined as in the beginning of this section.
We will apply Theorem 5 with {c, c1,ca} = {0,na,nb}, L = abe, M = |nb|,
q = abz, p1 = sbx, p2 = tay. Since abc > |n|??, the condition L > MY is
satisfied. For the quantity v from Theorem 5 we have v = bQSZ:Z)Z In|? if

b>2aand v = ‘(ﬁ’; In|? if a < b < 2a. In both cases we have

b b
S < v < TP

For the quantity A from Theorem 5 we have

log(33abcy)
A=1 =2-A
* log(1.7¢2(b — a)~2n=6) b

where .
.(c
_ log 33ab(b—a)?nb~
log(1.7¢2(b — a)~2n=6)

Theorem 5 and Lemma 1 imply

A1

j;g > (130abey) ~H(abz) 2 > (130abey) o207 22M 72,
This implies
M < 1306203 nly
and
log (130a2b3c?|n|y) log (1.7¢2(b — a) ~?n %)
< T7c ) : (5)

log( 33ab(b—a)?nby
Let us estimate the right hand side of (5). We have

log 2z

2;3 2 216 2, 4 5 6507 3
130a“b°c*|n|y < 65a°b°c*n® < ¢” - <c,
b5|n|7
unless n = —1, a = 1, b = 2. However, in [13] it was proved that the

Diophantine pair {1,2} with the property D(—1) cannot be extended to a
Diophantine quadruple.
The same result implies also that if |n| = 1, then b — a > 1. Therefore

1.7¢% (b —a)*n % < 2.
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Finally,

1.7¢ 1 b4\n\ 1
1 “1p=6en=? i1 . 11 .
33ab(b — a)?nb~ > 0-103a = 9.71a > et

[

The last estimate shows that A\; > 0, what we implicitly used in (5).
Putting these three estimates in (5), we obtain

1 <21
log z < 3logc-2loge =66logc.

1
17 log ¢
Hence, z < ¢% and

1
< <

d= <4

c B c c
]
Now we will develop a very useful gap principle for the elements of a
Diophantine m-tuple. The principle is based on the following construction
which generalizes the constructions of Arkin, Hoggatt and Strauss [1] and
Jones [25] for the case n = 1.

Lemma 3 If {a,b,c} is a Diophantine triple with the property D(n) and
ab+n =12 ac+n = s2, bc+n =t2, then there exist integers e, x,vy, z such

that

2

ac+n?=2z2, be+n?=y% ce+n?=22

and 5
c:a+b+g+—2(abe+ra@y).
non

PRrROOF. Define
e =n(a+ b+ c)+ 2abc — 2rst.

Then

(ae +n?) — (at —rs)* = an(a+ b+ c) + 2a*be — 2arst + n®

— a®(be + n) + 2arst — (ab+ n)(ac + n) = 0.
Hence we may take x = at — rs, and analogously y = bs — rt, z = cr — st.
We have
abe +rxy = abn(a + b+ c) + 2a*b*c — 2abrst
+ abrst —a(ab+ n)(bc +n) — b(ab+ n)(ac+ n) + rst(ab +n)
—aben — n*(a +b) + rstn,
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and finally

2abc  2rst  2ab 2rst
abc  2rst ac—2a—26—|— rst _ .
n

2
atb+S +— (abetrzy) = 2a+2b+c+
n n n

Lemma 4 If {a,b,c,d} is a Diophantine quadruple with the property D(n)
and | <a<b<c<d, then

3.847 bc

d >
n2

PROOF. We apply Lemma 3 to the triple {a,c,d}. Since ce +n? is a
perfect square, we have that ce+n? > 0. On the other hand, the assumption
is that ¢ > |n|>. Hence, if e < —1, then ce + n? < —|n> +n? < 0, a
contradiction. Since e is an integer, we have e > 0. If e = 0, then d =
a+c+2s. If e > 1, then

2ac  2sy/ac _ 2ac

d > — pp—— 6
a+c+ n2+ 2 3 (6)

(Note that if n > 0 then x < 0, y <0, and if n < 0 and b > |n| then x > 0,
y >0.)
Analogously, applying Lemma 3 to the triple {b,c,d} we obtain that

d=b+c+2tord> b—i—c—i—%bgc—i-QtT\/ﬁ. However, d = b+ c+ 2t is impossible
since b+ c+ 2t > a + ¢+ 2s and

2
b+c+2t§b+c+2\/c(c—l)+n<4c§%,
n

unless a < 2n?. But if |n|> < a < 2n?, then |n| =1, a = 1, and in that case

we have
2ac  2s+/ac
— > 3 2 —1) > 4e.
a+c+ 3 + c+2y/c(c—1) > 4c

n2

Hence we proved that

2bc  2t\/be

d>"b —
>b+c+ n2+ (7)

From [30] we know that the triples {1,2,3} and {1, 2,4} cannot be extended
to Diophantine quadruples. Thus bc > 10 and it implies

n2

t2 = be+n > be — |n| > be — Voe > 0.853 be.
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If we put this in (7), we obtain d > %Zbc. [ |
PROOF OF THEOREM 1. Assume that {aj,as,...,as} has the property
D(n) and |[n]? < a; < as < --- < age. By Lemma 4 we find that
2 3 5 8
a3 @y ag as
a4>ﬁ7 a5>ﬁ7 CL6>$, ar > 147
al? a3l a3 agb
a8 > 51 @9 > “qgy 410 > ags @11 > oy

Since ay > |n|?, we have ams > ad!|n|', and we may apply Lemma 2 with

a=ai, b=as, c=ai. We conclude that a9y < a131. However, Lemma 4
implies
2 3 5
an ag ar
a1z > |nfann, ai3> =, A > —5, a5 > =,
n| n n|
9’ 16° 277 457
|| n n| n|
55 89 144
aso > @ as1 > aoy > i1
0 747 n ’1217 197"
Since a11 > adt|n|!t > n* we obtain
144 197
ai 44— 139 131
a9y > | |197 > aqy > a7 > aiy,
a contradiction. n

3 Small elements

Lemma 5 If{a,b,c,d} is a Diophantine quadruple with the property D(n),
In| #1, andn® <a<b<c<d, thenc>3.88a and d > 4.89c.

ProOOF. We will apply Lemma 3. Since b > n?, we have e > 0. Thus
Lemma 3 implies that
c>a+b+2r.

Since |n| # 1 we have ab > 20 and 72 > ab— v/ab > 0.89ab > 0.89a. Hence,
c> 3.88a.
Since d > b+ c+ 2t > a + ¢ + 2s, from (6) we conclude that

2ac  2sy/ac
d>a+c +7+ R
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We have ac > 24 and s%2 > ac — &ac > 0.9 ac. Therefore

3.89ac

> 4.89
n2 ¢

d>a+c+

|

PROOF OF THEOREM 2. We may assume that |n| > 2 since By =

B_; =0. Let {aj,a9,...,a,} be a Diophantine m-tuple with the property
D(n) and n® < a1 < ag < --- < |n|>. By Lemma 5 we have

as > 3.88a1, a4 >3.88-4.89ay, ..., am > 3.88-4.89m 3.

Therefore
3.88-4.89™73 . n? < |n|?

log 7%

and from m — 3 < Tog 480

we obtain m < 0.65log |n| + 2.24. |

4 Very small elements

We are left with the task to estimate the number of ”very small” elements
in a Diophantine m-tuple. Let {aj,as,...,a,} be a Diophantine m-tuple
with the property D(n) and assume that a1 < ag < -++ < ay, < N, where
N is a positive integer. Let 1 < k < m. Then x = agy1, ..., * = a,, satisfy
the system

aiz+n=0, ar+n=0 ..., azr+n=0 (8)

where O denotes a square of an integer. Denote by Zi(N) the number of
solutions of system (8) satisfying 1 < x < N.

Motivated by the observations from the introduction of [5], we will apply
a sieve method based on the following theorem of Gallagher [18] (see also
[24, p.29]):

Theorem 6 ([18]) If all but g(q) residue classes (mod q) are removed for
each prime power q in a finite set S, then the number of integers which
remain in any interval of length N is at most

(S A -1 /(2 3(%) ~ log V)

qeS qeS

provided the denominator is positive. Here A(q) =logp for ¢ = p“.
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We will use Theorem 6 to estimate the number Z(N). For this purpose,
we will take

S ={p : pisprime, 83 <p < Q, ged(ajaz---a,p) = 1},

where @ is sufficiently large. For a prime p € § we may remove all residue
classes (mod p) such that (““;#) = —1 for some i € {1,...,k}. Here (3)
denotes the Legendre symbol.

Let 1 <! < k. Then

IN

a;xr +n
H{z eF, : ( :

9(p) )=0or1,fori=1,..,1}]

§l+|{:L‘€Fp:<m+pnai):((Z> fori=1,...,1}.

Here a;a; =1 (mod p). Using estimates for character sums (see [28, p.325]),

we obtain - . l
p _
90) <1+ g+ (- + ) VBt -

Assume that k£ = |logy, Q. We may take [ = |log, p|. Then we have

p P 3l 2 3logy p
— Y — <2 — 2
2l+ ol =+ 5 <2+ + 5 <P

VD

for p > 179. Hence

z+2l+(l_ 21)

for p > 179, and we may check directly that [ + % + (l_72 + %) + % <
0.722 \/plogp for 83 < p < 173. Therefore we proved that

g(p) < 0.722 \/plogp.

By Theorem 6, we have Zj,(N) < £, where

1
E= Zlogp log N, F = Z —log N.
ey 0.722/p

By [32, Theorem 9], we have £ < 3 g3, logp < 0(Q) < 1.01624 Q.
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Assume that at least %W(Q) primes less than ) satisfy the condition
ged(ajag -+ - ag,p) = 1. Then we have

1 1 4
F > 70.722\/@5] —log N > 70.722\/©<57T(Q> — 23) —log N
JO  31.86

Since F' must be positive in the applications of Theorem 6, we will choose
Q of the following form

Q = c1-log? N - (loglog N)?, (10)

where ¢ is a constant.

We have to check whether our assumption is correct. Suppose that
a = ajas - --ai is divisible by at least one fifth of the primes < ). Then
a > pips-- Prin@) where p; denotes the i*™* prime. By [32, p.69], we have

1 1 1 Q 1 Q
PrizQ) = g”(@) log(gW(Q)) > 5108 Q log <510gQ) =R

Therefore, by [32, p.70],

1
1 1 R(1-—).
oga>§% ogp > ( logR)

Assume that Q > 2-10%. Then {325 > Q"% and R > 0.128Q. Further-

more, log R > 7.793 and therefore
loga > 0.105 Q.

On the other hand, a < N* and loga < klog N < log, Qlog N.
Assume that N > 1.6-10° and ¢; < 80. Then Q < 10,5_);4'498 N. In order
to obtain a contradiction, it suffices to check that

4.498
log N - loglog N

0.105 ¢1 log® N (loglog N)? >
log 2

or

c1 log N loglog N > 61.81,

and this is certainly true for N > 1.6 - 10° if we choose ¢; > 2.08.
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Thus we may continue with estimating the quantity F'. We are working
under assumptions that (10) holds with 2.08 < ¢; < 80, @ > 2-10* and
N > 1.6-10°. We would like to have the estimate of the form

V@
co log Q-

(11)
This estimate will lead to
Zp(N) < 1.01624 c3/Qlog Q < 4.572 ca4/c1 log N (log log N)?. (12)
In order to fulfill (11), it suffice to check

31.86 VO 1

222 L og N < Y2 (1108 — — ).

V@ e s logQ( 62)
Since @ > 2 - 10* we have 2156 < 0.016 &. Furthermore,

log N log Q < 4.498 log N loglog N 4.498
V@ Jeilog Nloglog N \/er

Hence cp > 1/(1.092 — 4\;10%8). Thus if we choose ¢; = 68, then we may take

co = 1.83 and from (12) we obtain
Z(N) < 69 log N (loglog N)?2. (13)
Note that with this choice of ¢;, N > 1.6 -10° implies @ > 60222 > 2 - 10*.

PROOF OF THEOREM 3. Let {aj,as,...,a,} be a Diophantine m-
tuple with the property D(n) and a; < as < --- < a;, < n?. Then for any
ke{1,2,...,m} we have

m < k+ Z(n?).
Let k = |logy Q|, where Q = 68 log®n? (loglogn?)?. Since |n| > 400, we
have n? > 1.6 - 10° and we may apply formula (13) to obtain
Z1(n?) < 69 logn?(loglogn?)? < 265.55 log |n| (loglog |n])?, (14)

Furthermore,

1
k < — log(log4®9n?) < 9.01 loglog |n|, (15)

log,
and combining (14) and (15) we finally obtain

m < 265.55 log |n|(loglog |n|)? + 9.01 loglog |n|.
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Remark 1 In [22] Katalin Gyarmati recently considered the more general
problem. She estimated min{|A|,|B|}, where A,B C {1,2,..., N} satisfy
the condition that ab + 1 is a k' power for all @ € A, b € B. Using her
approach, it can be deduced that if {a;,as, ..., a;} has the property D(n),
where n > 0 and a1 < ag < --- < @y, < N, then m < 2nlog N. This yields
C, <4nlogn for n > 2.

Remark 2 Let us mention that Rivat, Sarkozy and Stewart [31] recently
used Gallagher’s ”larger sieve” method in estimating the size of a set Z of
integers such that z + 2’ is a perfect square whenever z and 2’ are distinct
elements of Z. They proved that if Z C {1,2,..., N}, where N is greater
that an effectively computable constant, then |Z| < 37 log N.

Largest known set with the above property is a set with six elements
found by J. Lagrange [27]. Maybe this may be compared with our situation
where the largest known Diophantine m-tuples are Diophantine sextuples
found by Gibbs [19, 20].

PROOF OF THEOREM 4. Since M,, < A,, + B,, + C,, the second part of
the theorem follows directly from Theorems 1, 2 and 3.

For |n| < 400, Theorem 2 gives B, < 6. It is easy to verify with a
computer that for |n| < 400 it holds C,, < 5. More precisely, C,, = 5 if
and only if n € {—299, —255,256,400}. These two estimates together with
Theorem 1 imply M, < 32. [ |

5 Concluding remarks

It is not surprising that in Theorem 4 the main contribution comes from
Cy,. Namely, if we define C = sup{C,, : n € Z\ {0}}, then we have M = C.
Indeed, if {aj, a9, ..., an} is a Diophantine m-tuple with the property D(n),
then {ajc,asc, ..., anc} has the property D(nc?) and for sufficiently large
¢ we have a;c < (nc?)?, i = 1,2,...,m. It means that in order to prove
M < oo, it suffices to prove C' < co. The above argumentation shows that
it suffice to prove that for some € > 0 it holds

sup sup{|S N [1,7%°*¥]| : S has the property D(n)} < cc.
n#0

We may define also A = sup{4,, : n€ Z\ {0}} and B =sup{B,, : n €
Z\ {0}}. Gibbs’ example mentioned in introduction shows that C' > 6 and
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M >6. If n = a?, a > 5, then B, > 3 since {a®+1, a®+2a+1, 4a®+4a+4}
has the property D(a?). Hence B > 3. Finally, since {k, k+2, 4k-+4, 16k3+
48k? + 44k + 12} has the property D(1) we have A > A; > 4.
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