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Abstract. For a nonzero integer n, a set of m distinct nonzero integers
{a1, a2, . . . , am} such that aiaj +n is a perfect square for all 1 ≤ i < j ≤ m, is

called a D(n)-m-tuple. In this paper, we show that there are infinitely many
essentially different quadruples which are simultaneously D(n1)-quadruples
and D(n2)-quadruples with n1 ̸= n2.

1. Introduction

For a nonzero integer n, a set of distinct nonzero integers {a1, a2, . . . , am} such
that aiaj + n is a perfect square for all 1 ≤ i < j ≤ m, is called a Diophantine
m-tuple with the property D(n) or D(n)-m-tuple. The D(1)-m-tuples are called
simply Diophantine m-tuples, and have been studied since the ancient times. Dio-
phantus of Alexandria found a set of four rationals

{
1
16 ,

33
16 ,

17
4 , 105

16

}
with the prop-

erty that the product of any two of its distinct elements increased by 1 is a square of
a rational number. By multiplying elements of this set by 16 we obtain the D(256)-
quadruple {1, 33, 68, 105}. Fermat found the first D(1)-quadruple, it was the set
{1, 3, 8, 120}. In 1969, Baker and Davenport [5], using linear forms in logarithms of
algebraic numbers and the reduction method introduced in that paper, showed that
the set {1, 3, 8} can be extended to a Diophantine quadruple only by adding 120 to
the set. In 2004, Dujella [13] showed that there are no Diophantine sextuples and
that there are at most finitely many Diophantine quintuples. Recently, He, Togbé
and Ziegler proved that there are no Diophantine quintuples [26]. (See also [6] for
an analogous result concerning the conjecture of nonexistence of D(4)-quintuples.)
On the other hand, it was known already to Euler that there are infinitely many
rational Diophantine quintuples. In particular, the Fermat’s set {1, 3, 8, 120} can
be extended to a rational Diophantine quintuple by adding 777480/8288641 to the
set. Recently, Stoll [31] proved that the extension of Fermat’s set to a rational Dio-
phantine quintuple is unique. The first example of a rational Diophantine sextuple,
the set {11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}, was found by Gibbs
[23], while Dujella, Kazalicki, Mikić and Szikszai [19] recently proved that there are
infinitely many rational Diophantine sextuples (see also [17, 18]). It is not known
whether there exists any rational Diophantine septuple. For an overview of results
on D(1)-m-tuples and its generalizations see [15].

Let us mention some results concerning D(n)-sets with n ̸= 1. It is easy to show
that there are no D(n)-quadruples if n ≡ 2 (mod 4) (see e.g. [7]). On the other
hand, it is known that if n ̸≡ 2 (mod 4) and n ̸∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then
there exists at least one D(n)-quadruple [9]. It is believed that the size of sets
with the property D(n) is bounded by an absolute constant (independent on n).
It is known that the size of sets with the property D(n) is ≤ 31 for |n| ≤ 400;
< 15.476 log |n| for |n| > 400, and < 3 · 2168 for n prime (see [11, 12, 20] and also
[4]).
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In [28], A. Kihel and O. Kihel asked if there are Diophantine triples {a, b, c}
which are D(n)-triples for several distinct n’s. They conjectured that there are
no Diophantine triples which are also D(n)-triples for some n ̸= 1. However,
the conjecture is not true, since, for example, {8, 21, 55} is a D(1) and D(4321)-
triple (as noted in the MathSciNet review of [28]), while {1, 8, 120} is a D(1) and
D(721)-triple, as observed by Zhang and Grossman [32]. In [1], several infinite
families of Diophantine triples were presented which are also D(n)-sets for two
additional n’s. Furthermore, there are examples of Diophantine triples which are
D(n)-sets for three additional n’s. For example, the set {4, 12, 420} is a D(n)-triple
for n = 1, 436, 3796, 40756 (see also [2]).

If we omit the condition that one of the n’s is equal to 1, then the size of a set
N for which there exists a triple {a, b, c} of nonzero integers which is a D(n)-set
for all n ∈ N can be arbitrarily large. Indeed, take any triple {a, b, c} such that the
elliptic curve

E : y2 = (x+ ab)(x+ ac)(x+ bc)

has positive rank over Q. Then there are infinitely many rational points on E(Q).
For an arbitrary large positive integer M we may choose M distinct rational points
R1, . . . , RM ∈ 2E(Q), so that we have

x(Ri) + bc = �, x(Ri) + ca = �, x(Ri) + ab = �,

where � stands for a square of a rational number (see e.g. [27, 4.1, p. 37]). We
choose z ∈ Z \ {0} such that z2x(Ri) ∈ Z for all i = 1, 2, . . . ,m. Then the triple
{az, bz, cz} is a D(n)-triple for n = x(Ri)z

2 for all i = 1, 2, . . . ,m (see [1, Section
4] for the details).

On the other hand, assuming Lang’s conjecture on varieties of general type, for
a given quadruple {a, b, c, d} of distinct integers, the size of the set N of integers
n for which {a, b, c, d} is a D(n)-quadruple is bounded by an absolute constant.
Indeed, let ab + n = x2. By multiplying the remaining five conditions, we get the
hyperelliptic curve

y2 = (x2 + ac− ab)(x2 + bc− ab)(x2 + ad− ab)(x2 + bd− ab)(x2 + cd− ab),

which has genus 4, unless the polynomial on the right hand side has two equal
roots, which happens if and only if ab = cd, ac = bd or ad = bc (assuming that a, b,
c, d are nonzero and distinct). Let us consider the cases when one or two of these
equalities hold. Assume e.g. that ad = bc. Then we get the hyperelliptic curve

y2 = (x2 − ab+ ac)(x2 + bc− ab)(ax2 − a2b+ b2c)(ax2 − a2b+ bc2)

with distinct roots (unless b = −a or c = −a) and, hence, with genus equal to 3.
Finally, if e.g. c = −a and d = −b, we get the hyperelliptic curve

y2 = (x2 − ab− a2)(x2 − 2ab)(x2 − ab− b2)

with distinct roots and with genus equal to 2. Assuming the above mentioned
Lang’ conjecture, Caporaso, Harris and Mazur [8] proved that for g ≥ 2 the num-
ber B(g,K) = maxC |C(K)| is finite, where C runs over all curves of genus g
over a number field K. Therefore, we get that, under Lang’s conjecture, |N | ≤
max(B(2,Q), B(3,Q), B(4,Q)).

Thus, it seems natural to ask is there any set of four distinct nonzero integers
which is a D(ni)-quadruple for two distinct (nonzero) integers n1 and n2. However,
it seems that this question has not been studied yet and that there are no examples
of such quadruples in the literature. In Section 2 we will present results of our
computer search for such quadruples. Motivated by certain regularities in found
examples, we will show in Section 3 that there are infinitely many such examples.
If {a, b, c, d} is D(n1) and D(n2)-quadruple and u is a nonzero rational such that
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au, bu, cu, du, n1u
2 and n2u

2 are integers, then {au, bu, cu, du} is a D(n1u
2) and

D(n2u
2)-quadruple. We will say that these two quadruples are equivalent, and list

only one representative of each found class of quadruples. Let us note that asking for
integral solutions and asking for rational solutions is equivalent, since the problem
is weighted-homogeneous (with a, b, c, d of weight 1 and n1, n2 of weight 2).

Our main result is

Theorem 1. There are infinitely many nonequivalent sets of four distinct nonzero
integers {a, b, c, d} with the property that there exist two distinct nonzero integers
n1 and n2 such that {a, b, c, d} is a D(n1)-quadruple and a D(n2)-quadruple.

2. Numerical examples

We started with computational search for D(n)-quadruples, where −500 000 ≤
n ≤ 500 000. For a fixed nonzero integer n, by observing divisors of integers of the
form m2 −n, it is not hard to get some D(n)-quadruples (we were searching in the
range m ≤ 333 333).

We have implemented the algorithm in C++. For a fixed n, we construct a graph,
connecting the numbers k and l with an edge provided they satisfy k · l = m2 − n.
The graph can be represented using standard containers (for example map<long,

set<long> > g; so for k < l, k and l are connected if set g[l] contains k). We
also connect k and l with k + l + 2m, since k(k + l + 2m) + n = (k + m)2 and
l(k + l + 2m) + n = (l +m)2 (a D(n)-triple of the form {k, l, k + l ± 2

√
kl + n} is

called regular).
But we actually used container unordered map<long, vector<long> >, which

is somewhat faster and takes less memory. For m = 1, . . . , 333 333, it usually
takes about 10–12 seconds (on one core of 3.6GHz) to build such a graph, and it
usually takes about 500MB of memory (but graph density depends on n). Then we
search for a 4-clique in that graph (e.g. D(n)-quadruple). We do this by sorting
each vector, and using binary search. So for finding all 4-cliques it takes about a
second, and for the most of n’s we get several hundreds of quadruples.

Then we searched for n2 using M. Stoll’s program ratpoints (see [30]). For
a quadruple {a, b, c, d}, the search for an integer point on the hyperelliptic curve
y2 = (ab+x)(ac+x)(ad+x)(bc+x)(bd+x)(cd+x) with x = n2 ≤ 108 takes about
0.02 seconds. Here we summarize results of our search:

{a, b, c, d} {n1, n2} {a, b, c, d} {n1, n2}
-1701, -901, 224, 243 413424, 463968 -1, 7, 22532, 23407 * 30632, 214376
-189, -133, 27, 32 * 6192, 8352 15, 380, 5735, 634880 361536, 7123200
-176, -169, 169, 176 31265, 36305 15, 720, 9135, 40656 17424, 13708816
-52, 135, 351, 575 37296, 67536 27, 115, 160, 1755 -2016, 37296
-27, 28, 189, 493 * 13752, 61272 28, 6348, 18750, 88872 330625, 38101225

-27, 189, 4189, 6364 * 194328, 1325304 45, 276, 8820, 18228 112896, 2966656
-15, 1140, 2057, 15609 234256, 989296 51, 192, 315, 2331 -6656, 1080144

-11, 28, 385, 540 11124, 34164 69, 300, 949, 2925 63400, 417544
-4, 209, 5129, 49049 252840, 6062280 70, 430, 2178, 18634 -20691, 1678149
-3, 21, 1152, 1517 * 5392, 37312 125, 2709, 2816, 5621 -273600, 1443600
-3, 21, 2597, 3132 * 11512, 80152 169, 448, 8640, 11305 97344, 28482624

-1, 7, 64, 119 * 128, 848 175, 231, 300, 396 -16400, -40400
-1, 7, 4484, 4879 * 6248, 43688 234, 322, 406, 1222 -10323, -69723

We indicate by * quadruples which contain two elements a and b such that
a/b = −1/7. These quadruples will play crucial role in the proof of Theorem 1 in
the next section.
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3. Quadruples containing the pair {−1, 7}

Motivated by the examples indicated by * in the previous section, we will show
that there are infinitely many quadruples of the form {a, b, c, d}, where a/b = −1/7
that are D(n)-quadruples for two distinct (nonzero) n’s. Then we will show that
in fact we may take a = −1 and b = 7 and get the the same conclusion.

We use regular triples mentioned in the previous section. Namely, ifAB+n = R2,
then {A,B,A+B+2R} and {A,B,A+B−2R} are D(n)-triples. Let cd+n1 = r2

and cd + n2 = s2. If c + d − 2r = 7 and c + d − 2s = −1, then {7, c, d} is a
D(n1)-triple and {−1, c, d} is a D(n2)-triple. We have to satisfy the remaining six
conditions from the definition of D(ni)-quadruples.

Now we will use the observation that in all the numerical examples that contain
a and b with b = −7a, one has n2 = 7n1 − 48a2. By scaling so that a = −1, this
suggests to fix a = −1, b = 7, n2 = 7n1 − 48. This, together with the relations
arising from requiring that {7, c, d} is a regular D(n1)-triple and {−1, c, d} is a
regular D(n2)-triple, gives the relation

(1) (c− d)2 − 50

3
(c+ d) + 25 = 0.

By setting 5t = c− d in (1), we obtain the parametrization

(2) c =
3

4
t2 +

5

2
t+

3

4
, d =

3

4
t2 − 5

2
t+

3

4
.

Then all the conditions are automatically satisfied with the only exception that

ab+ n2 = 7t2 − 6

needs to be a square. This gives another conic, which can easily be parametrized
by

t =
u2 − 2u+ 7

u2 − 7
.

Thus, we obtain

c =
(2u2 − 3u+ 7)(2u2 − u− 7)

(u2 − 7)2
,

d = − (u2 − 3u+ 14)(u2 + u− 14)

(u2 − 7)2
,

n1 =
4(2u4 − u3 − 20u2 − 7u+ 98)

(u2 − 7)2
,

n2 =
4(2u2 − 7u+ 14)(u2 + 7)

(u2 − 7)2
.

For u ̸∈ {0, 1, 2,−7/5,−5, 7/2, 7, 4, 7/3,−7,−2, 3,−7/2, 7/4,−1} the elements of
the set {−1, 7, c, d} are distinct rationals. By taking u = v/w and getting rid of
denominators, we obtain the following result.

Proposition 2. Let v and w be coprime integers and

v/w ̸∈ {0, 1,−1, 2,−2, 3, 4,−5, 7,−7, 7/2,−7/2, 7/3, 7/4,−7/5,∞}.
Then the set

(3)
{−(−v2 + 7w2)2, 7(−v2 + 7w2)2,−(−2v2 + vw + 7w2)(2v2 − 3vw + 7w2),

(v2 − 3vw + 14w2)(−v2 − vw + 14w2)}
is a D(n1)-quadruple and a D(n2)-quadruple for

n1 = 4(−v2 + 7w2)2(2v4 − v3w − 20v2w2 − 7vw3 + 98w4),

n2 = 4(−v2 + 7w2)2(2v2 − 7vw + 14w2)(v2 + 7w2).
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The geometric interpretation of this result is that we found a rational curve
defined over Q on the 6-dimensional variety given by the problem.

We have obtained infinitely many quadruples with the required property satisfy-
ing a/b = −1/7 (in other words, infinitely many rational quadruples with a = −1,
b = 7). Now we will show that there are infinitely many integer quadruples with
a = −1, b = 7. Indeed, if 7t2 − 6 is a square of an integer, then t is odd, and hence
c and d given by parametrization (2) are integers. The Pellian equation

(4) 7t2 − 6 = z2

has infinitely many integer solutions given by

t0 = 1, t1 = 5, ti+2 = 16ti+1 − vi, i ≥ 0,

t′0 = 1, t′1 = 11, t′i+1 = 16t′i+1 − wi i ≥ 0.

By inserting t = ti or t = t′i in (2), we obtain quadruples of the form {−1, 7, c, d}
which are D(n)-quadruples for two distinct n’s. Here are few smallest examples:

{a, b, c, d} {n1, n2}
-1, 7, 119, 64 128, 848

-1, 7, 4879, 4484 6248, 43688
-1, 7, 23407, 22532 30632, 214376

-1, 7, 1191959, 1185664 1585088, 11095568
-1, 7, 5840864, 5826919 7778528, 54449648

-1, 7, 302003332, 301903007 402604232, 2818229576
-1, 7, 1481896324, 1481674079 1975713608, 13829995208

-1, 7, 76695715424, 76694116519 102259887968, 715819215728
-1, 7, 376369378007, 376365836032 501823476032, 3512764332176

4. The case n1 = 0

In the definition ofD(n)-m-tuples, the case of n = 0 is usually excluded, although
certainly the definition make sense in this case also. The reason for excluding n = 0
is in very different behavior of D(0)-tuples compared with D(n)-tuples for n ̸= 0.
While for a fixed n ̸= 0 the size of sets with the property D(n) is bounded, sets
with the property D(0) can be arbitrarily large, just take any subset of the set of
squares {1, 4, 9, 16, . . .}. However, in the context of finding quadruples which are
D(n1) and D(n2)-quadruples for n1 ̸= n2, it seems to be natural to consider also
the case n1 = 0. We might expect that in this case it could be easier to find such
quadruples, but it seems that there is no straightforward way to see why there
should be infinitely many of them.

A simple search for D(n)-quadruples whose elements are perfect squares gives
many such examples. Here we list some of them:

{a, b, c, d} {n1, n2} {a, b, c, d} {n1, n2}
1, 4, 169, 1024 0, 6720 196, 625, 1024, 3969 0, 705600
1, 36, 529, 1024 0, 60480 324, 841, 1369, 4096 0, -262080
25, 64, 961, 2025 0, 188496 1, 324, 2209, 4096 0, 887040

100, 625, 1024, 2025 0, 360000 36, 729, 2500, 4096 0, 518400
64, 169, 441, 2401 0, 1164240 256, 729, 2401, 5625 0, 1587600

961, 1849, 2704, 2916 0, -1774080 121, 169, 2704, 5625 0, 1436400
32, 98, 1152, 3528 0, 257985 1681, 4096, 5625, 5929 0, -6879600

Our starting point in constructing infinitely many quadruples {a, b, c, d} which
are D(0)-quadruples and also D(n2)-quadruples for n2 ̸= 0, is the following simple
fact (see [10, Theorem 1] and [9, Section 5]). The set

{a, ak2 − 2k − 2, a(k + 1)2 − 2k, a(2k + 1)2 − 8k − 4}
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is a D(2a(2k + 1) + 1)-quadruple provided all its elements are distinct nonzero
integers. Thus, we take b = ak2−2k−2, c = a(k+1)2−2k, d = a(2k+1)2−8k−4,
n = 2a(2k + 1) + 1, and we want to find integers a and k such that {a, b, c, d} is
also a D(0)-quadruple, i.e. such that ab, ac and ad are perfect squares. By putting
ab = (ak + r)2 we get

k = − 2a+ r2

2a(1 + r)
.

Then we put ac = (2ra+ s)2 and we get

a = −−4r2 − 4r3 − r4 + s2

4(r3 − 2− 2r + rs)
.

The final condition that ad is a perfect square, now becomes

(5)

(r2 − 2r + 1)s4 + (8r4 + 8r3 − 16r)s3

+ (22r6 + 68r5 + 54r4 − 40r3 − 24r2 + 32r + 32)s2

+ (−192r3 + 24r8 − 448r4 + 88r7 − 336r5)s

+ 9r10 + 30r9 − 39r8 − 248r7 − 200r6 + 352r5 + 752r4 + 512r3 + 128r2 = 2,

which describes an elliptic surface (over the r-line), whose generic fiber will be
studied now. Since r2 − 2r + 1 is a square, this quartic curve in s has rational
points at infinity, so it can be in a standard way transformed into an elliptic curve
over Q(r):

(6)

y2 = x3 + (4r6 + 56r5 + 84r4 + 80r3 + 48r2 − 64r − 64)x2

+ (−1024r9 − 2048r8 + 1024r7 + 5120r6 + 3072r5 − 3072r4

− 5120r3 − 1024r2 + 2048r + 1024)x.

The curve (6) has a point [0, 0] of order 2 and two independent points of infinite
order:

P1 = [−6r6 − 4r5 + 74r4 + 168r3 + 88r2 − 32r − 32,

− 256r7 − 1792r6 − 4352r5 − 4352r4 − 1024r3 + 1024r2 + 512r],

P2 = [−4r5 + 10r4 + 8r3 + 24r2 − 6r6 − 32r,

− 320r3 + 128r + 448r6 − 512r4 − 64r2 + 128r7 + 192r5].

If fact, by using the algorithm of Gusić and Tadić from [25] (see also [24, 31] for
other variants of the algorithm), we can check that the rank of (6) over Q(r) is
equal to 2 and that P1 and P2 are its free generators. Indeed, the specialization
r = 13 satisfies the assumptions of [25, Theorem 1.3].

Hence, there are infinitely many Q(r)-rational points on curves (6) and (5), and
thus infinitely many quadruples with the required property. We present an explicit
formula. By taking the point P2 − P1 on (6) we get

s = −r(3r3 + 9r2 + 7r + 2)

r2 + r − 1
,

and (after multiplying with the common denominator) the quadruple

(7) {4r4(r + 2)2, (r3 − 4r + 1)2, (r3 + 4r2 − 1)2, 4(2r − 1)2}

which is a D(0)-quadruple and a D(16r10+96r9+112r8− 192r7− 256r6+192r5+
112r4 − 96r3 + 16r2)-quadruple. By taking r to be an integer in (7) we obtain the
following result



DIOPHANTINE QUADRUPLES WITH THE PROPERTIES D(n1) AND D(n2) 7

Proposition 3. There are infinitely many nonequivalent sets of four distinct nonzero
integers {a, b, c, d} with the property that a, b, c, d are perfect squares (so that {a, b, c, d}
is a D(0)-quadruple) and there exists n2 ̸= 0 such that {a, b, c, d} a D(n2)-quadruple.

Let us mention that in [16, 29] sets all of whose elements are squares appeared
in similar context (construction of (strong) Eulerian m-tuples, which are shifted
D(−1)-m-tuples). Other connections of (rational) Diophantine m-tuples and ellip-
tic curves can be found in [3, 14, 19, 21, 22].
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