Generalization of a theorem of Baker and Davenport

Andrej Dujella (Zagreb) and Attila Pethő*(Debrecen)

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational numbers $\frac{1}{16}, \frac{33}{16}, \frac{17}{4}$ and $\frac{105}{16}$ have the following property: the product of any two of them increased by 1 is a square of a rational number (see [4]). The first set of four positive integers with the above property was found by Fermat, and it was $\{1,3,8,120\}$. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple (or P_{1}-set of size m). In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 . The same result was proved by Kanagasabapathy and Ponnudurai [9], Sansone [12] and Grinstead [7]. This result implies that the Diophantine triple $\{1,3,8\}$ cannot be extended to a Diophantine quintuple.

In the present paper we generalize the result of Baker and Davenport and prove that the Diophantine pair $\{1,3\}$ can be extended to infinitely many Diophantine quadruples, but it cannot be extended to a Diophantine quintuple.

The first part of this assertion is easy. Of course let $\{1,3, c\}$ be a Diophantine triple, then from [8, Theorem 8] it follows that there exists $k \geq 1$ such that

$$
c=c_{k}=\frac{1}{6}\left[(2+\sqrt{3})(7+4 \sqrt{3})^{k}+(2-\sqrt{3})(7-4 \sqrt{3})^{k}-4\right]
$$

and it is easy to check that $\left\{1,3, c_{k}, c_{k-1}\right\}$ and $\left\{1,3, c_{k}, c_{k+1}\right\}$ are Diophantine quadruples provided $k \geq 2$. We have: $c_{0}=0, c_{1}=8, c_{2}=120, c_{3}=1680, \ldots$. Now we formulate our main results.

THEOREM 1 Let k be a positive integer. If d is an integer such that there exist integers x, y, z with the property

$$
\begin{equation*}
d+1=x^{2}, \quad 3 d+1=y^{2}, \quad c_{k} d+1=z^{2} \tag{1}
\end{equation*}
$$

then $d \in\left\{0, c_{k-1}, c_{k+1}\right\}$.

[^0]From Theorem 1 we obtain the following corollaries immediately.
Corollary 1 The Diophantine pair $\{1,3\}$ cannot be extended to a Diophantine quintuple.

Corollary 2 Let $0<l<k$ and z be integers such that

$$
c_{l} c_{k}+1=z^{2}
$$

then $l=k-1$.
Remark 1 The statement of Theorem 1 for $k=1$ is just Baker-Davenport's result, and the case $k=2$ is proved recently by Kedlaya [10].

Let k be the minimal positive integer, if such exists, for which the statement of Theorem 1 is not valid. Then $k \geq 3$ and we begin our proof by proving that $k \leq 75$.

Proposition 1 If Theorem 1 is true for $1 \leq k \leq 75$, then it holds for all positive integers k.

The proof of Proposition 1 is divided into several parts. In Section 2 we consider the equations (1) separately and prove for any fixed k that their solutions belong to the union of the set of members of finitely many linear recurrence sequences. In Section 3 we first localize the initial terms of the recurrence sequences defined previously provided that the system of equations (1) is soluble. Here we use congruence conditions modulo $c=c_{k}$. In the second step we consider the remaining sequences modulo c^{2} and rule out all but two equations in terms of linear recurrence sequences. This ends the formal-algebraic part of the paper.

The most essential step toward the proof of Theorem 1 is contained in Section 4. Here we transform the exponential equations into inequalities for linear forms in three logarithms of algebraic numbers, which depend on the parameter k. A smooth application of the theorem of Baker and Wüstholz [3] finishes the proof of Proposition 1.

Finally in Section 5 we prove Theorem 1 for $2 \leq k \leq 75$ by using a version of the reduction procedure due to Baker and Davenport [2].

2 Preliminaries

The system (1) is equivalent to the system of Pell equations:

$$
\begin{align*}
z^{2}-c_{k} x^{2} & =1-c_{k}, \tag{2}\\
3 z^{2}-c_{k} y^{2} & =3-c_{k} . \tag{3}
\end{align*}
$$

From the definition of c_{k} it follows that there exist integers s_{k} and t_{k} such that

$$
\begin{aligned}
c_{k}+1 & =s_{k}^{2}, \\
3 c_{k}+1 & =t_{k}^{2} .
\end{aligned}
$$

Thus neither c_{k} nor $3 c_{k}$ is a square and both $\mathbf{Q}\left(\sqrt{c_{k}}\right)$ and $\mathbf{Q}\left(\sqrt{3 c_{k}}\right)$ are real quadratic number fields. Moreover $s_{k}+\sqrt{c_{k}}$ and $t_{k}+\sqrt{3 c_{k}}$ are non-trivial units of norm 1 in the number rings $\mathbf{Z}\left[\sqrt{c_{k}}\right]$ and $\mathbf{Z}\left[\sqrt{3 c_{k}}\right]$ respectively. Thus there is a finite set $\left\{z_{0}^{(i)}+\right.$ $\left.x_{0}^{(i)} \sqrt{c_{k}}, i=1, \ldots, i_{0}\right\}$ of elements of $\mathbf{Z}\left[\sqrt{c_{k}}\right]$ such that if (z, x) is any solution of (2) in integers then

$$
z+x \sqrt{c}=\left(z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}\right)(s+\sqrt{c})^{m}
$$

for some index i and integer m. In this case, $z=v_{m}^{(i)}$ for some m, where the sequence $\left\{v_{m}^{(i)}\right\}$ is defined by the recursion

$$
v_{0}^{(i)}=z_{0}^{(i)}, \quad v_{1}^{(i)}=s z_{0}^{(i)}+c x_{0}^{(i)}, \quad v_{m+2}^{(i)}=2 s v_{m+1}^{(i)}-v_{m}^{(i)} .
$$

For simplicity, we have omitted here the index k and will continue to do so. We call the set $\left\{z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}, i=1, \ldots, i_{0}\right\}$ of solutions of $z^{2}-c x^{2}=1-c$ fundamental if we choose representatives so that the $\left|z_{0}^{(i)}\right|$ are minimal.

Similarly, all solutions of (3) are given by

$$
z \sqrt{3}+y \sqrt{c}=\left(z_{1}^{(j)} \sqrt{3}+y_{1}^{(j)} \sqrt{c}\right)(t+\sqrt{3 c})^{n}, \quad j=1, \ldots, j_{0},
$$

or by $z=w_{n}^{(j)}$ for some j and n, where the sequence $\left\{w_{n}^{(j)}\right\}$ is defined by the recursion

$$
w_{0}^{(j)}=z_{1}^{(j)}, \quad w_{1}^{(j)}=t z_{1}^{(j)}+c y_{1}^{(j)}, \quad w_{n+2}^{(j)}=2 t w_{n+1}^{(j)}-w_{n}^{(j)} .
$$

Here the elements $z_{1}^{(j)} \sqrt{3}+y_{1}^{(j)} \sqrt{c}$ are fundamental solutions of equation (3). In this way we reformulated the system of equations (1) to finitely many diophantine equations of form

$$
v_{m}^{(i)}=w_{n}^{(j)}
$$

in integers $1 \leq i \leq i_{0}, 1 \leq j \leq j_{0}, m$ and n.
By [11, Theorem 108a] we have the following estimates for the fundamental solutions of (2) and (3):

$$
\begin{gather*}
0 \leq\left|z_{0}^{(i)}\right| \leq \sqrt{\frac{1}{2}(s-1)(c-1)}<\sqrt{\frac{c \sqrt{c}}{2}}<\frac{c}{4}, \tag{4}\\
0<x_{0}^{(i)} \leq \sqrt{\frac{c-1}{2(s-1)}}<\sqrt{\frac{c(s+1)}{2 c}}<\sqrt{\frac{\sqrt{c}+2}{2}}, \tag{5}
\end{gather*}
$$

$$
\begin{gather*}
0 \leq\left|z_{1}^{(j)}\right| \leq \frac{1}{3} \sqrt{\frac{3}{2}(t-1)(c-3)}<\sqrt{\frac{c \sqrt{c}}{2 \sqrt{3}}}<\frac{c}{6}, \tag{6}\\
0<y_{1}^{(j)} \leq \sqrt{\frac{3(c-3)}{2(t-1)}}<\sqrt{\frac{c(t+1)}{2 c}}<\sqrt{\frac{\sqrt{3 c}+2}{2}} . \tag{7}
\end{gather*}
$$

3 Application of congruence relations

Let $a \bmod b$ denote the least non-negative residue of the integer a modulo the integer b and consider the sequences $\left(v_{m}^{(i)} \bmod c\right)$ and $\left(w_{n}^{(j)} \bmod c\right)$. We have:

$$
v_{2}^{(i)} \equiv\left(2 s^{2}-1\right) z_{0}^{(i)}=(2 c+1) z_{0}^{(i)} \equiv v_{0}^{(i)}(\bmod c), \quad v_{3}^{(i)} \equiv s z_{0}^{(i)} \equiv v_{1}^{(i)}(\bmod c) .
$$

Therefore, $v_{2 m}^{(i)} \equiv z_{0}^{(i)}(\bmod c)$ and $v_{2 m+1}^{(i)} \equiv s z_{0}^{(i)}(\bmod c)$, for all $m \geq 0$. Furthermore,

$$
w_{2}^{(j)} \equiv\left(2 t^{2}-1\right) z_{1}^{(j)}=(6 c+1) z_{1}^{(j)} \equiv w_{0}^{(j)}(\bmod c), w_{3}^{(j)} \equiv t z_{1}^{(j)} \equiv w_{1}^{(j)}(\bmod c)
$$

Therefore, $w_{2 n}^{(j)} \equiv z_{1}^{(j)}(\bmod c)$ and $w_{2 n+1}^{(i)} \equiv t z_{1}^{(j)}(\bmod c)$, for all $n \geq 0$. In the following lemma we prove that if (1) has a non-trivial solution then the initial terms of the sequences $v^{(i)}$ and $w^{(j)}$ are restricted.

Lemma 1 Let $k \geq 2$ be the smallest positive integer for which the assertion of Theorem 1 is not true. Let $1 \leq i \leq i_{0}, 1 \leq j \leq j_{0}$ and $v^{(i)}$, $w^{(j)}$ be the sequences defined in Section 2. Then
1° If the equation $v_{2 m}^{(i)}=w_{2 n}^{(j)}$ has a solution, then $v_{0}^{(i)}=z_{0}^{(i)}=z_{1}^{(j)}=w_{0}^{(j)}= \pm 1$.
$\mathbf{2}^{\circ}$ If the equation $v_{2 m+1}^{(i)}=w_{2 n}^{(j)}$ has a solution, then $z_{0}^{(i)}= \pm 1$ and $z_{1}^{(j)}=s z_{0}^{(i)}= \pm s$.
$\mathbf{3}^{\circ}$ If the equation $v_{2 m}^{(i)}=w_{2 n+1}^{(j)}$ has a solution, then $z_{0}^{(i)}= \pm t$ and $z_{1}^{(j)}=z_{0}^{(i)} / t= \pm 1$.
4° If the equation $v_{2 m+1}^{(i)}=w_{2 n+1}^{(j)}$ has a solution, then $z_{0}^{(i)}= \pm t$ and $z_{1}^{(j)}= \pm s$.
Proof. 1° We have $z_{0}^{(i)} \equiv z_{1}^{(j)}(\bmod c)$. From (4) and (6) we obtain $z_{0}^{(i)}=z_{1}^{(j)}$. Let $d_{0}=\left[\left(z_{1}^{(j)}\right)^{2}-1\right] / c$. Then d_{0} satisfies system (1). We compare d_{0} with c_{k-1} : certainly $c_{k-1} \geq c_{k} / 15$, and

$$
d_{0}<\frac{1}{c} \cdot \frac{c \sqrt{c}}{2 \sqrt{3}}=\frac{\sqrt{c}}{2 \sqrt{3}}<0.027 c .
$$

Hence, $d_{0}<c_{k-1}$, and from the minimality of k it follows that $d_{0}=0$. Thus, $\left|z_{1}^{(j)}\right|=1$ and we have: $z_{0}^{(i)}=z_{1}^{(j)}=1$ or $z_{0}^{(i)}=z_{1}^{(j)}=-1$.
$\mathbf{2}^{\circ} \quad$ We have $s z_{0}^{(i)} \equiv z_{1}^{(j)}(\bmod c)$. If $z_{0}^{(i)}= \pm 1$, then as $c-s>c / 2$ inequality (6) implies that $z_{1}^{(j)}=s z_{0}^{(i)}= \pm s$. Assume $\left|z_{0}^{(i)}\right| \geq 2$. Then $x_{0}^{(i)} \geq 2$ and we have $\left|z_{0}^{(i)}\right| \geq t$. Let us consider the number $c x_{0}^{(i)}-s\left|z_{0}^{(i)}\right|$. We have

$$
c x_{0}^{(i)}-s\left|z_{0}^{(i)}\right|=\frac{c^{2}\left(x_{0}^{(i)}\right)^{2}-s^{2}\left(z_{0}^{(i)}\right)^{2}}{c x_{0}^{(i)}+s\left|z_{0}^{(i)}\right|}=\frac{c^{2}-c\left(x_{0}^{(i)}\right)^{2}-1}{c x_{0}^{(i)}+s\left|z_{0}^{(i)}\right|}<\frac{c^{2}}{2 c+c \sqrt{3}}<\frac{c}{3}
$$

Furthermore,

$$
\begin{aligned}
c^{2}-c\left(x_{0}^{(i)}\right)^{2}-1 & \geq c^{2}-\frac{c(\sqrt{c}+2)}{2}-1>0.94 c^{2} \\
c x_{0}^{(i)}+s\left|z_{0}^{(i)}\right| & \leq c \sqrt{\frac{\sqrt{c}+2}{2}}+\sqrt{c+1} \sqrt{\frac{c \sqrt{c}}{2}}<1.48 c \sqrt[4]{c}
\end{aligned}
$$

and so

$$
\begin{equation*}
c x_{0}^{(i)}-s\left|z_{0}^{(i)}\right|>0.63 \sqrt{c \sqrt{c}}>\sqrt{\frac{c \sqrt{c}}{2 \sqrt{3}}} \tag{8}
\end{equation*}
$$

Notice that in the proof of (8) we did not use the assumption that $\left|z_{0}^{(i)}\right|>1$.
Let $z_{0}^{(i)}>0$. Since $z_{1}^{(j)} \equiv s z_{0}^{(i)}(\bmod c)$ and $-c<s z_{0}^{(i)}-c x_{0}^{(i)}<0$, we have $z_{1}^{(j)} \in\left\{s z_{0}^{(i)}-c x_{0}^{(i)}, s z_{0}^{(i)}-c x_{0}^{(i)}+c\right\}$. But

$$
\begin{aligned}
s z_{0}^{(i)}-c x_{0}^{(i)} & <-\sqrt{\frac{c \sqrt{c}}{2 \sqrt{3}}} \\
s z_{0}^{(i)}-c x_{0}^{(i)}+c & >\frac{2 c}{3}
\end{aligned}
$$

which both contradict (6).
If $z_{0}^{(i)}<0$, then we have $z_{1}^{(j)} \in\left\{s z_{0}^{(i)}+c x_{0}^{(i)}, s z_{0}^{(i)}+c x_{0}^{(i)}-c\right\}$, and since

$$
\begin{aligned}
s z_{0}^{(i)}+c x_{0}^{(i)} & >\sqrt{\frac{c \sqrt{c}}{2 \sqrt{3}}}, \\
s z_{0}^{(i)}+c x_{0}^{(i)}-c & <-\frac{2 c}{3}
\end{aligned}
$$

we obtain contradiction as before.
$\mathbf{3}^{\circ} \quad$ We have $z_{0}^{(i)} \equiv t z_{1}^{(j)}(\bmod c)$. If $z_{1}^{(j)}= \pm 1$, then (4) implies $z_{0}^{(i)}=t z_{1}^{(j)}= \pm t$. Assume $\left|z_{1}^{(j)}\right| \geq 2$. Then $y_{1}^{(j)} \geq 2$ and we have $\left|z_{1}^{(j)}\right| \geq s$. As in $\mathbf{2}^{\circ}$ we have $c y_{1}^{(j)}-t\left|z_{1}^{(j)}\right|=\frac{3 c^{2}\left(y_{1}^{(j)}\right)^{2}-3 t^{2}\left(z_{1}^{(j)}\right)^{2}}{3\left(c y_{1}^{(j)}+t\left|z_{1}^{(j)}\right|\right)}=\frac{3 c^{2}-3\left(y_{1}^{(j)}\right)^{2}-8 c-3}{3\left(c y_{1}^{(j)}+t\left|z_{1}^{(j)}\right|\right)}<\frac{3 c^{2}}{3(2 c+c \sqrt{3})}<\frac{c}{3}$,

$$
\begin{aligned}
3 c^{2}-3\left(y_{1}^{(j)}\right)^{2}-8 c-3 & \geq 2.9 c^{2} \\
3\left(c y_{1}^{(j)}+s\left|z_{1}^{(j)}\right|\right) & \leq 5.74 c \sqrt[4]{c}
\end{aligned}
$$

and

$$
\begin{equation*}
c y_{1}^{(j)}-t\left|z_{1}^{(j)}\right| \geq \frac{1}{2} \sqrt{c \sqrt{c}} . \tag{9}
\end{equation*}
$$

Thus we have $z_{0}^{(i)} \in\left\{t z_{1}^{(j)} \mp c y_{1}^{(j)}, t z_{1}^{(j)} \mp c y_{1}^{(j)} \pm c\right\}$. But

$$
\left|t z_{1}^{(j)} \mp c y_{1}^{(j)} \pm c\right|>\frac{2 c}{3}
$$

and (4) implies that

$$
\begin{equation*}
z_{0}^{(i)}=t z_{1}^{(j)} \mp c y_{1}^{(j)} . \tag{10}
\end{equation*}
$$

Let $d_{0}=\left[\left(z_{0}^{(i)}\right)^{2}-1\right] / c$. From (9) and the definition of the sequences $v^{(i)}$ and $w^{(j)}$ we see that d_{0} satisfies the system (1). Furthermore,

$$
d_{0}<\frac{1}{c} \cdot \frac{c \sqrt{c}}{2}<0.046 c<c_{k-1}
$$

and from the minimality of k, it follows that $d_{0}=0$. But, now we have $\left|z_{0}^{(i)}\right|=1$, which is in a contradiction with (9) and (10).
4° We have $s z_{0}^{(i)} \equiv t z_{1}^{(j)}(\bmod c)$. The estimates for the numbers $c x_{0}^{(i)}-s\left|z_{0}^{(i)}\right|$ and $c y_{1}^{(j)}-t\left|z_{1}^{(j)}\right|$ in the proof of $\mathbf{2}^{\circ}$ and $\mathbf{3}^{\circ}$ imply the following:
a) If $z_{0}^{(i)}>0$ and $z_{1}^{(j)}>0$, then $s z_{0}^{(i)}-c x_{0}^{(i)}=t z_{1}^{(j)}-c y_{1}^{(j)}$.
b) If $z_{0}^{(i)}>0$ and $z_{1}^{(j)}<0$, then $s z_{0}^{(i)}-c x_{0}^{(i)}+c=t z_{1}^{(j)}+c y_{1}^{(j)}$. But $s z_{0}^{(i)}-c x_{0}^{(i)}+c>\frac{2 c}{3}$ and $t z_{1}^{(j)}+c y_{1}^{(j)}<\frac{c}{3}$, a contradiction.
c) If $z_{0}^{(i)}<0$ and $z_{1}^{(j)}>0$, then $s z_{0}^{(i)}+c x_{0}^{(i)}=t z_{1}^{(j)}-c y_{1}^{(j)}+c$. But $s z_{0}^{(i)}+c x_{0}^{(i)}<\frac{c}{3}$ and $t z_{1}^{(j)}-c y_{1}^{(j)}+c>\frac{2 c}{3}$, a contradiction.
d) If $z_{0}^{(i)}<0$ and $z_{1}^{(j)}<0$, then $s z_{0}^{(i)}+c x_{0}^{(i)}=t z_{1}^{(j)}+c y_{1}^{(j)}$.

Hence, we have

$$
s z_{0}^{(i)} \mp c x_{0}^{(i)}=t z_{1}^{(j)} \mp c y_{1}^{(j)} .
$$

Consider the number

$$
d_{0}=\frac{1}{c}\left[\left(s z_{0}^{(i)} \mp c x_{0}^{(i)}\right)^{2}-1\right] .
$$

As in $\mathbf{3}^{\circ}$ we see that d_{0} satisfies the system (1). Furthermore,

$$
d_{0}<\frac{1}{c} \cdot\left(\frac{c}{3}\right)^{2}=\frac{c}{9}<c
$$

and, by (8), $d_{0}>0$. Therefore, from the minimality of k it follows that $d_{0}=c_{k-1}$.
We have

$$
c \cdot c_{k-1}+1=(s t-2 c)^{2}
$$

Hence,

$$
c x_{0}^{(i)}-s\left|z_{0}^{(i)}\right|=2 c-s t
$$

and

$$
c\left(x_{0}^{(i)}-2\right)=s\left(\left|z_{0}^{(i)}\right|-t\right)
$$

Since $\operatorname{gcd}(s, c)=1$, we have $x_{0}^{(i)} \equiv 2(\bmod s)$, and from (5) we conclude that $x_{0}^{(i)}=2$ and $\left|z_{0}^{(i)}\right|=t$. In the same manner, from

$$
c y_{1}^{(j)}-t\left|z_{1}^{(j)}\right|=2 c-s t
$$

we conclude that $y_{1}^{(j)}=2$ and $\left|z_{1}^{(j)}\right|=s$. Thus we have $z_{0}^{(i)}=t, z_{1}^{(j)}=s$ or $z_{0}^{(i)}=-t$, $z_{1}^{(j)}=-s$.

Now we will consider the sequences $\left(v^{(i)} \bmod c^{2}\right)$ and $\left(w^{(j)} \bmod c^{2}\right)$ which have the initial terms given in Lemma 1. (We will omit the superscripts (i) and (j).)

Lemma 2 Assume that the conditions of Lemma 1 are satisfied, then
$1^{\circ} \quad v_{2 m} \equiv z_{0}+2 c\left(m^{2} z_{0}+m s x_{0}\right) \quad\left(\bmod c^{2}\right)$
$\mathbf{2}^{\circ} \quad v_{2 m+1} \equiv s z_{0}+c\left[2 m(m+1) s z_{0}+(2 m+1) x_{0}\right]\left(\bmod c^{2}\right)$
$\mathbf{3}^{\circ} \quad w_{2 n} \equiv z_{1}+2 c\left(3 n^{2} z_{1}+n t y_{1}\right) \quad\left(\bmod c^{2}\right)$
$4^{\circ} \quad w_{2 n+1} \equiv t z_{1}+c\left[6 n(n+1) t z_{1}+(2 n+1) y_{1}\right]\left(\bmod c^{2}\right)$
Proof. We prove the lemma by induction. We use the fact that the sequences $\left(v_{2 m}\right)$ and $\left(v_{2 m+1}\right)$ satisfy the recurrence relation

$$
a_{m+2}=2(2 c+1) a_{m+1}-a_{m}
$$

and the sequences $\left(w_{2 n}\right)$ and $\left(w_{2 n+1}\right)$ satisfy the recurrence relation

$$
b_{n+2}=2(6 c+1) b_{n+1}-b_{n} .
$$

$\mathbf{1}^{\circ} \quad v_{0}=z_{0}, \quad v_{2}=2 s^{2} z_{0}+2 s c x_{0}-z_{0}=z_{0}+2 c\left(z_{0}+s x_{0}\right)$.
Assume that the assertion is valid for $m-1$ and m. Then we have

$$
\begin{aligned}
& v_{2 m+2}=(4 c+2) v_{2 m}-v_{2 m-2} \\
& \quad \equiv 4 c z_{0}+2 z_{0}+4 c\left(m^{2} z_{0}+m s x_{0}\right)-z_{0}-2 c\left[(m-1)^{2} z_{0}+(m-1) s x_{0}\right] \\
& \quad=z_{0}+2 c\left[z_{0}\left(2+2 m^{2}-m^{2}+2 m-1\right)+s x_{0}(2 m-m+1)\right] \\
& \quad=z_{0}+2 c\left[(m+1)^{2} z_{0}+(m+1) s x_{0}\right] \quad\left(\bmod c^{2}\right)
\end{aligned}
$$

$\mathbf{2}^{\circ} \quad v_{1}=s z_{0}+c x_{0}, \quad v_{-1}=s z_{0}-c x_{0}$.
Assume that the assertion is valid for $m-1$ and m. Then we have

$$
\begin{aligned}
& v_{2 m+3}=(4 c+2) v_{2 m+1}-v_{2 m-1} \\
& \quad \equiv 4 c s z_{0}+2 s z_{0}+2 c\left[2 m(m+1) s z_{0}+(2 m+1) x_{0}\right] \\
& \quad-s z_{0}-c\left[2 m(m-1) s z_{0}+(2 m-1) x_{0}\right] \\
& \quad=s z_{0}+c\left[s z_{0}\left(4+4 m^{2}+4 m-2 m^{2}+2 m\right)+x_{0}(4 m+2-2 m+1)\right] \\
& \quad=s z_{0}+c\left[2(m+1)(m+2) s z_{0}+(2 m+3) x_{0}\right]\left(\bmod c^{2}\right) .
\end{aligned}
$$

The proof of $\mathbf{3}^{\circ}$ and $\mathbf{4}^{\circ}$ is completely analogous.
Corollary 3 The equations $v_{2 m}=w_{2 n+1}$ and $v_{2 m+1}=w_{2 n}$ have no solutions in integers n, m.

Proof. If $v_{2 m}=w_{2 n+1}$, then Lemmas 1 and 2 imply

$$
\pm 2 m^{2} t+4 m s \equiv \pm 6 n(n+1) t+(2 n+1) \quad(\bmod c)
$$

But this contradicts the obvious fact that c is even.
If $v_{2 m+1}=w_{2 n}$, then Lemmas 1 and 2 imply

$$
\pm 2 m(m+1) s+(2 m+1) \equiv \pm 6 n^{2} s+4 n t(\bmod c)
$$

and we have again a contradiction with the fact that c is even.

4 Linear forms in three logarithms

Lemma 31° If $v_{2 m}=w_{2 n}$, then

$$
0<2 m \log (s+\sqrt{c})-2 n \log (t+\sqrt{3 c})+\log \frac{\sqrt{3}(\sqrt{c} \pm 1)}{\sqrt{c} \pm \sqrt{3}}<\frac{3}{2}(s+\sqrt{c})^{-4 m}
$$

$\mathbf{2}^{\circ}$ If $v_{2 m+1}=w_{2 n+1}$, then
$0<(2 m+1) \log (s+\sqrt{c})-(2 n+1) \log (t+\sqrt{3 c})+\log \frac{\sqrt{3}(2 \sqrt{c} \pm t)}{2 \sqrt{c} \pm s \sqrt{3}}<22(s+\sqrt{c})^{-4 m-2}$.
Proof. 1° We have by Lemma $1,1^{\circ}$ that

$$
\begin{aligned}
& v_{m}=\frac{1}{2}\left[(\sqrt{c} \pm 1)(s+\sqrt{c})^{m}+(-\sqrt{c} \pm 1)(s-\sqrt{c})^{m}\right], \\
& w_{n}=\frac{1}{2 \sqrt{3}}\left[(\sqrt{c} \pm \sqrt{3})(t+\sqrt{3 c})^{n}+(-\sqrt{c} \pm \sqrt{3})(t-\sqrt{3 c})^{n}\right] .
\end{aligned}
$$

If we put

$$
P=(\sqrt{c} \pm 1)(s+\sqrt{c})^{m}, \quad Q=\frac{1}{\sqrt{3}}(\sqrt{c} \pm \sqrt{3})(t+\sqrt{3 c})^{n}
$$

then

$$
P^{-1}=\frac{\sqrt{c} \mp 1}{c-1}(s-\sqrt{c})^{m}, \quad Q^{-1}=\frac{\sqrt{3}(\sqrt{c} \mp \sqrt{3})}{c-3}(t-\sqrt{3 c})^{n} .
$$

Now the relation $v_{m}=w_{n}$ implies $P-(c-1) P^{-1}=Q-\frac{c-3}{3} Q^{-1}$. It is clear that $P>1$ and $Q>1$, and from

$$
P-Q=(c-1) P^{-1}-\left(\frac{c}{3}-1\right) Q^{-1}>(c-1)\left(P^{-1}-Q^{-1}\right)=(c-1)(Q-P) P^{-1} Q^{-1}
$$

it follows that $P>Q$. Furthermore, we have $P-Q<(c-1) P^{-1}$ and $\frac{P-Q}{P}<(c-1) P^{-2}$. We may assume that $m \geq 1$. Thus, we have $P \geq(\sqrt{c}-1) \cdot 2 \sqrt{c}>c$, and so $(c-1) P^{-2}<\frac{1}{8}$. Hence,

$$
\begin{aligned}
0< & \log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right) \\
& <(c-1) P^{-2}+(c-1)^{2} P^{-4}<\frac{9}{8}(c-1) \cdot \frac{1}{(\sqrt{c}-1)^{2}}(s+\sqrt{c})^{-2 m}<\frac{3}{2}(s+\sqrt{c})^{-2 m}
\end{aligned}
$$

which implies the assertion taking into consideration that both n and m are even.
$\mathbf{2}^{\circ}$ We have by Lemma $1,4^{\circ}$ that

$$
\begin{aligned}
& v_{m}=\frac{1}{2}\left[(2 \sqrt{c} \pm t)(s+\sqrt{c})^{m}+(-2 \sqrt{c} \pm t)(s-\sqrt{c})^{m}\right] \\
& w_{n}=\frac{1}{2 \sqrt{3}}\left[(2 \sqrt{c} \pm s \sqrt{3})(t+\sqrt{3 c})^{n}+(-2 \sqrt{c} \pm s \sqrt{3})(t-\sqrt{3 c})^{n}\right]
\end{aligned}
$$

Let us put

$$
P=(2 \sqrt{c} \pm t)(s+\sqrt{c})^{m}, \quad Q=\frac{1}{\sqrt{3}}(2 \sqrt{c} \pm s \sqrt{3})(t+\sqrt{3 c})^{n}
$$

Then we have

$$
P^{-1}=\frac{2 \sqrt{c} \mp t}{c-1}(s-\sqrt{c})^{m}, \quad Q^{-1}=\frac{\sqrt{3}(2 \sqrt{c} \mp s \sqrt{3})}{c-3}(t-\sqrt{3 c})^{n}
$$

and the relation $v_{m}=w_{n}$ implies $P-(c-1) P^{-1}=Q-\frac{c-3}{3} Q^{-1}$. As in 1°, we obtain $P>Q$ and $P-Q<(c-1) P^{-1}$. As we may assume that $m \geq 1$, we have $P \geq(2 \sqrt{c}-t) \cdot 2 \sqrt{c}>\frac{c}{2}$ and $(c-1) P^{-2}<\frac{1}{2}$. Hence,

$$
0<\log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right)
$$

$$
\begin{aligned}
& <\frac{3}{2}(c-1) P^{-2}<\frac{3}{2}(c-1) \cdot \frac{1}{(2 \sqrt{c}-t)^{2}}(s+\sqrt{c})^{-2 m} \\
& =\frac{3}{2}(c-1) \frac{2 \sqrt{c}+t}{(c-1)(2 \sqrt{c}-t)}(s+\sqrt{c})^{-2 m}=\frac{3}{2}\left(1+\frac{2}{2 \sqrt{\frac{c}{3 c+1}}-1}\right)(s+\sqrt{c})^{-2 m} \\
& <22(s+\sqrt{c})^{-2 m}
\end{aligned}
$$

Now we use Lemmas 2 and 3 and obtain a lower bound for m and n. We consider two cases:

$$
\mathbf{1}^{\circ} \quad v_{2 m}=w_{2 n}, \quad m, n \neq 0
$$

From Lemma 3 we have

$$
2 m \log (s+\sqrt{c})-2 n \log (t+\sqrt{3 c})<0
$$

and so

$$
\frac{m}{n}<\frac{\log (t+\sqrt{3 c})}{\log (s+\sqrt{c})}=\frac{\log \sqrt{3}}{\log (s+\sqrt{c})}+\frac{\log \left(\sqrt{c+\frac{1}{3}}+\sqrt{c}\right)}{\log (\sqrt{c+1}+\sqrt{c})}<1.178
$$

On the other hand, Lemma 2 implies

$$
\pm 2 m^{2}+2 m s \equiv \pm 6 n^{2}+2 n t \quad(\bmod c)
$$

Assume that $n<0.105 \sqrt{c}$. Then $m<0.124 \sqrt{c}$. We have

$$
\begin{aligned}
& 2\left| \pm m^{2}+m s\right| \leq 2 c\left(0.124^{2}+0.124 \cdot 1.005\right)<\frac{c}{3} \\
& 2\left| \pm 3 n^{2}+n t\right| \leq 2 c\left(3 \cdot 0.105^{2}+0.105 \cdot 1.735\right)<\frac{c}{2}
\end{aligned}
$$

Hence, $\pm m^{2}+m s= \pm 3 n^{2}+n t$. But

$$
\begin{aligned}
0.876 m s & \leq \pm m^{2}+m s \leq 1.124 m s \\
0.685 n t & \leq \pm 3 n^{2}+n t \leq 1.315 n t
\end{aligned}
$$

Note that $1.727 \leq t / s<\sqrt{3}$. Thus, for sign + we obtain:

$$
\frac{m s}{n t} \geq 0.889 \Rightarrow \frac{m}{n} \geq 1.535
$$

and for sign - we obtain:

$$
\frac{m s}{n t} \geq 0.685 \Rightarrow \frac{m}{n} \geq 1.182
$$

a contradiction.

$\mathbf{2}^{\circ} \quad v_{2 m+1}=w_{2 n+1}$

From Lemma 3 we have

$$
(2 m+1) \log (s+\sqrt{c})-(2 n+1) \log (t+\sqrt{3 c})<0
$$

and so

$$
\frac{2 m+1}{2 n+1}<\frac{\log (t+\sqrt{3 c})}{\log (s+\sqrt{c})}<1.178
$$

On the other hand, Lemma 2 implies

$$
\begin{equation*}
\pm 2 m(m+1) s t+2(2 m+1) \equiv \pm 6 n(n+1) s t+2(2 n+1)(\bmod c) \tag{11}
\end{equation*}
$$

Multiplying congruence (11) by s we obtain

$$
\pm 2 m(m+1) t+2(2 m+1) s \equiv \pm 6 n(n+1) t+2(2 n+1) s(\bmod c)
$$

Let $m_{1}=m+\frac{1}{2}, n_{1}=n+\frac{1}{2}$, and let $n_{1}<0.156 \sqrt[4]{c}$. Then $m_{1}<0.184 \sqrt[4]{c}$. We have

$$
\begin{aligned}
2| \pm m(m+1) t+(2 m+1) s| & \leq 2\left(0.184^{2} \cdot 1.735 c+2 \cdot 0.184 \cdot 1.005 \sqrt{c \sqrt{c}}\right)<\frac{c}{2} \\
2| \pm 3 n(n+1) t+(2 n+1) s| & \leq 2\left(3 \cdot 0.156^{2} \cdot 1.735 c+2 \cdot 0.156 \cdot 0.105 \sqrt{c \sqrt{c}}\right)<\frac{c}{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
m(m+1) t \pm(2 m+1) s=3 n(n+1) t \pm(2 n+1) s \tag{12}
\end{equation*}
$$

Multiplying congruence (11) by t we obtain

$$
\pm 2 m(m+1) s+2(2 m+1) t \equiv \pm 6 n(n+1) s+2(2 n+1) t(\bmod c)
$$

and in the same manner as above we obtain

$$
\begin{equation*}
m(m+1) s \pm(2 m+1) t=3 n(n+1) s \pm(2 n+1) t \tag{13}
\end{equation*}
$$

Since $t \neq \pm s$ we conclude from (12) and (13) that

$$
m(m+1) \pm(2 m+1)=3 n(n+1) \pm(2 n+1)
$$

and

$$
m(m+1) \mp(2 m+1)=3 n(n+1) \mp(2 n+1) .
$$

Hence $2 m+1=2 n+1$ and $m(m+1)=3 n(n+1)$, which implies that $m=n=0$.
Thus we have proved
Lemma 41° If $v_{2 m}=w_{2 n}$ and $n \neq 0$, then $n>0.105 \sqrt{c}$.
$\mathbf{2}^{\circ}$ If $v_{2 m+1}=w_{2 n+1}$ and $n \neq 0$, then $n>0.156 \sqrt[4]{c}$.

Now we apply the following theorem of Baker and Wüstholz [3]:
Theorem 2 For a linear form $\Lambda \neq 0$ in logarithms of lalgebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational coefficients b_{1}, \ldots, b_{l} we have

$$
\log \Lambda \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 l d) \log B
$$

where $B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{l}\right|\right)$, and where d is the degree of the number field generated by $\alpha_{1}, \ldots, \alpha_{l}$.

Here

$$
h^{\prime}(\alpha)=\frac{1}{d} \max (h(\alpha),|\log \alpha|, 1),
$$

and $h(\alpha)$ denotes the standard logarithmic Weil height of α.

1) Let us first consider the equation $v_{2 m}=w_{2 n}$, with $n \neq 0$. Using Lemma $3, \mathbf{1}^{\circ}$, we will apply Theorem 2. We have: $l=3, d=4, B=2 m$,

$$
\begin{gathered}
\alpha_{1}=s+\sqrt{c}, \quad \alpha_{2}=t+\sqrt{3 c}, \\
\alpha_{3}=\frac{\sqrt{3}(\sqrt{c}+1)}{\sqrt{c}+\sqrt{3}}, \quad \alpha_{3}^{\prime}=\frac{\sqrt{3}(\sqrt{c}-1)}{\sqrt{c}-\sqrt{3}}, \\
h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \alpha_{1}<0.33 \log c, \quad h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \alpha_{2}<0.38 \log c, \\
h^{\prime}\left(\alpha_{3}\right)=h^{\prime}\left(\alpha_{3}^{\prime}\right)<\frac{1}{4} \log \left(12.63 c^{2}\right)<0.64 \log c, \\
\log \frac{3}{2}(s+\sqrt{c})^{-4 m}<\log (s+\sqrt{c})^{-3 m}<-\frac{3}{2} m \log c .
\end{gathered}
$$

Hence

$$
\frac{3}{2} m \log c<3.822 \cdot 10^{15} \cdot 0.33 \log c \cdot 0.38 \log c \cdot 0.64 \log c \cdot \log 2 m
$$

and

$$
\frac{m}{\log 2 m}<2.045 \cdot 10^{14} \log ^{2} c .
$$

But $m>n>0.105 \sqrt{c}$. Thus

$$
m<2.045 \cdot 10^{14} \log 2 m \log ^{2}\left(91 m^{2}\right)
$$

which implies $m<9 \cdot 10^{19}$ and finally $c<8 \cdot 10^{41}$. From

$$
\frac{1}{6}(2+\sqrt{3})(7+4 \sqrt{3})^{k}<8 \cdot 10^{41}
$$

it follows that $k \leq 36$.
2) Let $v_{2 m+1}=w_{2 n+1}$, with $n \neq 0$. Now we have: $l=3, d=4, B=2 m+1$,

$$
\begin{gathered}
\alpha_{1}=s+\sqrt{c}, \quad \alpha_{2}=t+\sqrt{3 c}, \\
\alpha_{3}=\frac{\sqrt{3}(2 \sqrt{c}+t)}{2 \sqrt{c}+s \sqrt{3}}, \quad \alpha_{3}^{\prime}=\frac{\sqrt{3}(2 \sqrt{c}-t)}{2 \sqrt{c}-s \sqrt{3}}, \\
h^{\prime}\left(\alpha_{1}\right)<0.33 \log c, \quad h^{\prime}\left(\alpha_{2}\right)<0.38 \log c, \\
h^{\prime}\left(\alpha_{3}\right)=h^{\prime}\left(\alpha_{3}^{\prime}\right)<\frac{1}{4} \log \left(75.79 c^{2}\right)<0.73 \log c, \\
\log 22(s+\sqrt{c})^{-4 m-2}<-2 m \log c .
\end{gathered}
$$

Hence

$$
2 m \log c<3.822 \cdot 10^{15} \cdot 0.33 \log c \cdot 0.38 \log c \cdot 0.73 \log c \cdot \log (2 m+1)
$$

and

$$
\frac{m}{\log (2 m+1)}<1.75 \cdot 10^{14} \log ^{2} c .
$$

But $m>n>0.156 \sqrt[4]{c}$. Thus

$$
m<1.75 \cdot 10^{14} \log (2 m+1) \log ^{2}\left(1689 m^{4}\right),
$$

which implies $m<4 \cdot 10^{20}$ and finally $c<5 \cdot 10^{85}$. It implies $k \leq 75$, which completes the proof of Proposition 1.

5 The reduction method

For completing the proof of Theorem 1 for all positive integers k, we must check the following:

1) If $2 \leq k \leq 36$ and

$$
\begin{aligned}
& v_{0}= \pm 1, \quad v_{1}= \pm s+c, \quad v_{m+2}=2 s v_{m+1}-v_{m}, \quad m \geq 0, \\
& w_{0}= \pm 1, \quad w_{1}= \pm t+c, \quad w_{n+2}=2 t w_{n+1}-w_{n}, \quad n \geq 0,
\end{aligned}
$$

then $v_{2 m}=w_{2 n}$ implies that $m=n=0$. We know that $n \leq m<9 \cdot 10^{19}$.
2) If $2 \leq k \leq 75$ and

$$
\begin{aligned}
& v_{0}=t, \quad v_{1}= \pm s t+2 c, \quad v_{m+2}=2 s v_{m+1}-v_{m}, \quad m \geq 0, \\
& w_{0}=s, \quad w_{1}= \pm s t+2 c, \quad w_{n+2}=2 t w_{n+1}-w_{n}, \quad n \geq 0,
\end{aligned}
$$

then $v_{2 m+1}=w_{2 n+1}$ implies that $m=n=0$. We know that $n \leq m<4 \cdot 10^{20}$.

We use the reduction method based on the Baker-Davenport lemma (see [2]). Let $\kappa=\log (s+\sqrt{c}) / \log (t+\sqrt{3 c}), \gamma_{1,2}=\sqrt{3}(\sqrt{c} \pm 1) /(\sqrt{c} \pm \sqrt{3}), \gamma_{3,4}=\sqrt{3}(2 \sqrt{c} \pm t) /(2 \sqrt{c} \pm$ $s \sqrt{3}), \mu_{1,2}=\log \gamma_{1,2} / \log (t+\sqrt{3 c}), \mu_{3,4}=\log \gamma_{3,4} / \log (t+\sqrt{3 c}), A_{1}=3 / 2 \log (t+\sqrt{3 c})$, $A_{2}=22 / \log (t+\sqrt{3 c}), B=(s+\sqrt{c})^{2}$.

Let $v_{m}=w_{n}, m, n \geq 0$. If m and n are even, then Lemma $3,1^{\circ}$ implies

$$
\begin{equation*}
0<m \kappa-n+\mu_{1,2}<A_{1} \cdot B^{-m} \tag{14}
\end{equation*}
$$

and if m and n are odd, then Lemma $3,2^{\circ}$ implies

$$
\begin{equation*}
0<m \kappa-n+\mu_{3,4}<A_{2} \cdot B^{-m} \tag{15}
\end{equation*}
$$

Lemma 5 Suppose that M is a positive integer. Let p / q be the convergent of the continued fraction expansion of κ such that $q>6 M$ and let $\varepsilon=\|\mu q\|-M \cdot\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer.
a) If $\varepsilon>0$, then there is no solution of the inequality

$$
\begin{equation*}
0<m \kappa-n+\mu<A B^{-m} \tag{16}
\end{equation*}
$$

in integers m and n with

$$
\frac{\log (A q / \varepsilon)}{\log B} \leq m \leq M
$$

b) Let $r=\left\lfloor\mu q+\frac{1}{2}\right\rfloor$. If $p-q+r=0$, then there is no solution of inequality (16) in integers m and n with

$$
\max \left(\frac{\log (3 A q)}{\log B}, 1\right)<m \leq M
$$

Proof. a) Assume that $0 \leq m \leq M$. We have

$$
m(\kappa q-p)+m p-n q+\mu q<q A B^{-m} .
$$

Thus

$$
q A B^{-m}>|\mu q-(n q-m p)|-m\|\kappa q\| \geq\|\mu q\|-M\|\kappa q\|=\varepsilon,
$$

which implies

$$
m<\frac{\log (A q / \varepsilon)}{\log B} .
$$

b) Assume that $0 \leq m \leq M$. We have

$$
m(\kappa q-p)+(m p-n q+r)+(\mu q-r)<q A B^{-m} .
$$

Thus
$|m p-n q+r|<q A B^{-m}+|\mu q-r|+m|\kappa q-p|<q A B^{-m}+\|\mu q\|+M\|\kappa q\|<q A B^{-m}+\frac{2}{3}$.

If $q A B^{-m} \leq \frac{1}{3}$, then

$$
\begin{equation*}
m p-n q+r=0 \tag{17}
\end{equation*}
$$

Thus $m \equiv m_{0}(\bmod q)$, where m_{0} is the least nonegative solution of linear Diophantine equation (17). But $p-q+r=0$ implies $m_{0}=1$. Now, $0 \leq m \leq M$ and $q>6 M$ implies that $m=1$.

If $q A B^{-m}>\frac{1}{3}$, then

$$
m<\frac{\log (3 A q)}{\log B}
$$

We apply Lemma 5 to inequality (14), resp. (15), with $M=2 \cdot 10^{20}$, resp. $M=8 \cdot 10^{20}$. If the first convergent such that $q>6 M$ does not satisfy the conditions \mathbf{a}) or \mathbf{b}) of Lemma 5 , then we use the next convergent. We have to consider $2 \cdot 35+2 \cdot 74=218$ cases, and the use of next convergent is necessary only in 3 cases. In all cases ($2 \leq k \leq 36$ for μ_{1} and μ_{2}, and $2 \leq k \leq 75$ for μ_{3} and μ_{4}) the reduction gives new bound $m \leq M_{0}$, where $M_{0} \leq 9$. The next step of the reduction (the applying of Lemma 5 with $M=M_{0}$) in all cases gives $m \leq 1$, which completes the proof of Theorem 1 .

6 Concluding remarks

Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple $\{a, b, c\}$ can be extended to the Diophantine quadruple $\{a, b, c, d\}$. More precisely, if $a b+1=r^{2}$, $a c+1=s^{2}, b c+1=t^{2}$, then we can take $d=a+b+c+2 a b c \pm 2 r s t$. The conjecture is that d has to be $a+b+c+2 a b c \pm 2 r s t$. Thus, in present paper we verify this conjecture for Diophantine triples of the form $\{1,3, c\}$. Let us observe that the above conjecture is verified for Diophantine triples of the form $\{k-1, k+1,4 k\}, k \geq 2$, (see [6]), and also for the Diophantine triples $\{1,8,120\},\{1,8,15\},\{1,15,24\},\{1,24,35\}$ and $\{2,12,24\}$ (see [10]).

If we allow that the elements of a Diophantine m-tuples are positive rational numbers, then the statement of Corollary 1 is not longer valid. Namely, the Diophantine pair $\{1,3\}$ can be extended on infinitely many ways to the rational Diophantine quintuple. For example, if c is an integer such that $\{1,3, c\}$ is a Diophantine triple, and integers s and t are defined by $c+1=s^{2}, 3 c+1=t^{2}$, then the sets

$$
\left\{1,3, c, 7 c+4 s t+4, \frac{8 s t(2 s+t)(3 s+2 t)(2 c+s t)}{\left(21 c^{2}+12 c-1+12 c s t\right)^{2}}\right\}
$$

and

$$
\begin{gathered}
\left\{1,3, c, \frac{8(c-4)(c-2)(c+2)}{\left(c^{2}-8 c+4\right)^{2}},\right. \\
\left.\frac{(2 c-s t+t-s-1)(2 c-s t-t+s-1)(2 c-s t+3 t-5 s+1)(2 c-s t-3 t+5 s+1)(2 s-t-1)(2 s-t+1)}{\left(83 c^{2}+56 c-4-48 s s t\right)^{2}}\right\}
\end{gathered}
$$

have the property that the product of its any two distinct elements increased by 1 is a square of a rational number (see [5, Corollary 2 and Example 5]).

References

REFERENCES

[1] J. Arkin, V. E. Hoggatt and E. G. Strauss, 'On Euler's solution of a problem of Diophantus', Fibonacci Quart. 17 (1979), 333-339.
[2] A. Baker and H. Davenport, 'The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. Wüstholz, 'Logarithmic forms and group varieties', J. Reine Angew. Math. 442 (1993), 19-62.
[4] Diophanti Alexandrini Arithmeticorum Libri Sex, cum commentariis C. G. Bacheti et observationibus D. P. de Fermat, Toulouse 1670; in particular Lib. IV, q. XXI, page 161.
[5] A. Dujella, 'On Diophantine quintuples', Acta Arith. 81 (1997), 69-79.
[6] A. Dujella, 'The problem of the extension of a parametric family of Diophantine triples', Publ. Math. Debrecen 51 (1997), 311-322.
[7] C. M. Grinstead, 'On a method of solving a class of Diophantine equations', Math. Comp. 32 (1978), 936-940.
[8] B. W. Jones, 'A second variation on a problem of Diophantus and Davenport', Fibonacci Quart. 16 (1978), 155-165.
[9] P. Kanagasabapathy and T. Ponnudurai, 'The simultaneous Diophantine equations $y^{2}-$ $3 x^{2}=-2$ and $z^{2}-8 x^{2}=-7$, Quart. J. Math. Oxford Ser. (2) 26 (1975), 275-278.
[10] K. S. Kedlaya, 'Solving constrained Pell equations', Math. Comp., to appear.
[11] T. Nagell, Introduction to Number Theory, Almqvist, Wiley (1951), Stockholm, New York.
[12] G. Sansone, 'Il sistema diofanteo $N+1=x^{2}, 3 N+1=y^{2}, 8 N+1=z^{2}$, Ann. Mat. Pura Appl. (4) 111 (1976), 125-151.

Department of Mathematics
University of Zagreb
Bijenička cesta 30
10000 Zagreb
Croatia
E-mail: duje@math.hr

> Institute of Mathematics and Computer Science
> Lajos Kossuth University
> H-4010 Debrecen P.O. Box 12
> Hungary
> E-mail: pethoe@math.klte.hu

[^0]: ${ }^{1}$ Research partially supported by Hungarian National Foundation for Scientific Research Grants No. 16791 and 16975

