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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational numbers
%, %, 117 and 11—065 have the following property: the product of any two of them increased
by 1 is a square of a rational number (see [4]). The first set of four positive integers
with the above property was found by Fermat, and it was {1, 3,8,120}. A set of positive
integers {a1,as, ..., an} is said to have the property of Diophantus if a;a; +1 is a perfect
square for all 1 < i < j < m. Such a set is called a Diophantine m-tuple (or P;-set of
size m). In 1969, Baker and Davenport [2] proved that if d is a positive integer such
that {1,3,8,d} is a Diophantine quadruple, then d has to be 120. The same result was
proved by Kanagasabapathy and Ponnudurai [9], Sansone [12] and Grinstead [7]. This
result implies that the Diophantine triple {1, 3,8} cannot be extended to a Diophantine
quintuple.

In the present paper we generalize the result of Baker and Davenport and prove that
the Diophantine pair {1,3} can be extended to infinitely many Diophantine quadruples,
but it cannot be extended to a Diophantine quintuple.

The first part of this assertion is easy. Of course let {1, 3, ¢} be a Diophantine triple,
then from [8, Theorem 8] it follows that there exists £ > 1 such that

c=cp = é[(2+ V3)(T+4V3)F 4+ (2 — V3)(T — 4V3)* — 4]

and it is easy to check that {1,3, ¢k, cx—1} and {1, 3, ¢, cx+1} are Diophantine quadruples
provided k£ > 2. We have: ¢y = 0, ¢ = 8, ¢o = 120, ¢3 = 1680, ... . Now we formulate
our main results.

THEOREM 1 Let k be a positive integer. If d is an integer such that there exist integers
x,y, 2z with the property

d+1=2% 3d+1=1v> cd+1=2% (1)

then d € {0, ck_1,cki1}-
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From Theorem 1 we obtain the following corollaries immediately.

COROLLARY 1 The Diophantine pair {1,3} cannot be extended to a Diophantine quin-
tuple.

COROLLARY 2 Let 0 <l < k and z be integers such that

ciep + 1 =22

thenl =k — 1.

REMARK 1 The statement of Theorem 1 for k£ = 1 is just Baker-Davenport’s result,
and the case k = 2 is proved recently by Kedlaya [10].

Let k£ be the minimal positive integer, if such exists, for which the statement of
Theorem 1 is not valid. Then k > 3 and we begin our proof by proving that k£ < 75.

PROPOSITION 1 If Theorem 1 is true for 1 < k < 75, then it holds for all positive
integers k.

The proof of Proposition 1 is divided into several parts. In Section 2 we consider the
equations (1) separately and prove for any fixed k that their solutions belong to the union
of the set of members of finitely many linear recurrence sequences. In Section 3 we first
localize the initial terms of the recurrence sequences defined previously provided that the
system of equations (1) is soluble. Here we use congruence conditions modulo ¢ = ¢. In
the second step we consider the remaining sequences modulo ¢? and rule out all but two
equations in terms of linear recurrence sequences. This ends the formal-algebraic part of
the paper.

The most essential step toward the proof of Theorem 1 is contained in Section 4.
Here we transform the exponential equations into inequalities for linear forms in three
logarithms of algebraic numbers, which depend on the parameter k. A smooth application
of the theorem of Baker and Wiistholz [3] finishes the proof of Proposition 1.

Finally in Section 5 we prove Theorem 1 for 2 < k < 75 by using a version of the
reduction procedure due to Baker and Davenport [2].

2 Preliminaries

The system (1) is equivalent to the system of Pell equations:

2 —qgat = 1-¢, (2)

322 —cpy? = 3—¢p. (3)



Generalization of a theorem of Baker and Davenport 3

From the definition of ¢ it follows that there exist integers s; and ¢ such that

1l = st
3cp +1 = 7.

Thus neither ¢, nor 3¢y is a square and both Q(,/cx) and Q(v/3ci) are real quadratic
number fields. Moreover s; + /¢ and t + V/3ci, are non-trivial units of norm 1 in
the number rings Z[,/cx] and Z[\/3cy] respectively. Thus there is a finite set {z(()i) +
x((]i)\/@, i=1,...,ip} of elements of Z[,/cx] such that if (z,z) is any solution of (2) in
integers then
st ave= (2 + Ve s + Vo)

for some index 7 and integer m. In this case, z = 1)7(,? for some m, where the sequence
{vﬁ)} is defined by the recursion

vy = z(()i), vgi) = sz(()i) + c:céi), ”7(7?+2 = 231}7(,%1 — v,(,?.

For simplicity, we have omitted here the index k& and will continue to do so. We call the

set {z(()i) + x(()i) Ve, i=1,... 4y} of solutions of 22 — cx? = 1 — ¢ fundamental if we choose

representatives so that the |z(()i) | are minimal.
Similarly, all solutions of (3) are given by

V3 +yve= (VB gVt + V3o, =1, .

or by z = w7(1j ) for some 7 and n, where the sequence {wq(f )} is defined by the recursion

+ ey, wg}& = Qtwﬂl —wf).

W@ =0, W 0

Here the elements z%j 3+ ygj )\ﬁ are fundamental solutions of equation (3). In this way
we reformulated the system of equations (1) to finitely many diophantine equations of

form
07(7%1’) — w7(1j)

in integers 1 <1 <ip,1 < j < jo,m and n.
By [11, Theorem 108a] we have the following estimates for the fundamental solutions

of (2) and (3):
0§|z0i)|§\/;(8—1)(0—1)<\/c\2ﬁ<z, (4)

0<z) < \ 2(05_—11) = wszt 2 < \/ﬁ; Z, (5)
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0< 29 < % 2(t—1)(c—3)<,/;\\/fg<g, (6)
0.< 4 / 3 \/t+ \/f+2. -

3 Application of congruence relations

Let @ mod b denote the least non-negative residue of the integer a modulo the integer
b and consider the sequences (vy(n) mod ¢) and (w &) mod ¢). We have:

vg) = (2s% — 1)z Q. = (2¢ + 1)z(()i) = v(()i) (mod c¢), vé) = sz(()z) = vy) (mod ¢).

Therefore, vgn)l = z(()i) (mod ¢) and vélrzl = sz[()i) (mod ¢), for all m > 0. Furthermore,

ng) = (2t2 — 1)z5j) = (6c + 1)29) = wéj) (mod ¢), wéj) = tzij) = ng) (mod ¢).
Therefore, w(j) = zgj) (mod ¢) and wgzﬂ tz(]) (mod ¢), for all n > 0. In the
following lemma we prove that if (1) has a non-trivial solution then the initial terms of
the sequences v(® and wW) are restricted.

LEMMA 1 Let k > 2 be the smallest positive integer for which the assertion of The-
orem 1 is not true. Let 1 < i <ig,1 < j < jo and v, w9 be the sequences defined in
Section 2. Then

1° If the equation vé)n = ngn) has a solution, then U(()i) = z(()i) = zgj) = w(()j) ==+1.
2° If the equation Ug%ﬂ = ngn) has a solution, then z(()i) ==+1 and z( 9 = sz( QU
3° If the equation vé?n = wgn)ﬂ has a solution, then z(()) £t and z1 /t

4° If the equation végﬂ_l = wén)H has a solution, then z((]) = £t and z§ D = 4.

Proof. 1° We have z(()) = 29) (mod ¢). From (4) and (6) we obtain z(()) = z( D Let

dp = [(zgj))2 —1]/c. Then dy satisfies system (1). We compare dy with c;_1: certainly
Ck—1 > ¢ /15, and

1
do < L. OVE_ VC o,
C

23 23

Hence, dy < c¢x—1, and from the minimality of k it follows that dy = 0. Thus, |2}
(@) (4) (4) G _ 1

and we have: 2y’ = 277’ =1 or 2y’ = 2
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2° We have sz(()i) = zy) (mod ¢). If in) = =£1, then as ¢ — s > ¢/2 inequality (6)
implies that zgj) = sz(()l) = +s. Assume |z(()l)| > 2. Then l’(()z) > 2 and we have \z(gl)| > t.

Let us consider the number cxéi) — s\z(()i)\. We have

0 _ 0 P =) =) -1 c? ¢
o — sl = T T T 0 <3
cxy’ + 5|z’ | cxy’ + slzy” | 2c+cV/3
Furthermore,
i 2
- c(:cg))2 -1 >3- C(\/E;_) —1>0.94¢%,
i i 2
Cxc()) +8!Zé)| < CW+ Ve u/c‘f < 1.48¢+/c,
and so

ca:(()i) - s|z(()i)| > 0.631/cv/c > 1/;\\/[;. (8)

Notice that in the proof of (8) we did not use the assumption that \z(()i)| > 1.
Let z(()z) > 0. Since z%y) = széz) (mod ¢) and —c¢ < sz(()z) - cxéz) < 0, we have

z%j) € {sz(()i) - cx(()i), sz(()i) - cx(()i) + c}. But

52—l < — ng

i i 2
sz(())—ca:((])—i—c > EC,

which both contradict (6).
If z[()l) < 0, then we have A9 e {sz(()l) + cx(()z), sz(()z) + cx(()z) — ¢}, and since

(@, () cy/e
Sz +cx > —,
0 0 2\/§
i i 2
szé)+cxé)fc < —Ec,

we obtain contradiction as before.
3° We have z(()i) = tzij) (mod ¢). If z%j) = =41, then (4) implies z((]i) = tz%j) = +t.
Assume |Z§’7)| > 2. Then y?) > 2 and we have |z§])\ > s. Asin 2° we have

G) _ 4,00 3c2(y§j))2 - 3t2(z§j))2 _ 3c2 — ?)(ygj))2 —8—3 3c?
eyr” —ter| G) 4 1,0 0 4 .00 3(2etov3
3(eyy” +tlz"]) 3(eyr” +tlz"]) (2¢+cv3)

(&
<§,
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3¢ — 3(y)2 —8c—3
3(eyy” + sl1)))

v

2.9¢%,
5.74¢/c,

A

and
cygj) — t|z§])] > 5\/0\@. 9)

Thus we have z((]i) € {tzgj) ¥ cy%j), tz%j) ¥ cy%j) + c}. But

\tzij) :Fcy?) +cl > gc,

and (4) implies that
z(()i) = tz%j) F cygj). (10)

Let dy = [(z(()i))Q —1]/c. From (9) and the definition of the sequences v and w®) we
see that dy satisfies the system (1). Furthermore,

1

do < = Y5 < 0.046c < 4,

c 2

and from the minimality of k, it follows that dyp = 0. But, now we have |z(()i)\ = 1, which
is in a contradiction with (9) and (10).

4° We have sz(()i) = tz%j ) (mod ¢). The estimates for the numbers cxéi) — s]zéi)| and

cy%j ) t| zgj )| in the proof of 2° and 3° imply the following:

a) If z((]i) >0 and 2" > 0, then SZ(()i) - cxg) = tzy) - cyy).

b) If z(()i) > 0 and zy) < 0, then sz((]i) —cm(()i)+c = tz%j)—l—cy%j). But sz(()i) —cx(()i)—l—c > %

and tz](Lj ) 4 cygj ) < £, a contradiction.

c) If z(()i) <0 and 2 > 0, then sz(()i) + cx(()i) = tz%j) - cy%j) +c. But sz(()i) + cx(()i) <3
and tzgj) — cy:(lj) +c> %, a contradiction.

d) If z(()i) <0 and 2" <0, then sz((]i) + c:cg) = tz%j) + cy%j).

Hence, we have

sz(()i) F cx(()i) = tzgj) F cygj) .

Consider the number .
do = E[(sz(()z) ¥ cxéz))2 —1].
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As in 3° we see that dj satisfies the system (1). Furthermore,

1 ¢ c
d 222 ==
0o < C (3) 9 < c,
and, by (8), dyp > 0. Therefore, from the minimality of k it follows that dy = cx_1.
We have
c-cp1 +1=(st—2c)
Hence, ' '
cxéz) — s|z(()l)\ = 2c — st,
and , )
ez —2) = s(l="| - ).

Since ged(s,c) = 1, we have :c(()i) =2 (mod s), and from (5) we conclude that m(()i) =2

and |zéi)| = t. In the same manner, from

cygj) — t]zgj)\ =2¢ — st
we conclude that y%j ) =2 and \z{] )] = s. Thus we have z(()i)
) _ _g -
Now we will consider the sequences (v(? mod ¢?) and (w") mod ¢?) which have the
initial terms given in Lemma 1. (We will omit the superscripts (i) and (j).)

=t, z%j) = s or z(()i) = —t,

z

LEMMA 2 Assume that the conditions of Lemma 1 are satisfied, then
1° vgy, = 20 + 2¢(m?29 + msxp) (mod ¢?)

2° womi1 = 820 + c[2m(m + 1)szo + (2m + 1)xg] (mod c?)
3° wo, = 21 + 2¢(3n221 + ntyy) (mod c?)
4° woni1 =tz + c[6n(n + 1)tz; + (2n + 1)yi] (mod c?)

Proof. We prove the lemma by induction. We use the fact that the sequences (v, )
and (vam+1) satisfy the recurrence relation

Amt2 = 2(2¢ + Va1 — G

and the sequences (wgy,) and (wa,+1) satisfy the recurrence relation

bpto = 2(6¢+ 1)by11 — by -
1° vy =29, U = 25%29+ 2scxo — 20 = 20 + 2¢(z0 + sxo).
Assume that the assertion is valid for m — 1 and m. Then we have
Vom+t2 = (4¢ + 2)vam — Vam—2
= dezg + 220 + 4e(mPzo + msxg) — 2o — 2¢[(m — 1)% 29 + (m — 1) 5]
= 20 + 2¢[20(2 + 2m? — m® + 2m — 1) + szo(2m — m + 1)]
= 20 + 2¢[(m + 1)%20 + (m + 1)sxo] (mod ¢?).
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2° v = szp+cxg, V_1 = Szg — Cxy.
Assume that the assertion is valid for m — 1 and m. Then we have

Vom+3 = (4¢ + 2)vam+1 — Vam—1
= dcszg + 2szp + 2¢[2m(m 4+ 1)szo + (2m + 1))
— szp — c[2m(m — 1)szp + (2m — 1)z¢]
= 520 + c[sz0(4 4+ 4m® + 4m — 2m? + 2m) + zo(4m + 2 — 2m + 1)]
= 520+ c[2(m + 1) (m + 2)sz9 + (2m + 3)z0] (mod ¢?).

The proof of 3° and 4° is completely analogous. [ |

COROLLARY 3 The equations vay, = Want+1 and Vom+1 = Wa, have no solutions in
integers m, m.

Proof. 1If v, = wap+1, then Lemmas 1 and 2 imply
+2m?t + dms = £6n(n+ 1)t + (2n+ 1) (mod ¢).

But this contradicts the obvious fact that ¢ is even.
If voy11 = wap, then Lemmas 1 and 2 imply

+2m(m + 1)s + (2m + 1) = +6n%s + 4nt (mod c¢)

and we have again a contradiction with the fact that ¢ is even. [ |

4 Linear forms in three logarithms

LEMMA 3 1°  If vg,, = woy, then

0 < 2mlog(s + v/c) — 2nlog(t + V3c) + log \/\%\/fj\;;) < g(s + /o).,
2° If Vom+1 = W2an+1, then
0 < (2m + 1) log(s + v/c) — (2n + 1) log(t + V/3¢) + log m < 22(s 4 /)72,

Proof. 1° We have by Lemma 1,1° that

o = (V= D+ VA" + (—VeE 1)(s = Vo)),

1 n n
w, = ﬁ[(ﬁi\/g)(t—l—\/?;) + (=ve £ V3)(t — V3e)"].
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If we put
P= (Ve 1)(s+ V™, Q= jgmi V3)(t+ V3",
then
P = YL e, @t = VIR gy

Now the relation v, = w,, implies P — (¢ — 1)P~1 =Q — 6;33’@*1. It is clear that P > 1
and @ > 1, and from

P-Q=(c-1)P" - (% —1DQ ' > (c—-)P T Q) =(c—1)(Q-P)PIQ!

it follows that P > Q. Furthermore, we have P —Q < (c—1)P~! and % < (c—1)P2
We may assume that m > 1. Thus, we have P > (y/c—1)-2y/¢c > ¢, and so (c—1)P~% < £.
Hence,

P P—
0<logQ:—log(1—PQ)

3 9 1 o
<(c—1)P 2+ (c—1)P 4<§(c—1)-m(s+ﬁ) m <

which implies the assertion taking into consideration that both n and m are even.
2° We have by Lemma 1,4° that

(s+ /)™,

N

Um = %[@\/Ei )(s + &)™ + (—2v/e £ t)(s — Vo),

1 n n
w, = ﬁ[@ﬁisx/ﬁ)(ﬁx/?c) + (—2ve £ 5V3)(t — V3e)"].
Let us put
P2Vt t)(s+ o)™ Q= \}E(Zﬁi sv/3)(t + V3o,

Then we have

Pt DR o, 1 = BOVEENE)

and the relation v,,, = wy, implies P—(c—1)P~1 = Q—%Q‘l. Asin 1°, we obtain P > @
and P—Q < (c—1)P~!. As we may assume that m > 1, we have P > (2y/c—t)-2\/c > §
and (c — 1)P~2 < 3. Hence,

P-Q

P
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1

< g(c— 1)P2 < ;(c— R v T LG
—§c— 2yett s 0_27”:§ 72 S c)~2m

< 22(s +/e) 2™,

| ]
Now we use Lemmas 2 and 3 and obtain a lower bound for m and n. We consider
two cases:

1° vy = wa,, m,n#0
From Lemma 3 we have

2mlog(s + v/¢) — 2nlog(t +v3c) < 0,

and so

log(y/c+ %+ /c
m _log(t+vie) _ _logvs  loslyets Ve o

n  log(s++/c) log(s++c)  log(ve+ 1+ /¢

On the other hand, Lemma 2 implies
+2m? + 2ms = £6n? + 2nt (mod ¢).
Assume that n < 0.105y/c. Then m < 0.124,/c. We have
ol £ m? +ms| < 2¢(0.1242 +0.124 - 1.005) < =

37
2|4 3n? +nt| < 2¢(3-0.105% 4 0.105 - 1.735) <

N o

Hence, +m? + ms = +£3n? + nt. But

0.876ms
0.685nt

+m? 4+ ms < 1.124ms ,

<
< +3n% +nt < 1.315nt.

Note that 1.727 <t/s < V3. Thus, for sign + we obtain:

M55 0889 = >1.535,
nt n

and for sign — we obtain:
ms

> 0685 = = >1.182,
n

n

a contradiction.
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2° Vomq1 = Wopt
From Lemma 3 we have

(2m + 1)log(s 4+ v/c) — (2n + 1) log(t + V3¢) < 0,

and so
2 1 log(t
mtl log(t+v3) 7
2n+1  log(s++/c)
On the other hand, Lemma 2 implies
+2m(m + 1)st +2(2m + 1) = £6n(n+ 1)st +2(2n+ 1) (mod ¢). (11)

Multiplying congruence (11) by s we obtain
£2m(m+ 1)t +22m+1)s = t6n(n+ 1)t +2(2n+1)s (mod c).

Let mi =m+ %, ny=n-+ %, and let ny < 0.156+/c. Then m; < 0.184+/c. We have

o £ m(m + 1)t + (2m + 1)s| < 2(0.1842 - 1.735¢ + 2 - 0.184 - 1.005y/ ev/e) < g :
2 C
2|+ 3n(n+1)t+ (2n+ 1)s| < 2(3-0.156% - 1.735¢ + 2 - 0.156 - 0.1051/ c/c) < 7
Hence,
m(m+1t+2m+1)s=3nn+1)t£(2n+1)s. (12)
Multiplying congruence (11) by ¢ we obtain
£2m(m+1)s+2(2m + 1)t = £6n(n+1)s +2(2n + 1)t (mod ¢)
and in the same manner as above we obtain
m(m+1)s+ 2m+ 1)t =3n(n+1)s+ (2n+ 1)t. (13)

Since t # +s we conclude from (12) and (13) that
mm+1)+(2m+1)=3n(n+1)£ (2n+1)

and
mm+1)F2m+1)=3nn+1)F2n+1).
Hence 2m + 1 =2n+ 1 and m(m + 1) = 3n(n + 1), which implies that m = n = 0.
Thus we have proved
LEMMA 4 1° If vy, = wa, and n # 0, then n > 0.1054/c.
2° If vom+1 = wapt1 and n # 0, then n > 0.156/c.
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Now we apply the following theorem of Baker and Wiistholz [3]:

THEOREM 2 For a linear form A # 0 in logarithms of | algebraic numbers aq, ..., qq
with rational coefficients by, ...,b; we have

log A > —18(1 + 1)1 (32d)! 72K (@) - - - W (o) log(21d) log B,

where B = max(|b1],...,|bi|), and where d is the degree of the number field generated by
af,...,00.

Here

W (a) = T max (h(a), |log al, 1),

and h(a) denotes the standard logarithmic Weil height of «.

1) Let us first consider the equation ve,, = way,, with n # 0. Using Lemma 3,1°, we
will apply Theorem 2. We have: | =3, d =4, B = 2m,

a1 =s++e, o =t+V3c,

VBWE+D VA1)
NERVC I

1
b (an) = 5 logay < 0.33loge, h(az) =

a3 =

log ap < 0.381og ¢,

N =

1
b (as) = W (af) < 1 log(12.63¢%) < 0.64logc,

3
log ;(5 + /o)™ < log(s + ) M < —imlog c.

Hence 3
imlogc < 3.822-10"-0.33logc- 0.38log c - 0.641og ¢ - log 2m,

and

< 2.045 - 10" log? c.
log 2m

But m > n > 0.105y/c. Thus
m < 2.045 - 10 log 2m log?(91m?),

which implies m < 9 - 10" and finally ¢ < 8 - 10*'. From
1
s2+ V3)(7T+4V3)F < 8. 10",

it follows that k < 36.
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2) Let vop+1 = want1, with n # 0. Now we have: | =3, d=4, B=2m+ 1,
a1:S+\/Ev 042:t+\/%,
VBRVett) |, VBRve-1)

a3 = ——"-—-—" a3 = ———,
3 2\/c+ svV3 3 2\/c — svV3
h'(a1) < 0.331loge, h'(az) < 0.38logc,
1
W (as) = B (af) < 1 log(75.79¢%) < 0.73log ¢,

log 22(s + /)42 < —2mlogec.

Hence
2mlogec < 3.822-10' - 0.33log ¢ - 0.381og c - 0.73log ¢ - log(2m + 1),
and m
og@m 1) < 1.75-10"1og? c.

But m > n > 0.156/c. Thus
m < 1.75 - 10" 1og(2m + 1) log?(1689m*),

which implies m < 4 - 10?0 and finally ¢ < 5 - 10%. It implies k& < 75, which completes
the proof of Proposition 1. [

5 The reduction method

For completing the proof of Theorem 1 for all positive integers k, we must check the
following:
1) If2<k<36and

vo==x1, vi =xs+c¢, Upto = 25Vm41 —Um, m >0,

wo ==x1, wy =xt+c, wpio = 2wp41 —wy, n >0,

then vy, = way, implies that m = n = 0. We know that n < m < 9-109.
2) If2<k<75and

vg=1t, v1 ==xst+2¢c, Umi2 =28Vm+1 — Um, m >0,

wo =8, wi = =xst+2¢, Wpio = 2twWp41 — Wy, n >0,

then vom4+1 = wan4+1 implies that m = n = 0. We know that n <m < 4- 1020,



14 A. Dujella and A. Pethd

We use the reduction method based on the Baker-Davenport lemma (see [2]). Let
i = l0g(s + /) Jog(t+v/30), 710 = VE(E£ 1)/ (ve£V3), 15,4 = VB@ye1)/(2y/c%
sV3), 12 = logy1,2/log(t + V3c), psa = logvsa/log(t + V/3c), Ay = 3/2log(t + v/3c),
Ay = 22/log(t +V3¢), B = (s + /c)2.

Let v, = wy, m,n > 0. If m and n are even, then Lemma 3,1° implies
O<mk—n+pu2<A-B™, (14)
and if m and n are odd, then Lemma 3,2° implies
0<mk—n+puzs <Ay-B™. (15)

LEMMA 5 Suppose that M is a positive integer. Let p/q be the convergent of the
continued fraction expansion of k such that ¢ > 6M and let € = ||pq|| — M - ||kq||, where
|| - || denotes the distance from the nearest integer.

a) Ife >0, then there is no solution of the inequality

O<mrk—n+p<AB™™ (16)

in integers m and n with
log(Ag/e) < .
logB —

b) Letr=|ug+ %J If p—q+r =0, then there is no solution of inequality (16) in

integers m and n with
log(34q)

1 <M.
ax( ogB ) <m <

Proof. a) Assume that 0 < m < M. We have
m(kq —p) +mp —ng+ pg < gAB™™.

Thus
qAB™™ > |uq — (ng — mp)| — m||kq|| > ||uql| — M||kq|| = €,

which implies
_ log(Ag/e)
logB

b) Assume that 0 < m < M. We have
m(kq —p) + (mp —ng+7r) + (ug —r) < gAB™™.
Thus

~ _ 2
mp —nq+r| < gAB™" +|ug—r|+mlrg—p| < gAB™" +|pq| + Mllrqll < ¢AB™" + 3.
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If gAB~™ < 1, then
mp—ng+r=20. (17)

Thus m = mgy (mod q), where my is the least nonegative solution of linear Diophantine
equation (17). But p — ¢+ r = 0 implies my = 1. Now, 0 < m < M and g > 6M implies
that m = 1.
If gAB™™ > %, then
log(3Aq)
log B
|

We apply Lemma 5 to inequality (14), resp. (15), with M = 2-10%°, resp. M = 8-10%°,
If the first convergent such that ¢ > 6 M does not satisfy the conditions a) or b) of Lemma
5, then we use the next convergent. We have to consider 2 - 35 + 2 - 74 = 218 cases, and
the use of next convergent is necessary only in 3 cases. In all cases (2 < k < 36 for y
and po, and 2 < k < 75 for pg and pu4) the reduction gives new bound m < My, where
My <9. The next step of the reduction (the applying of Lemma 5 with M = M) in all
cases gives m < 1, which completes the proof of Theorem 1.

6 Concluding remarks

Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple {a,b,c} can
be extended to the Diophantine quadruple {a,b,c,d}. More precisely, if ab +1 = r?
ac+1 =52 bc+1=1t%, then we can take d = a + b + ¢ + 2abc + 2rst. The conjecture is
that d has to be a + b+ ¢+ 2abc &+ 2rst. Thus, in present paper we verify this conjecture
for Diophantine triples of the form {1, 3, c}. Let us observe that the above conjecture is
verified for Diophantine triples of the form {k—1,k+ 1,4k}, k > 2, (see [6]), and also for
the Diophantine triples {1, 8,120}, {1,8,15}, {1,15,24}, {1,24,35} and {2,12,24} (see
[10).

If we allow that the elements of a Diophantine m-tuples are positive rational numbers,
then the statement of Corollary 1 is not longer valid. Namely, the Diophantine pair
{1,3} can be extended on infinitely many ways to the rational Diophantine quintuple.
For example, if ¢ is an integer such that {1, 3, c} is a Diophantine triple, and integers s
and t are defined by ¢+ 1 = 52, 3¢ + 1 = t2, then the sets

8st(2s +t)(3s + 2t)(2¢ + st)

1,3,¢c, Tc+4st+4
{1,3, ¢, Te+ dst +4, (21c2 + 12¢ — 1 + 12¢st)?

}

and
8(c—4)(c—2)(c+2
{1, 3, ¢, (W)ETJAEP)

(2¢—st+t—s—1)(2c—st—t+s—1)(2c—st+3t—5s+1)(2c—st—3t+5s+1)(2s—t—1)(2s—t+1) }
(83c2+56¢c—4—48cst)?
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have the property that the product of its any two distinct elements increased by 1 is a
square of a rational number (see [5, Corollary 2 and Example 5]).
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