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Abstract

A Diophantine m-tuple with the property D(n), where n is an
integer, is defined as a set of m positive integers such that the product
of its any two distinct elements increased by n is a perfect square. In
the present paper we show that if |n| is sufficiently large and n ≡ 1
(mod 8), or n ≡ 4 (mod 32), or n ≡ 0 (mod 16), then there exist
at least six, and if n ≡ 8 (mod 16), or n ≡ 13, 21 (mod 24), or
n ≡ 3, 7 (mod 12), then there exist at least four distinct Diophantine
quadruples with the property D(n).

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the num-
bers x, x + 2, 4x + 4 and 9x + 6, where x = 1

16 , have the following property:
the product of any two of them increased by 1 is a square of a rational num-
ber (see [3, pp. 103–104, 232]). The first set of four positive integers with
the above property was found by Fermat, and it was {1, 3, 8, 120}. In 1969,
Baker and Davenport [1] showed that if positive integers 1, 3, 8 and d have
this property then d must be 120.

In [2] and [4], the more general problem was considered. Let n be an
integer. A set of positive integers {a1, a2, . . . , am} is said to have the prop-
erty of Diophantus of order n, symbolically D(n), if aiaj + n is a perfect
square for all 1 ≤ i < j ≤ m. Such a set is called a Diophantine m-
tuple. It was proved in [2] that if n is an integer of the form 4k + 2,
k ∈ Z, then there does not exist Diophantine quadruple with the prop-
erty D(n) (see also [8, p. 802] and [9, Theorem 10]). In [4, Theorems 5
and 6], it was proved that if an integer n is not of the form 4k + 2 and
n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one, and if
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n 6∈ S ∪T , where T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then
there exist at least two distinct Diophantine quadruples with the property
D(n) (see also [5, p. 315]).

In the present paper we give some improvements of these results. Namely,
we show that if |n| is sufficiently large and n ≡ 1 (mod 8), or
n ≡ 4 (mod 32), or n ≡ 0 (mod 16), then there exist at least six, and
if n ≡ 8 (mod 16), or n ≡ 13, 21 (mod 24), or n ≡ 3, 7 (mod 12), then
there exist at least four distinct Diophantine quadruples with the property
D(n).

2 Some polynomial formulas for Diophantine quadruples

The proof of [4, Theorems 5 and 6] is based on the fact that the sets

{x, x(3y + 1)2 + 2y, x(3y + 2)2 + 2y + 2, 9x(2y + 1)2 + 8y + 4}, (1)

{x, xy2 − 2y − 2, x(y + 1)2 − 2y, x(2y + 1)2 − 8y − 4} (2)

have the property D(2x(2y + 1) + 1). The formulas of this type were sys-
tematically derived in [6]. It was shown in [6, Theorems 1 and 2] that the
set

{x, xy2 + 2y − 2, x(y + 1)2 + 2y + 4, x(2y + 1)2 + 8y + 4} (3)

has the property D(2x(2y + 1) + 9), the set

{x, xy2 + 2(y2 + y + 1), x(y − 1)2 + 2y(y − 1),
x(y + 1)2 + 2(y + 1)(y + 2)} (4)

has the property D(2x(y2 − 1) + (2y + 1)2), and the set

{x, x(3y + 1)2 + 2(3y2 + 3y + 1), x(3y + 2)2 + 2(y + 1)(3y + 2),
9xy2 + 2y(3y + 1)} (5)

has the property D(2xy(3y + 2) + (2y + 1)2).

3 Some estimates of the number of Diophantine
quadruples

Theorem 1 If n is an integer such that n ≡ 1 (mod 8) and n 6∈ V1 =
{−15,−7, 17, 33}, then there exist at least six distinct Diophantine quadru-
ples with the property D(n).
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Proof. The proof is based on the facts that the sets

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k}, (6)

{4, k2 − 3k, k2 + k + 2, 4k2 − 4k}, (7)

{8,
1
2
k(k + 3) + 3,

1
2
k(k − 5) + 1, 2k2 − 2k}, (8)

{8,
1
2
k(9k − 11) + 1,

1
2
k(9k + 13) + 3, 18k2 + 2k} (9)

have the property D(8k + 1), the sets

{m− 3, 4m, 9m− 1, 16m− 8}, (10)

{4m, 25m + 1, 49m + 3, 144m + 8} (11)

have the property D(16m + 1), and the sets

{m, 16m + 8, 25m + 14, 36m + 20}, (12)

{m− 1, 4m, 9m + 5, 16m + 8} (13)

have the property D(16m + 9).
The sets (6) and (7) are exactly the sets [4, (8) and (9)]. The set (8) is

obtained from (3), for x = 8 and y = k−3
4 . From (1), for x = 8 and y = k−2

4
we get the set (9), and for x = 4m and y = 1

2 we get the set (11). From (4),
for x = m− 3 and y = 3 we get the set (10), and for x = m− 1 and y = −3
we get the set (13). Finally, the set (12) is obtained from (5), for x = m
and y = −2.

We are left with the task of determining the values of k and m for
which the above sets have at least two equal elements or elements with
different signs, and the values of k and m for which the corresponding sets
coincide. An easy computation shows that the above cases appear in the
sets (6)−(9) iff k ∈ {−5,−2,−1, 0, 1, 2, 3, 4, 7}, in the sets (10) and (11) iff
m ∈ {−1, 0, 1, 2, 3}, and in the sets (12) and (13) iff m ∈ {−1, 0, 1}.

Comparing the sets (6)−(9) with the sets (10) and (11) we conclude that
for all integers n of the form 16m + 1, where m 6∈ {−2,−1, 0, 1, 2, 3}, there
exist at least six distinct Diophantine quadruples with the property D(n).
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The same conclusion can be drawn for all integers n of the form 16m + 9,
where m 6∈ {−3,−1, 0, 1, 3}.

Thus we have proved that for every integer n such that n ≡ 1 (mod 8)
and n 6∈ {−39,−31,−15,−7, 1, 9, 17, 25, 33, 49, 57} there exist at least six
distinct Diophantine quadruples with the property D(n). But for the num-
bers 1, 9, 25 and 49 the assertion of Theorem is valid since they are per-
fect squares (see [4]). From (6)−(13) for n = −39 and n = 57 we get
five, and for n = −31 we get four distinct Diophantine quadruples with
the property D(n). A trivial verification shows that the sets {1, 40, 47, 56}
and {1, 40, 287, 320} have the property D(−31), and the sets {1, 43, 48, 3520}
and {1, 7, 24, 232} have the properties D(−39) and D(57) respectively, which
completes the proof.

Corollary 1 If n is an integer such that n ≡ 4 (mod 32) and n 6∈
V2 = {−28, 68}, then there exist at least six distinct Diophantine quadruples
with the property D(n).

Proof. Since multiplying all elements of the set with the property
D(8k + 1) by 2 we get the set with the property D(32k + 4), by Theorem
1, it is sufficient to prove the Corollary for n = −60 and n = 132. But
the sets {1, 60, 736, 1216}, {1, 64, 96, 316}, {1, 124, 256, 736}, {4, 15, 19, 64},
{4, 19, 31, 96} and {8, 48, 92, 272} have the property D(−60), and the
sets {1, 12, 37, 64}, {1, 12, 64, 1312}, {2, 6, 32, 272}, {3, 64, 103, 148},
{8, 248, 348, 1184} and {16, 102, 202, 596} have the property D(132).

Remark 1 For the elements of the sets V1 and V2, the following holds:
the set {4, 24, 46, 136} has the property D(−15), the set {1, 8, 11, 16} has the
property D(−7), the sets {1, 8, 19, 208} and {4, 26, 52, 152} have the prop-
erty D(17), the sets {1, 3, 16, 136}, {4, 124, 174, 592} and {8, 51, 101, 296}
have the property D(33), the sets {1, 32, 37, 352}, {1, 32, 172, 352},
{2, 16, 22, 32}, {4, 7, 11, 32} and {4, 23, 43, 128} have the property D(−28),
and the sets {1, 13, 32, 1376}, {1, 32, 53, 76}, {2, 16, 38, 416}, {4, 127, 179, 608}
and {8, 52, 104, 304} have the property D(68).

Theorem 2 If n is an integer such that n ≡ 8 (mod 16) and n 6∈ V3 =
{−8, 8, 24, 40}, then there exist at least four distinct Diophantine quadruples
with the property D(n).

Proof. The proof is based on the fact that the sets

{1, 4k2 − 8k − 4, 4k2 − 4k + 1, 16k2 − 24k − 7}, (14)
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{1, 36k2 + 20k + 1, 36k2 + 32k + 8, 144k2 + 104k + 17}, (15)

{1, k2 − 10k + 1, k2 − 8k + 8, 4k2 − 36k + 17}, (16)

{1, 9k2 + 2k + 1, 9k2 − 4k − 4, 36k2 − 4k − 7} (17)

have the property D(16k + 8).
The sets (14) and (15) are obtained directly from [4, (20) and (10)].

Multiplying all elements of the sets (2) and (1) by 4, for x = 1
4 and y = k−1,

we get the sets (16) and (17) respectively.
Analysis similar to that in the proof of Theorem 1 shows that for all

integers n of the form 16k+8, where k 6∈ {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
there exist at least four distinct Diophantine quadruples with the property
D(n).

Therefore, the proof is completed by showing that the assertion of The-
orem is valid for n ∈ Y = {−24, 56, 72, 88, 104, 120, 136, 152, 168}. For every
n ∈ Y the sets (14), (15) and (17) give three distinct Diophantine quadru-
ples with the property D(n). A trivial verification shows that the sets
{3, 8, 11, 35}, {1, 25, 44, 65}, {7, 72, 127, 391}, {3, 11, 36, 91}, {1, 17, 185, 220},
{1, 49, 76, 4641}, {1, 33, 305, 540}, {11, 232, 347, 1147} and {1, 57, 793, 1276}
have the properties D(−24), D(56), D(72), D(88), D(104), D(120), D(136),
D(152) and D(168) respectively, which completes the proof.

Remark 2 For the elements of the set V3, the following holds: the sets
{1, 8, 9, 33} and {1, 12, 17, 57} have the property D(−8), the set {1, 57, 76, 265}
has the property D(24), and the sets {1, 24, 41, 129}, {1, 185, 216, 801} and
{3, 52, 83, 267} have the property D(40). No Diophantine quadruple with
the property D(8) is known.

Theorem 3 If n is an integer such that n ≡ 0 (mod 16) and n 6∈ V4 =
{−16, 32, 48, 80}, then there exist at least six Diophantine quadruples with
the property D(n).

Proof. If n ≡ 0 (mod 16), then necessarily n can be represented in
one of the forms

32k + 16, 64k + 32, 128k + 64, 128k,

and the proof will be divided into four cases.
Let us first observe that the sets

{1, k2 − 6k + 1, k2 − 4k + 4, 4k2 − 20k + 9}, (18)
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{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1} (19)

have the property D(8k), and the sets

{1, k2 − 20k + 20, k2 − 18k + 33, 4k2 − 76k + 105}, (20)

{1, 9k2 − 14k − 7, 9k2 − 8k, 36k2 − 44k − 15}, (21)

{1, k2 − 6k − 3, k2 − 2k + 5, 4k2 − 16k}, (22)

{1, 9k2 − 2k − 3, 9k2 + 10k + 5, 36k2 + 16k} (23)

have the property D(32k + 16).
The sets (18) and (19) are exactly the sets (20) and (1) from [4]. Multi-

plying all elements of the sets (2) and (1) by 8, for x = 1
8 and y = k− 2, we

get the sets (20) and (21) respectively, and multiplying the same elements
by 4, for x = 1 and y = k−1

2 , we get the sets (22) and (23).
Analyzing the sets (18)−(23), as in the proof of Theorem 1, we conclude

that for all integers n of the form 32k+16, where k 6∈ {−2,−1, 0, . . . , 18, 19},
there exist at least six distinct Diophantine quadruples with the property
D(n). It is easy to check on a computer that for all of the remaining cases,
except for n ∈ {−16, 48, 80}, there exist al least six Diophantine quadruples
with the property D(n). This proves the theorem in case n ≡ 16 (mod 32).

Let now n = 32k. For k 6∈ {0, 1} the sets (18) and (19) give two distinct
Diophantine quadruples with the property D(n) (see [4, Theorem 6]). Each
of these two quadruples contain the number 1. Multiplying all elements of
the sets (18) and (19) by 2 we get the sets with the property D(32k). By the
proof of [4, Theorem 6], for k 6∈ {0, 1, 2, 3, 4, 5, 6} these sets are two distinct
Diophantine quadruples which do not contain the number 1, and therefore
they are different from two quadruples obtained before.

Let n = 64k + 32. By Theorem 2, for k 6∈ {−1, 0, 1, 2} there exist
at least four distinct Diophantine quadruples with the property D(16k +
8). Multiplying all elements of these sets by 2 we get four Diophantine
quadruples with even elements with the property D(64k + 32). Therefore,
for k 6∈ {−1, 0, 1, 2} there exist at least six Diophantine quadruples with the
property D(64k + 32).

Consider now the case n = 128k + 64. As we have proved before, for
k 6∈ {−1, 1, 2} there exist at least six distinct Diophantine quadruples with
the property D(32k + 16). Multiplying all elements of these quadruples by
2 we get the quadruples with the property D(128k + 64). All elements of
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those quadruples are even and, accordingly, they do not contain the number
1. Thus we proved that for k 6∈ {−1, 1, 2} there exist at least eight distinct
Diophantine quadruples with the property D(128k + 64).

It remains to consider the case n = 128k. But we have already proved
that for k 6∈ {0, 1, 2, 3, 4, 5, 6} there exist at least four distinct Diophan-
tine quadruples with the property D(32k). Multiplying all elements of
those quadruples by 2 we get four Diophantine quadruples with the prop-
erty D(128k) which do not contain the number 1. Therefore, for k 6∈
{0, 1, 2, 3, 4, 5, 6} there exist at least six Diophantine quadruples with the
property D(128k).

An easy verification on a computer shows that for every n ∈ {−32, 96,
160,−64, 192, 320, 0, 128, 256, 384, 512, 768} there exist six distinct Diophan-
tine quadruples with the property D(n), which completes the proof.

Remark 3 For the elements of the set V4, the following holds: the
sets {1, 16, 17, 65} and {1, 41, 52, 185} have the property D(−16), the set
{1, 112, 137, 497} has the property D(32), the set {1, 276, 313, 1177} has
the property D(48), and the sets {1, 41, 64, 209}, {1, 820, 881, 3401} and
{4, 29, 61, 176} have the property D(80).

Theorem 4 If n is an integer such that n ≡ 13 (mod 24) and n 6∈ V5 =
{−11, 13}, or n ≡ 21 (mod 24) and n 6∈ V6 = {−27,−3, 21, 45, 117}, then
there exist at least four distinct Diophantine quadruples with the property
D(n).

Proof. The proof in the case n = 24k + 13 is based on the fact that
the sets

{6, 54k2 + 38k + 6, 54k2 + 74k + 26, 216k2 + 224k + 58}, (24)

{6, 6k2 − 2k − 2, 6k2 + 20k + 6, 24k2 + 16k + 2} (25)

have the property D(24k + 13).
These sets are obtained from (1) and (2), for x = 6 and y = k. Analyzing

the sets (24), (25) and the sets (9) and (19) from [4] we conclude that for
k 6∈ {−1, 0} there exist at least four distinct Diophantine quadruples with
the property D(24k + 13), which is the desired conclusion.

Let us now consider the case n = 24k+21. We start with the observation
that the sets

{2, 2k2 − 6k − 6, 2k2 − 2k + 2, 8k2 − 16k − 10}, (26)
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{6, 6k2 + 2k − 2, 6k2 + 14k + 10, 24k2 + 32k + 10} (27)

have the property D(24k + 21).
The set (26) is obtained by multiplication of all elements of the set (2)

by 3, for x = 2
3 and y = k, and the set (27) is obtained from (3), for x = 6

and y = k.
From (26), (27) and [4, (9) and (19)] it follows that for k 6∈ {−2,−1, 0, 1,

2, 3, 4} there exist at least four distinct Diophantine quadruples with the
property D(24k + 21). But the sets {6, 62, 110, 170} and {22, 154, 294, 874}
have the properties D(69) and D(93) respectively, which completes the
proof.

Remark 4 For the exceptions from the sets V5 and V6, the follow-
ing holds: the sets {2, 6, 10, 30}, {2, 10, 18, 30} and {2, 30, 46, 150} have
the property D(−11), the set {2, 34, 54, 174} has the property D(13), the
sets {2, 26, 38, 126} and {2, 194, 234, 854} have the property D(−27), the
set {2, 102, 134, 470} has the property D(21), the sets {2, 38, 62, 198} and
{2, 522, 590, 2222} have the property D(45), and the sets {2, 362, 422, 1566},
{2, 3726, 3902, 15254} and {6, 102, 162, 522} have the property D(117). No
Diophantine quadruple with the property D(−3) is known.

Corollary 2 If n is an integer such that n ≡ 52 (mod 96) and n 6∈
V7 = {52}, or n ≡ 84 (mod 96) and n 6∈ V8 = {−108,−12, 84, 180}, then
there exist at least four distinct Diophantine quadruples with the property
D(n).

Proof. The corollary is direct consequence of Theorem 4, Remark 4
and the fact that the sets {3, 15, 20, 276} and {1, 1132, 2668, 7276} have the
properties D(−44) and D(468) respectively.

Remark 5 Note that the sets {3, 36, 84, 228} and {4, 531, 9559, 14596}
have the properties D(−108) and D(180) respectively. Thus, from Remark
4 it follows that there exist at least three Diophantine quadruples with the
properties D(−108) and D(180).

Theorem 5 If n is an integer such that n ≡ 3 (mod 12) and n 6∈ V9 =
{−9, 3, 15, 27, 63}, or n ≡ 7 (mod 12) and n 6∈ V10 = {−5, 7}, then there
exist at least four distinct Diophantine quadruples with the property D(n).

Proof. Let n = 12k + 3. The sets

{1, k2 − 8k + 1, k2 − 6k + 6, 4k2 − 28k + 13}, (28)
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{3, 3k2 − 4k − 1, 3k2 + 2k + 2, 12k2 − 4k − 1} (29)

have the property D(12k + 3).
The set (28) is obtained by multiplication of all elements of the set (2)

by 3, for x = 1
3 and y = k − 1, and the set (29) is obtained from (3), for

x = 3 and y = k − 1.
From (28), (29) and [4, (7) and (17)] it follows that for k 6∈ {−1, 0, 1, 2, 3,

4, 5, 6, 7, 8} there exist at least four distinct Diophantine quadruples with the
property D(12k + 3). The fact that the sets {3, 35, 62, 95}, {1, 13, 70, 145},
{1, 69, 94, 325}, {1, 2413, 12013, 25194} and {1, 70, 801, 1345} have the prop-
erties D(39), D(51), D(75), D(87) and D(99) respectively, establishes the
first part of the theorem.

Let us now consider the case n = 12k + 7. The sets

{3, 27k2 + 20k + 3, 27k2 + 38k + 14, 108k2 + 116k + 31}, (30)

{3, 3k2 − 2k − 2, 3k2 + 4k + 3, 12k2 + 4k − 1} . (31)

have the property D(12k + 7).
These sets are obtained from (1) and (2), for x = 3 and y = k. The for-

mulas (30), (31) and [4, (7) and (17)] imply that for k 6∈ {−1, 0, 1} there exist
at least four distinct Diophantine quadruples with the property D(12k +7).
But the set {1, 17, 30, 45} has the property D(19), and the proof is complete.

Remark 6 For the elements of the sets V9 and V10, the following holds:
the sets {1, 10, 13, 45} and {1, 45, 58, 205} have the property D(−9), the
set {1, 106, 129, 469} has the property D(15), the sets {1, 22, 37, 117},
{1, 373, 414, 1573} and {11, 18, 59, 143} have the property D(27), the sets
{1, 193, 226, 837}, {1, 2146, 2241, 8773} and {3, 54, 87, 279} have the prop-
erty D(63), the sets {1, 5, 6, 21} and {1, 14, 21, 69} have the property D(−5),
and the set {1, 18, 29, 93} has the property D(7). No Diophantine quadruple
with the property D(3) is known.

Note that by [4, Remark 3], the number of Diophantine quadruples with
the property D(16k +12) is equal to the number of Diophantine quadruples
with the property D(4k + 3). Thus we can rephrase Theorem 5 as follows.

Corollary 3 If n is an integer such that n ≡ 12 (mod 48) and n 6∈
V11 = {−36, 12, 60, 108, 252}, or n ≡ 28 (mod 48) and n 6∈ V12 = {−20, 28},
then there exist at least four distinct Diophantine quadruples with the prop-
erty D(n).
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4 Connection with the Schinzel-Sierpiński conjec-
ture

Let U denote the set of all integers n, not of the form 4k + 2, such that
there exist at most two distinct Diophantine quadruple with the property
D(n). One open question is whether the set U is finite or not. The following
corollary is the direct consequence of the results of Section 3.

Corollary 4 If n∈U \U1, where U1 = {−36,−27,−20,−16,−15,−12,
−9,−8,−7,−5,−3, 3, 7, 8, 12, 13, 15, 17, 21, 24, 28, 32, 45, 48, 52, 60, 84}, then
n can be represented in one of the following forms:

12k + 11, 24k + 5, 48k + 44, 96k + 20.

Proof. Let U2 =
⋃12

i=1 Vi, where Vi, i = 1, . . . , 12, are defined in Section
3. Then U1 = U2\U3, where U3 = {−108,−28,−11, 27, 33, 40, 63, 68, 80, 108,
117, 180, 252}. It is clear from Remarks 1 – 6 that U3 ∩ U = ∅. It implies
that U \ U2 = U \ U1, which completes the proof.

Note that multiplying all elements of quadruples with the properties
D(12k+11) and D(24k+5) by 2, we obtain the quadruple with the properties
D(48k + 44) and D(96k + 20), and by [4, Remark 3], all quadruples with
the property D(48k + 44) can be obtained on this way.

In [7, Theorems 1 and 2], it was proved that the elements of the set U
which have the form 4k+3 or 8k+5 must satisfy some primality conditions.
The main idea was to analyze the construction of the polynomial formulas
for Diophantine quadruples from [6]. It was shown that the additional Dio-
phantine quadruples with the property D(n) can be obtained if factors of
the values of some linear polynomials in n are known. These results can be
rephrased as follows.

Theorem 6 Let n be an integer such that n ≡ 11 (mod 12), n 6∈{−1, 11}
and n ∈ U . Then the integers |n−1|/2, |n−9|/2 and |9n−1|/2 are primes.
Furthermore, either |n| is prime or n is the product of twin primes.

Theorem 7 Let n be an integer such that n ≡ 5 (mod 24), n 6= 5 and
n ∈ U . Then the integers |n|, |n− 1|/4, |n− 9|/4 and |9n− 1|/4 are primes.

Corollary 5 Let n be an integer such that n ∈ U and |n| ≤ 10000.
Then n ∈ W = U1 ∪ W1, where U1 is defined in Corollary 4, and W1 =
{−8563,−7732,−7723,−7492,−6892, −6637,−6427,−6073,−5923,−5413,
− 5233,−5107,−4603,−4363, −4243, −3508, −3028,−2188,−1933,−1873,
− 1723,−877,−757,−652, −547, −268, −172, −163, −148, −67,−52,−43,
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−37,−19,−13,−4,−1, 5, 11, 20, 23, 44, 83, 92, 167, 173, 227, 293, 332, 668,
908, 983, 1172, 1487, 2477, 2903, 3167, 3533, 3932, 4283, 4373, 4703, 5507,
5948, 8573, 9908}.

Proof. If n 6∈ U1 then, by Corollary 4, n has one of the following
forms:

12k + 11, 24k + 5, 48k + 44, 96k + 20.

Let n = 12k + 11 and n 6∈ {−1, 11}. Then, by Theorem 6, the integers
|n − 1|/2, |n − 9|/2 and |9n − 1|/2 are primes, and either |n| is prime or
n is a product of twin primes. There exist exactly 25 integers n, |n| ≤
10000, which satisfy these conditions. Note that the sets {1, 494, 989, 2881},
{1, 2, 737, 26197}, {1, 146, 9073, 11521} and {1, 3421, 24158, 45761} have the
properties D(35), D(47), D(143) and D(1763) respectively. Hence, we
proved that if n ≡ 11 (mod 12), |n| ≤ 10000 and n 6∈ W2 = {−6637,−6073,
−5413,−5233,−1933,−1873,−877,−757,−37,−13,−1, 11, 23, 83, 167, 227,
983, 1487, 2903, 3167, 4283, 4703, 5507}, then there exist at least three dis-
tinct Diophantine quadruples with the property D(n).

It implies that if n ≡ 44 (mod 48), |n| ≤ 10000 and n 6∈ W3 = {−7732,
−7492,−3508,−3028,−148,−52,−4, 44, 92, 332, 668, 908, 3932, 5948}, then
there exist at least three distinct Diophantine quadruples with the prop-
erty D(n).

Let n = 24k +5, n 6= 5. Then, by Theorem 7, the integers |n|, |n− 1|/4,
|n − 9|/4 and |9n − 1|/4 are primes. There exist exactly 19 integers n,
|n| ≤ 10000, which satisfy these conditions. Hence, we proved that if
n ≡ 5 (mod 24), |n| ≤ 10000 and n 6∈ W4 = {−8563,−7723,−6427,−5923,
−5107,−4603,−4363,−1723,−547,−163,−67,−43,−19, 5, 173, 293, 2477,
3533, 4373, 8573}, then there exist at least three distinct Diophantine qua-
druples with the property D(n).

From this and the fact that the sets {4, 23, 35, 1540} and {1, 92, 7772,
7957} have the properties D(−76) and D(692) respectively, we conclude that
if n ≡ 20 (mod 96), |n| ≤ 10000 and n 6∈ W5 = {−6892,−2188,−652,−268,
−172, 20, 1172, 9908}, then there exist at least three distinct Diophantine
quadruples with the property D(n).

This proves the corollary, since it is obvious that

W1 = W2 ∪W3 ∪W4 ∪W5 .

It is not yet known, whether the set U is finite or not. Note that if U is
infinite then at least one of the sets

A = {k ∈ Z : |6k + 1|, |6k + 5|, |12k + 11| and |54k + 49| are primes},
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B = {l ∈ N : 6l − 1, 6l + 1, 18l2 − 5, 18l2 − 1 and 162l2 − 5 are primes},
C = {k ∈ Z : |6k − 1|, |6k + 1|, |24k + 5| and |54k + 11| are primes}

is infinite. Let us observe that the polynomials appearing in the sets A, B
and C satisfy the conditions of following Schinzel-Sierpiński conjecture ([11],
[10, p. 312]):

Let s ≥ 1, let f1(x), . . . , fs(x) be irreducible polynomials with integral
coefficients and positive leading coefficients. Assume that the following con-
dition holds:

There does not exist any integer n > 1 dividing all the products
f1(k)f2(k) · · · fs(k) for every integer k.

Then there exist infinitely many natural numbers m such that all numbers
f1(m), f2(m), . . . , fs(m) are primes.

Therefore, the validity of the Schinzel-Sierpiński conjecture would imply
that the sets A, B and C are infinite.
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nombres premiers, Acta Arith. 4 (1958), 185–208, Corrigendum, 5 (1959), 259.

ANDREJ DUJELLA

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ZAGREB
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