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Abstract
It is proven that if k ≥ 2 is an integer and d is a positive integer such that the

product of any two distinct elements of the set

{k − 1, k + 1, 4k, d}

increased by 1 is a perfect square, than d has to be 16k3−4k. This is a generalization
of the well-known result of Davenport and Baker for k = 2.

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set {1/16,
33/16, 17/4, 105/16} has the following property: the product of any two of its distinct el-
ements increased by 1 is a square of a rational number (see [5]). A set of positive integers
{a1, a2, . . . , am} is said to have the property of Diophantus if aiaj + 1 is a perfect square
for all 1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple. Fermat first found
an example of a Diophantine quadruple, and it was {1, 3, 8, 120}. In 1969, Davenport
and Baker [2] proved that if d is a positive integer such that {1, 3, 8, d} is a Diophantine
quadruple, then d has to be 120.

There is a well-known generalization of the Fermat set: the set

{k − 1, k + 1, 4k, 16k3 − 4k}

is a Diophantine quadruple for all integers k ≥ 2 (see [6, 10]). For k = 2 we obtain the
Fermat set. Thus we come to the following question:

Let k ≥ 2 be an integer, and let d be a positive integer such that the set {k − 1,
k + 1, 4k, d} has the property of Diophantus. Is then necessarily d = 16k3 − 4k?

As we said before, for k = 2 an affirmative answer to the above question was given
in [2] and also in [9, 12, 16], and for k = 3 in [18].

In the present paper we prove the following theorem which gives an affirmative answer
to the above question for all integers k ≥ 2.

0Mathematics subject classification (1991): Primary 11D09, 11D25; Secondary 11B37, 11J68, 11J86,
11Y50.
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Theorem 1 Let k ≥ 2 be an integer. If the set {k− 1, k + 1, 4k, d} has the property
of Diophantus, then d has to be 16k3 − 4k.

2 A system of Pellian equations

Assume that the set {k − 1, k + 1, 4k, d} has the property of Diophantus. It implies
that there exist positive integers x, y and z such that the following holds:

(k − 1)d + 1 = x2, (k + 1)d + 1 = y2, 4kd + 1 = z2.

Eliminating d, we obtain the following system of Pellian equations:

(k − 1)y2 − (k + 1)x2 = −2 , (1)
(k − 1)z2 − 4kx2 = −3k − 1 . (2)

Since k − 1 < k + 1 < 4(k − 1) Theorem 8 from [11] implies that all solutions of (1) are
given by x = vm, m ≥ 0, where (vm) is the following recursive sequence:

v0 = 1, v1 = 2k − 1, vm+2 = 2kvm+1 − vm, m ≥ 0. (3)

The theory of Pellian equations guarantees that all solutions of (2) are given by
x = w

(i)
n , n ≥ 0, where

w
(i)
0 = x

(i)
0 , w

(i)
1 = (2k − 1)x(i)

0 + (k − 1)z(i)
0 , wn+2(i) = (4k − 2)w(i)

n+1 − w(i)
n , (4)

and
√

k − 1z
(i)
0 +2

√
kx

(i)
0 , i = 1, . . . , j, are fundamental solutions of the equation (2) (see

[13, 17]).
Thus our problem reduces to solving the equations

vm = w(i)
n , (5)

i = 1, . . . , j. From (3) and (4) it easily follows that vm ≡ 1 (mod (k − 1)) for all m ≥ 0,
and w

(i)
n ≡ x

(i)
0 (mod (k − 1)) for all n ≥ 0. Hence, if the equation (5) has a solution in

integers m and n, then we must have x
(i)
0 ≡ 1 (mod (k − 1)). But from [13, Theorem

108a] we have:

0 < x
(i)
0 ≤ 1√

2(2k − 2)

√
(3k + 1)(k − 1) =

1
2

√
3k + 1 <

√
k.

Therefore x
(i)
0 = 1 and z

(i)
0 = ±1.

We have thus proved the following lemma.
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Lemma 1 Let x, y, z be positive integer solutions of the system of Pellian equations
(1) and (2). Then there exist integers m ≥ 0 and n such that

x = vm = wn , (6)

where the sequence (vm) is given by (3), and the two-sided sequence (wn) is given by the
following recursive formula:

w0 = 1, w1 = 3k − 2, wn+2 = (4k − 2)wn+1 − wn, n ∈ Z . (7)

3 Application of a result of Rickert

In this section we will use a result of Rickert [15] on simultaneous rational approxi-
mations to the numbers

√
(k − 1)/k and

√
(k + 1)/k and we will prove the statement of

Theorem 1 for k ≥ 29. For the convenience of the reader, we recall Rickert’s result.

Theorem 2 For an integer k ≥ 2 the numbers

θ1 =
√

(k − 1)/k, θ2 =
√

(k + 1)/k

satisfy
max (|θ1 − p1/q|, |θ2 − p2/q|) > (271k)−1q−1−λ

for all integers p1, p2, q with q > 0, where

λ = λ(k) =
log (12k

√
3 + 24)

log [27(k2 − 1)/32]
.

From (1) and (2) it follows

(k + 1)z2 − 4ky2 = −3k + 1 , (8)

and the system of Pellian equations (1) and (2) is equivalent to the system (2) and (8).

Lemma 2 Let k ≥ 2 and θ1 =
√

(k − 1)/k, θ2 =
√

(k + 1)/k. Then all positive
integer solutions x, y, z of the simultaneous Pellian equations (2) and (8) satisfy

max (|θ1 −
2x

z
|, |θ2 −

2y

z
|) < 2.475z−2 .
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Proof. We have:

|

√
k − 1

k
− 2x

z
| = |k − 1

k
− 4x2

z2
| · |

√
k − 1

k
+

2x

z
|−1

<
1

kz2
|(k − 1)z2 − 4kx2| · 1√

2
=

3k + 1
k
√

2
z−2 < 2.475z−2

and

|

√
k + 1

k
− 2y

z
| = |k + 1

k
− 4y2

z2
| · |

√
k + 1

k
+

2y

z
|−1

<
1

kz2
|(k + 1)z2 − 4ky2| · 1

2
=

3k − 1
2k

z−2 ≤ 1.5z−2.

Lemma 3 Let m and n be integers such that vm = wn. Then n ≡ 0 or −2 (mod 4k).

Proof. Let us consider the sequences

(vm mod (2k − 1))m≥0 = (1, 0,−1,−1, 0, 1, 1, 0, . . .) and
(wn mod (2k − 1))n≥0 = (1,−k,−1, k, 1,−k, . . .) .

We conclude that vm = wn implies that n is even. Set n = 2l.
Let us now consider the sequences (vm mod 4k(k− 1)) and (w2l mod 4k(k− 1)). We

have:

(vm mod 4k(k − 1))m≥0 = (1, 2k − 1, 2k − 1, 1, 1, 2k − 1, . . .) ,

(w2l mod 4k(k − 1))l≥0 = (1,−2k + 3,−4k + 5,−6k + 5, . . .) .

It follows easily by induction that w2l ≡ −2lk + (2l + 1) (mod 4k(k − 1)), for all l ∈ Z.
Hence, if vm = w2l, then we have two possibilities:

1) −2lk + (2l + 1) ≡ 1 (mod 4k(k − 1))
This implies 2l(k − 1) ≡ 0 (mod 4k(k − 1)), and n = 2l ≡ 0 (mod 4k).

2) −2lk + (2l + 1) ≡ 2k − 1 (mod 4k(k − 1))
This implies 2(l + 1)(k − 1) ≡ 0 (mod 4k(k − 1)), and n = 2l ≡ −2 (mod 4k).

Lemma 4 Let x, y, z be positive integer solutions of the system of Pellian equations
(1) and (2) such that z 6∈ {1, 8k2 − 1}. Then

log z ≥ (4k − 2) log (4k − 3) .
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Proof. If z satisfies the conditions of the lemma then from the results of Section 2
it follows that there exists an integer n such that z = sn, where

s0 = 1, s1 = 6k − 1, sn+2 = (4k − 2)sn+1 − sn, n ∈ Z .

Let ϕ = 2k − 1 + 2
√

k2 − k. Now it follows easily by induction that for n > 0 we have
sn ≥ ϕn, and for n < 0 we have sn ≥ 1

2ϕ|n|.
If n > 0, then Lemma 3 implies n ≥ 4k− 2, and so z ≥ ϕ4k−2. If n < 0, then Lemma

3 implies |n| ≥ 4k, and so z ≥ 1
2ϕ4k ≥ ϕ4k−2. Hence,

log z ≥ (4k − 2) log ϕ ≥ (4k − 2) log (4k − 3) .

Proposition 1 If k ≥ 29 and if the set {k − 1, k + 1, 4k, d} has the property of
Diophantus, then d has to be 16k3 − 4k.

Proof. Let z be a positive integer such that 4kd + 1 = z2. Suppose that d 6=
16k3 − 4k. Then Lemma 4 implies

log z ≥ (4k − 2) log (4k − 3) . (9)

On the other hand, Theorem 2 and Lemma 2 imply

(271k)−1z−1−λ < 2.475z−2 .

It follows that
z1−λ < 671k

and
log z <

log(671k)
1− λ

. (10)

Since k ≥ 29, we have

1
1− λ

=
log [27(k2 − 1)/32]

log [ 27(k2−1)

32(12k
√

3+24
]

<
2 log (0.9186k)
log (0.03899k)

.

Combining (9) and (10) we obtain

4k − 2 <
2 log (671k) log (0.9186k)
log (4k − 3) log (0.03899k)

. (11)

Since the function on the right side of (11) is decreasing, it follows that 4k − 2 < 112.
This contradicts our assumption that k ≥ 29.
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4 Linear forms in three logarithms and the Grinstead method

In the proof of the statement of Theorem 1 for k ≤ 28 we will use the Grinstead
method (see [9, 4, 14]). In this section we assume that 2 ≤ k ≤ 28.

Let x = vm = wn, where m,n ≥ 0. Then

2
√

k+1x=(
√

k−1+
√

k+1)(k+
√

k2−1)m−(
√

k−1−
√

k+1)(k−
√

k2−1)m , (12)

and

4
√

kx =
(
√

k−1+2
√

k)(2k−1+2
√

k2−k)n−(
√

k−1−2
√

k)(2k−1−2
√

k2−k)n, (13)

If we put

P =
√

k − 1 +
√

k + 1√
k + 1

(k +
√

k2 − 1)m , (14)

Q =
√

k − 1 + 2
√

k

2
√

k
(2k − 1 + 2

√
k2 − k)n , (15)

the relations (12) and (13) give

P +
2

k + 1
P−1 = Q +

3k + 1
4k

Q−1 . (16)

It is clear that P > 1 and Q > 1, and from

P −Q >
2

k + 1
Q−1 − 2

k + 1
P−1 =

2
k + 1

(P −Q)P−1Q−1

we see that Q < P . As we may assume that m ≥ 1, we have

P ≥ (2k + 1)
√

k − 1 + (2k − 1)
√

k + 1√
k + 1

>
√

k2 − 1 + (2k − 1) > 2k .

Furthermore, (16) implies

Q > P − 3k + 1
4k

Q−1 > P − 3k + 1
4k

.

Hence,

P −Q =
3k + 1

4k
Q−1 − 2

k + 1
P−1 <

3k + 1
4k

(P − 3k + 1
4k

)−1 − 2
k + 1

P−1 <
3
4
P−1

and finally

0 < log
P

Q
= − log (1− P −Q

P
) <

3
4
P−2 + (

3
4
P−2)2 <

4
5
P−2



A parametric family of Diophantine triples 7

(since − log(1 − x) < x + x2, for x ∈ 〈0, 1
2〉). Now from (14) and (15) we obtain the

following inequality:

0 < m log(k +
√

k2 − 1)− n log(2k − 1 + 2
√

k2 − k) + log
2(
√

k − 1 +
√

k + 1)
√

k

(
√

k − 1 + 2
√

k)
√

k + 1

<
0.8

(k +
√

k2 − 1)2m
< e−2m log (2k−1) . (17)

Now we will apply the following theorem of Baker and Wüstholz [3]:

Theorem 3 For a linear form Λ 6= 0 in logarithms of l algebraic numbers α1, . . . , αl

with rational integer coefficients b1, . . . , bl we have

log |Λ| ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log (2nd) log B ,

where B = max (|b1|, . . . , |bl|), and where d is the degree of the number field generated by
α1, . . . , αl.

Here
h′(α) =

1
d

max (h(α), | log α|, 1) ,

and h(α) denotes the standard logarithmic Weil height of α.
In the present situation we have l = 3, d = 4, B = m, and

α1 = k +
√

k2 − 1, α2 = 2k − 1 + 2
√

k2 − k, α3 =
2(
√

k − 1 +
√

k + 1)
√

k

(
√

k − 1 + 2
√

k)
√

k + 1
,

with corresponding minimal polynomials

α2
1 − 2kα1 + 1 = 0, α2

2 − 2(2k − 1)α2 + 1 = 0,

(9k4+24k3+22k2+8k+1)α4
3 − 16k(3k3+7k2+5k+1)α3

3 + 48k2(k2+4k+3)α2
3

−128k2(k+1)α3 + 64k2 = 0 .

If x = vm = wn, m ≥ 0 and n ≤ 0, then we obtain an identical result, since

α′3 =
2(
√

k − 1 +
√

k + 1)
√

k

(−
√

k − 1 + 2
√

k)
√

k + 1

has the same minimal polynomial as α3.
We get

h′(α1) =
1
2

log α1 <
1
2

log (2k) ,

h′(α2) =
1
2

log α2 <
1
2

log (4k − 2) ,
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h′(α3) = h′(α′3) =
1
4
[2 log (3k2 + 4k + 1) + log α3 + log α′3] <

1
4

log (147k4) .

From (17) and Theorem 3 we obtain

m

log m
< 1.1941 · 1014 · log (4k − 2) log (147k4) . (18)

Since k ≤ 28 we have
m

log m
< 1.044 · 1016 ,

and so
m < 5 · 1017 .

Now we adopt Grinstead’s strategy [9] in order to show that v0 = w0 = 1 and
v2 = w−2 = 4k2 − 2k − 1 are the only solutions of the equation vm = wn, m ≥ 0 for
2 ≤ k ≤ 28 . These solutions correspond to d = 0 and d = 16k3 − 4k.

We will prove that from vm = w4l (resp. vm = w4l−2) it follows that l = 0. Since
|n| < m < 5 · 1017, it is sufficient to show that

l ≡ 0 (mod 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 31 · 37 · 41 · 43 · 47) .

Let bl = w4l, resp. bl = w4l−2. We define L(q) to be the length of the period of the
sequence (bl mod q). Let p be a prime. If p = 2, we choose an integer q such that L(q)
is even and the sequences (b2l+1 mod q) and (vm mod q) have empty intersection. Thus
we conclude that l ≡ 0 (mod 2). In the same manner we prove l ≡ 0 (mod 3) and l ≡ 0
(mod 5). Let 5 < p ≤ 47 and assume that for all primes r < p, it has been shown that
l ≡ 0 (mod r). We follow [9] in proving that l ≡ 0 (mod p) by considering (vm mod q)
and (bl mod q), where q is a prime with the property that L(q) is divisible only by primes
not exceeding p, is power-free and is divisible by p (see [9, 4] for details). It is useful to
observe that if (k(k−1)

q ) = 1 then L(q)|q − 1, and if (k(k−1)
q ) = −1 then L(q)|q + 1.

We will illustrate this method with an example. We will show that l ≡ 0 (mod 19)
in the case k = 4 and bl = w4l. The two values of q we will use are q = 113 and q = 151.
We have L(113) = 57 and L(151) = 19. First, let q = 113. We have:

(w4l mod 113)l≥0 =
(1, 71, 15, 4, 5, 21, 100, 27, 35, 35, 27, 100, 21, 5, 4, 15, 71, 1, 47, 8, 106, 70, 18, 20, 82, 51,

60, 23, 55, 26, 75, 10, 88, 91, 28, 49, 104, 19, 104, 49, 28, 91, 88, 10, 75, 26, 55, 23, 60, 51,

82, 20, 18, 70, 106, 8, 47, 1, 71, . . .),

(vm mod 113)m≥0 = (1, 7, 55, 94, 19, 58, 106, 112, 112, 106, 58, 19, 94, 55, 7, 1, 1, 7, . . .).

We assume that l ≡ 0 (mod 3), which can be proved by considering (w4l mod 68) and
(vm mod 68). By comparing sequences, we see that w4l ≡ 1 or 106 (mod 113) and l ≡ 0
or 16 (mod 19).
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Next, let q = 151. We have:

(w4l mod 151)l≥0 =
(1, 87, 24, 149, 57, 34, 76, 59, 26, 96, 12, 22, 3, 83, 33, 15, 39, 142, 99, 1, 87, , . . .),

(vm mod 151)m≥0 =
(1, 7, 55, 131, 87, 112, 54, 18, 90, 98, 90, 18, 54, 112, 87, 131, 55, 7, 1, 1, 7, . . .).

Since the number 39 is in the position 16 (mod 19) in the first sequence, and it does not
occur in the second sequence, we have l ≡ 0 (mod 19).

We list the values of q used in the proof of Theorem 1 for k = 4 and k = 5:

p q for k = 4 q for k = 5

2 8 23
3 68∗, 380∗∗ 51
5 29∗∗, 55∗ 35
7 41, 71, 139, 337∗∗, 421∗∗ 13, 29, 71

11 23, 43, 307, 439∗ 43, 89, 197, 199, 263, 307∗∗, 331∗∗, 661∗∗

13 103, 131 79, 103, 131
17 67, 101, 239, 271∗∗ 67, 239, 373
19 113, 151 37, 113, 191, 227∗

23 47, 137, 277, 367, 599∗ 137, 139, 461, 599, 643, 691∗∗, 827∗∗

29 59, 173, 349, 463 59, 173, 347
31 311, 373, 619, 683 311, 433, 557∗∗, 743∗∗

37 739, 1109, 1259 73, 149, 443, 887
41 83, 163, 1229 163, 739, 821, 983∗

43 257, 431, 859∗∗, 947∗∗, 1033∗∗ 257, 431, 773, 1117
47 281, 659, 751, 1129∗ 563, 659

The numbers with ∗, resp. ∗∗, are used in the case bl = w4l, resp. bl = w4l−2 only. In the
actual running of this algorithm for all cases 2 ≤ k ≤ 28, no prime p required more than
eight values of q, and the greatest value of q which appeared was 3011. The computer
program was developed in FORTRAN and the computation time was about 50 seconds
on a HP 9000 workstation.
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5 Final remarks

We can prove Theorem 1 for k ≤ 28 using the reduction method based on the Baker-
Davenport lemma ([2], see also [8, Lemma 2]). Let κ = log(k +

√
k2 − 1)/ log(2k −

1 + 2
√

k2 − k) and µ1,2 = log 2(
√

k−1+
√

k+1)
√

k

(±
√

k−1+2
√

k)
√

k+1
/ log(2k − 1 + 2

√
k2 − k). Assume that

m < M . Let p/q be the convergent of the continued fraction expansion of κ such that
q > 3M and let ε = ‖µq‖ − M · ‖κq‖, where ‖ · ‖ denotes the distance from the nearest
integer. If ε > 0, then

m <
1

2 log(2k − 1)
log

q

ε log(2k − 1 + 2
√

k2 − k)
.

Starting with M = 5 · 1017 we obtain after reduction that m ≤ 14 (for all 3 ≤ k ≤ 28),
and the next step of the reduction gives m ≤ 0 for µ1 and m ≤ 2 for µ2, which completes
the proof.

We can combine Lemma 3 and inequality (18) to prove the statement of Theorem
1 for k sufficiently large, without using Rickert’s result. The bound obtained in this
way (k ≤ 2 · 1019) can be slightly improved by considering the sequences (vm) and (wn)
mod (2k − 1)2, but it will be still much weaker than the bound (k ≤ 28) obtained in
Proposition 1.

From Theorem 1 it follows that for k ≥ 2 the Diophantine quadruple {k − 1,
k + 1, 4k, 16k3 − 4k} cannot be extended to a Diophantine quintuple. However, the
rational number

4k(2k − 1)(2k + 1)(4k2 − 2k − 1)(4k2 + 2k − 1)(8k2 − 1)
(64k6 − 80k4 + 16k2 − 1)2

has the property that its product with any of the elements of the above set increased by
1 is the square of a rational number (see [1, 7]). This is a special case of the more general
fact that for every Diophantine quadruple {a1, a2, a3, a4} there exists a positive rational
number a5 such that aia5 + 1 is the square of a rational number for i = 1, 2, 3, 4 (see [7,
Corollary 1]).
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