The problem of the extension of a parametric family of Diophantine triples

By ANDREJ DUJELLA (Zagreb)

Abstract

It is proven that if $k \geq 2$ is an integer and d is a positive integer such that the product of any two distinct elements of the set $$
\{k-1, k+1,4 k, d\}
$$ increased by 1 is a perfect square, than d has to be $16 k^{3}-4 k$. This is a generalization of the well-known result of Davenport and Baker for $k=2$.

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set $\{1 / 16$, $33 / 16,17 / 4,105 / 16\}$ has the following property: the product of any two of its distinct elements increased by 1 is a square of a rational number (see [5]). A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple. Fermat first found an example of a Diophantine quadruple, and it was $\{1,3,8,120\}$. In 1969, Davenport and Baker [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 .

There is a well-known generalization of the Fermat set: the set

$$
\left\{k-1, k+1,4 k, 16 k^{3}-4 k\right\}
$$

is a Diophantine quadruple for all integers $k \geq 2$ (see [6, 10]). For $k=2$ we obtain the Fermat set. Thus we come to the following question:

Let $k \geq 2$ be an integer, and let d be a positive integer such that the set $\{k-1$, $k+1,4 k, d\}$ has the property of Diophantus. Is then necessarily $d=16 k^{3}-4 k$?

As we said before, for $k=2$ an affirmative answer to the above question was given in [2] and also in $[9,12,16]$, and for $k=3$ in [18].

In the present paper we prove the following theorem which gives an affirmative answer to the above question for all integers $k \geq 2$.

[^0]Theorem 1 Let $k \geq 2$ be an integer. If the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus, then d has to be $16 k^{3}-4 k$.

2 A system of Pellian equations

Assume that the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus. It implies that there exist positive integers x, y and z such that the following holds:

$$
(k-1) d+1=x^{2}, \quad(k+1) d+1=y^{2}, \quad 4 k d+1=z^{2} .
$$

Eliminating d, we obtain the following system of Pellian equations:

$$
\begin{align*}
(k-1) y^{2}-(k+1) x^{2} & =-2 \tag{1}\\
(k-1) z^{2}-4 k x^{2} & =-3 k-1 . \tag{2}
\end{align*}
$$

Since $k-1<k+1<4(k-1)$ Theorem 8 from [11] implies that all solutions of (1) are given by $x=v_{m}, m \geq 0$, where $\left(v_{m}\right)$ is the following recursive sequence:

$$
\begin{equation*}
v_{0}=1, \quad v_{1}=2 k-1, \quad v_{m+2}=2 k v_{m+1}-v_{m}, \quad m \geq 0 \tag{3}
\end{equation*}
$$

The theory of Pellian equations guarantees that all solutions of (2) are given by $x=w_{n}^{(i)}, n \geq 0$, where

$$
\begin{equation*}
w_{0}^{(i)}=x_{0}^{(i)}, w_{1}^{(i)}=(2 k-1) x_{0}^{(i)}+(k-1) z_{0}^{(i)}, w_{n+2}(i)=(4 k-2) w_{n+1}^{(i)}-w_{n}^{(i)}, \tag{4}
\end{equation*}
$$

and $\sqrt{k-1} z_{0}^{(i)}+2 \sqrt{k} x_{0}^{(i)}, i=1, \ldots, j$, are fundamental solutions of the equation (2) (see $[13,17]$).

Thus our problem reduces to solving the equations

$$
\begin{equation*}
v_{m}=w_{n}^{(i)}, \tag{5}
\end{equation*}
$$

$i=1, \ldots, j$. From (3) and (4) it easily follows that $v_{m} \equiv 1(\bmod (k-1))$ for all $m \geq 0$, and $w_{n}^{(i)} \equiv x_{0}^{(i)}(\bmod (k-1))$ for all $n \geq 0$. Hence, if the equation (5) has a solution in integers m and n, then we must have $x_{0}^{(i)} \equiv 1(\bmod (k-1))$. But from [13, Theorem 108a] we have:

$$
0<x_{0}^{(i)} \leq \frac{1}{\sqrt{2(2 k-2)}} \sqrt{(3 k+1)(k-1)}=\frac{1}{2} \sqrt{3 k+1}<\sqrt{k} .
$$

Therefore $x_{0}^{(i)}=1$ and $z_{0}^{(i)}= \pm 1$.
We have thus proved the following lemma.

Lemma 1 Let x, y, z be positive integer solutions of the system of Pellian equations (1) and (2). Then there exist integers $m \geq 0$ and n such that

$$
\begin{equation*}
x=v_{m}=w_{n}, \tag{6}
\end{equation*}
$$

where the sequence $\left(v_{m}\right)$ is given by (3), and the two-sided sequence $\left(w_{n}\right)$ is given by the following recursive formula:

$$
\begin{equation*}
w_{0}=1, \quad w_{1}=3 k-2, \quad w_{n+2}=(4 k-2) w_{n+1}-w_{n}, \quad n \in \mathbf{Z} \tag{7}
\end{equation*}
$$

3 Application of a result of Rickert

In this section we will use a result of Rickert [15] on simultaneous rational approximations to the numbers $\sqrt{(k-1) / k}$ and $\sqrt{(k+1) / k}$ and we will prove the statement of Theorem 1 for $k \geq 29$. For the convenience of the reader, we recall Rickert's result.

Theorem 2 For an integer $k \geq 2$ the numbers

$$
\theta_{1}=\sqrt{(k-1) / k}, \quad \theta_{2}=\sqrt{(k+1) / k}
$$

satisfy

$$
\max \left(\left|\theta_{1}-p_{1} / q\right|,\left|\theta_{2}-p_{2} / q\right|\right)>(271 k)^{-1} q^{-1-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda=\lambda(k)=\frac{\log (12 k \sqrt{3}+24)}{\log \left[27\left(k^{2}-1\right) / 32\right]} .
$$

From (1) and (2) it follows

$$
\begin{equation*}
(k+1) z^{2}-4 k y^{2}=-3 k+1 \tag{8}
\end{equation*}
$$

and the system of Pellian equations (1) and (2) is equivalent to the system (2) and (8).

LEMMA 2 Let $k \geq 2$ and $\theta_{1}=\sqrt{(k-1) / k}, \theta_{2}=\sqrt{(k+1) / k}$. Then all positive integer solutions x, y, z of the simultaneous Pellian equations (2) and (8) satisfy

$$
\max \left(\left|\theta_{1}-\frac{2 x}{z}\right|,\left|\theta_{2}-\frac{2 y}{z}\right|\right)<2.475 z^{-2}
$$

Proof. We have:

$$
\begin{aligned}
& \left|\sqrt{\frac{k-1}{k}}-\frac{2 x}{z}\right|=\left|\frac{k-1}{k}-\frac{4 x^{2}}{z^{2}}\right| \cdot\left|\sqrt{\frac{k-1}{k}}+\frac{2 x}{z}\right|^{-1} \\
& \quad<\frac{1}{k z^{2}}\left|(k-1) z^{2}-4 k x^{2}\right| \cdot \frac{1}{\sqrt{2}}=\frac{3 k+1}{k \sqrt{2}} z^{-2}<2.475 z^{-2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\sqrt{\frac{k+1}{k}}-\frac{2 y}{z}\right|=\left|\frac{k+1}{k}-\frac{4 y^{2}}{z^{2}}\right| \cdot\left|\sqrt{\frac{k+1}{k}}+\frac{2 y}{z}\right|^{-1} \\
& \quad<\frac{1}{k z^{2}}\left|(k+1) z^{2}-4 k y^{2}\right| \cdot \frac{1}{2}=\frac{3 k-1}{2 k} z^{-2} \leq 1.5 z^{-2}
\end{aligned}
$$

Lemma 3 Let m and n be integers such that $v_{m}=w_{n}$. Then $n \equiv 0$ or $-2(\bmod 4 k)$.
Proof. Let us consider the sequences

$$
\begin{aligned}
\left(v_{m} \bmod (2 k-1)\right)_{m \geq 0} & =(1,0,-1,-1,0,1,1,0, \ldots) \text { and } \\
\left(w_{n} \bmod (2 k-1)\right)_{n \geq 0} & =(1,-k,-1, k, 1,-k, \ldots) .
\end{aligned}
$$

We conclude that $v_{m}=w_{n}$ implies that n is even. Set $n=2 l$.
Let us now consider the sequences $\left(v_{m} \bmod 4 k(k-1)\right)$ and $\left(w_{2 l} \bmod 4 k(k-1)\right)$. We have:

$$
\begin{aligned}
\left(v_{m} \bmod 4 k(k-1)\right)_{m \geq 0} & =(1,2 k-1,2 k-1,1,1,2 k-1, \ldots) \\
\left(w_{2 l} \bmod 4 k(k-1)\right)_{l \geq 0} & =(1,-2 k+3,-4 k+5,-6 k+5, \ldots) .
\end{aligned}
$$

It follows easily by induction that $w_{2 l} \equiv-2 l k+(2 l+1)(\bmod 4 k(k-1))$, for all $l \in \mathbf{Z}$. Hence, if $v_{m}=w_{2 l}$, then we have two possibilities:

1) $-2 l k+(2 l+1) \equiv 1(\bmod 4 k(k-1))$

This implies $2 l(k-1) \equiv 0(\bmod 4 k(k-1))$, and $n=2 l \equiv 0(\bmod 4 k)$.
2) $-2 l k+(2 l+1) \equiv 2 k-1(\bmod 4 k(k-1))$

This implies $2(l+1)(k-1) \equiv 0(\bmod 4 k(k-1))$, and $n=2 l \equiv-2(\bmod 4 k)$.

Lemma 4 Let x, y, z be positive integer solutions of the system of Pellian equations (1) and (2) such that $z \notin\left\{1,8 k^{2}-1\right\}$. Then

$$
\log z \geq(4 k-2) \log (4 k-3)
$$

Proof. If z satisfies the conditions of the lemma then from the results of Section 2 it follows that there exists an integer n such that $z=s_{n}$, where

$$
s_{0}=1, \quad s_{1}=6 k-1, \quad s_{n+2}=(4 k-2) s_{n+1}-s_{n}, \quad n \in \mathbf{Z}
$$

Let $\varphi=2 k-1+2 \sqrt{k^{2}-k}$. Now it follows easily by induction that for $n>0$ we have $s_{n} \geq \varphi^{n}$, and for $n<0$ we have $s_{n} \geq \frac{1}{2} \varphi^{|n|}$.

If $n>0$, then Lemma 3 implies $n \geq 4 k-2$, and so $z \geq \varphi^{4 k-2}$. If $n<0$, then Lemma 3 implies $|n| \geq 4 k$, and so $z \geq \frac{1}{2} \varphi^{4 k} \geq \varphi^{4 k-2}$. Hence,

$$
\log z \geq(4 k-2) \log \varphi \geq(4 k-2) \log (4 k-3)
$$

Proposition 1 If $k \geq 29$ and if the set $\{k-1, k+1,4 k, d\}$ has the property of Diophantus, then d has to be $16 k^{3}-4 k$.

Proof. Let z be a positive integer such that $4 k d+1=z^{2}$. Suppose that $d \neq$ $16 k^{3}-4 k$. Then Lemma 4 implies

$$
\begin{equation*}
\log z \geq(4 k-2) \log (4 k-3) \tag{9}
\end{equation*}
$$

On the other hand, Theorem 2 and Lemma 2 imply

$$
(271 k)^{-1} z^{-1-\lambda}<2.475 z^{-2}
$$

It follows that

$$
z^{1-\lambda}<671 k
$$

and

$$
\begin{equation*}
\log z<\frac{\log (671 k)}{1-\lambda} \tag{10}
\end{equation*}
$$

Since $k \geq 29$, we have

$$
\frac{1}{1-\lambda}=\frac{\log \left[27\left(k^{2}-1\right) / 32\right]}{\log \left[\frac{27\left(k^{2}-1\right)}{32(12 k \sqrt{3}+24}\right]}<\frac{2 \log (0.9186 k)}{\log (0.03899 k)}
$$

Combining (9) and (10) we obtain

$$
\begin{equation*}
4 k-2<\frac{2 \log (671 k) \log (0.9186 k)}{\log (4 k-3) \log (0.03899 k)} \tag{11}
\end{equation*}
$$

Since the function on the right side of (11) is decreasing, it follows that $4 k-2<112$. This contradicts our assumption that $k \geq 29$.

4 Linear forms in three logarithms and the Grinstead method

In the proof of the statement of Theorem 1 for $k \leq 28$ we will use the Grinstead method (see $[9,4,14]$). In this section we assume that $2 \leq k \leq 28$.

Let $x=v_{m}=w_{n}$, where $m, n \geq 0$. Then

$$
\begin{equation*}
2 \sqrt{k+1} x=(\sqrt{k-1}+\sqrt{k+1})\left(k+\sqrt{k^{2}-1}\right)^{m}-(\sqrt{k-1}-\sqrt{k+1})\left(k-\sqrt{k^{2}-1}\right)^{m}, \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
& 4 \sqrt{k} x= \\
& \quad(\sqrt{k-1}+2 \sqrt{k})\left(2 k-1+2 \sqrt{k^{2}-k}\right)^{n}-(\sqrt{k-1}-2 \sqrt{k})\left(2 k-1-2 \sqrt{k^{2}-k}\right)^{n} \tag{13}
\end{align*}
$$

If we put

$$
\begin{align*}
& P=\frac{\sqrt{k-1}+\sqrt{k+1}}{\sqrt{k+1}}\left(k+\sqrt{k^{2}-1}\right)^{m}, \tag{14}\\
& Q=\frac{\sqrt{k-1}+2 \sqrt{k}}{2 \sqrt{k}}\left(2 k-1+2 \sqrt{k^{2}-k}\right)^{n}, \tag{15}
\end{align*}
$$

the relations (12) and (13) give

$$
\begin{equation*}
P+\frac{2}{k+1} P^{-1}=Q+\frac{3 k+1}{4 k} Q^{-1} . \tag{16}
\end{equation*}
$$

It is clear that $P>1$ and $Q>1$, and from

$$
P-Q>\frac{2}{k+1} Q^{-1}-\frac{2}{k+1} P^{-1}=\frac{2}{k+1}(P-Q) P^{-1} Q^{-1}
$$

we see that $Q<P$. As we may assume that $m \geq 1$, we have

$$
P \geq \frac{(2 k+1) \sqrt{k-1}+(2 k-1) \sqrt{k+1}}{\sqrt{k+1}}>\sqrt{k^{2}-1}+(2 k-1)>2 k .
$$

Furthermore, (16) implies

$$
Q>P-\frac{3 k+1}{4 k} Q^{-1}>P-\frac{3 k+1}{4 k} .
$$

Hence,

$$
P-Q=\frac{3 k+1}{4 k} Q^{-1}-\frac{2}{k+1} P^{-1}<\frac{3 k+1}{4 k}\left(P-\frac{3 k+1}{4 k}\right)^{-1}-\frac{2}{k+1} P^{-1}<\frac{3}{4} P^{-1}
$$

and finally

$$
0<\log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right)<\frac{3}{4} P^{-2}+\left(\frac{3}{4} P^{-2}\right)^{2}<\frac{4}{5} P^{-2}
$$

(since $-\log (1-x)<x+x^{2}$, for $\left.x \in\left\langle 0, \frac{1}{2}\right\rangle\right)$. Now from (14) and (15) we obtain the following inequality:

$$
\begin{align*}
0 & <m \log \left(k+\sqrt{k^{2}-1}\right)-n \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)+\log \frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}} \\
& <\frac{0.8}{\left(k+\sqrt{k^{2}-1}\right)^{2 m}}<e^{-2 m \log (2 k-1)} \tag{17}
\end{align*}
$$

Now we will apply the following theorem of Baker and Wüstholz [3]:
Theorem 3 For a linear form $\Lambda \neq 0$ in logarithms of lalgebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational integer coefficients b_{1}, \ldots, b_{l} we have

$$
\log |\Lambda| \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 n d) \log B
$$

where $B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{l}\right|\right)$, and where d is the degree of the number field generated by $\alpha_{1}, \ldots, \alpha_{l}$.

Here

$$
h^{\prime}(\alpha)=\frac{1}{d} \max (h(\alpha),|\log \alpha|, 1)
$$

and $h(\alpha)$ denotes the standard logarithmic Weil height of α.
In the present situation we have $l=3, d=4, B=m$, and

$$
\alpha_{1}=k+\sqrt{k^{2}-1}, \quad \alpha_{2}=2 k-1+2 \sqrt{k^{2}-k}, \quad \alpha_{3}=\frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}},
$$

with corresponding minimal polynomials

$$
\begin{gathered}
\alpha_{1}^{2}-2 k \alpha_{1}+1=0, \quad \alpha_{2}^{2}-2(2 k-1) \alpha_{2}+1=0 \\
\left(9 k^{4}+24 k^{3}+22 k^{2}+8 k+1\right) \alpha_{3}^{4}-16 k\left(3 k^{3}+7 k^{2}+5 k+1\right) \alpha_{3}^{3}+48 k^{2}\left(k^{2}+4 k+3\right) \alpha_{3}^{2} \\
-128 k^{2}(k+1) \alpha_{3}+64 k^{2}=0
\end{gathered}
$$

If $x=v_{m}=w_{n}, m \geq 0$ and $n \leq 0$, then we obtain an identical result, since

$$
\alpha_{3}^{\prime}=\frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(-\sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}}
$$

has the same minimal polynomial as α_{3}.
We get

$$
\begin{gathered}
h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \alpha_{1}<\frac{1}{2} \log (2 k), \\
h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \alpha_{2}<\frac{1}{2} \log (4 k-2),
\end{gathered}
$$

$$
h^{\prime}\left(\alpha_{3}\right)=h^{\prime}\left(\alpha_{3}^{\prime}\right)=\frac{1}{4}\left[2 \log \left(3 k^{2}+4 k+1\right)+\log \alpha_{3}+\log \alpha_{3}^{\prime}\right]<\frac{1}{4} \log \left(147 k^{4}\right) .
$$

From (17) and Theorem 3 we obtain

$$
\begin{equation*}
\frac{m}{\log m}<1.1941 \cdot 10^{14} \cdot \log (4 k-2) \log \left(147 k^{4}\right) . \tag{18}
\end{equation*}
$$

Since $k \leq 28$ we have

$$
\frac{m}{\log m}<1.044 \cdot 10^{16}
$$

and so

$$
m<5 \cdot 10^{17}
$$

Now we adopt Grinstead's strategy [9] in order to show that $v_{0}=w_{0}=1$ and $v_{2}=w_{-2}=4 k^{2}-2 k-1$ are the only solutions of the equation $v_{m}=w_{n}, m \geq 0$ for $2 \leq k \leq 28$. These solutions correspond to $d=0$ and $d=16 k^{3}-4 k$.

We will prove that from $v_{m}=w_{4 l}$ (resp. $v_{m}=w_{4 l-2}$) it follows that $l=0$. Since $|n|<m<5 \cdot 10^{17}$, it is sufficient to show that

$$
l \equiv 0(\bmod 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47) .
$$

Let $b_{l}=w_{4 l}$, resp. $b_{l}=w_{4 l-2}$. We define $L(q)$ to be the length of the period of the sequence $\left(b_{l} \bmod q\right)$. Let p be a prime. If $p=2$, we choose an integer q such that $L(q)$ is even and the sequences $\left(b_{2 l+1} \bmod q\right)$ and $\left(v_{m} \bmod q\right)$ have empty intersection. Thus we conclude that $l \equiv 0(\bmod 2)$. In the same manner we prove $l \equiv 0(\bmod 3)$ and $l \equiv 0$ $(\bmod 5)$. Let $5<p \leq 47$ and assume that for all primes $r<p$, it has been shown that $l \equiv 0(\bmod r)$. We follow $[9]$ in proving that $l \equiv 0(\bmod p)$ by considering $\left(v_{m} \bmod q\right)$ and $\left(b_{l} \bmod q\right)$, where q is a prime with the property that $L(q)$ is divisible only by primes not exceeding p, is power-free and is divisible by p (see $[9,4]$ for details). It is useful to observe that if $\left(\frac{k(k-1)}{q}\right)=1$ then $L(q) \mid q-1$, and if $\left(\frac{k(k-1)}{q}\right)=-1$ then $L(q) \mid q+1$.

We will illustrate this method with an example. We will show that $l \equiv 0(\bmod 19)$ in the case $k=4$ and $b_{l}=w_{4 l}$. The two values of q we will use are $q=113$ and $q=151$. We have $L(113)=57$ and $L(151)=19$. First, let $q=113$. We have:

$$
\begin{aligned}
& \left(w_{4 l} \bmod 113\right)_{l \geq 0}= \\
& \quad(1,71,15,4,5,21,100,27,35,35,27,100,21,5,4,15,71,1,47,8,106,70,18,20,82,51, \\
& \quad 60,23,55,26,75,10,88,91,28,49,104,19,104,49,28,91,88,10,75,26,55,23,60,51, \\
& \quad 82,20,18,70,106,8,47,1,71, \ldots) \\
& \quad\left(v_{m} \bmod 113\right)_{m \geq 0}=(1,7,55,94,19,58,106,112,112,106,58,19,94,55,7,1,1,7, \ldots) .
\end{aligned}
$$

We assume that $l \equiv 0(\bmod 3)$, which can be proved by considering $\left(w_{4 l} \bmod 68\right)$ and $\left(v_{m} \bmod 68\right)$. By comparing sequences, we see that $w_{4 l} \equiv 1$ or $106(\bmod 113)$ and $l \equiv 0$ or $16(\bmod 19)$.

Next, let $q=151$. We have:
$\left(w_{4 l} \bmod 151\right)_{l \geq 0}=$

$$
(1,87,24,149,57,34,76,59,26,96,12,22,3,83,33,15,39,142,99,1,87,, \ldots)
$$

$\left(v_{m} \bmod 151\right)_{m \geq 0}=$
$(1,7,55,131,87,112,54,18,90,98,90,18,54,112,87,131,55,7,1,1,7, \ldots)$.
Since the number 39 is in the position $16(\bmod 19)$ in the first sequence, and it does not occur in the second sequence, we have $l \equiv 0(\bmod 19)$.

We list the values of q used in the proof of Theorem 1 for $k=4$ and $k=5$:

p	q for $k=4$	q for $k=5$
2	8	23
3	$68^{*}, 380^{* *}$	51
5	$29^{* *}, 55^{*}$	35
7	$41,71,139,337^{* *}, 421^{* *}$	$13,29,71$
11	$23,43,307,439^{*}$	$43,89,197,199,263,307^{* *}, 331^{* *}, 661^{* *}$
13	103,131	$79,103,131$
17	$67,101,239,271^{* *}$	$67,239,373$
19	113,151	$37,113,191,227^{*}$
23	$47,137,277,367,599^{*}$	$137,139,461,599,643,691^{* *}, 827^{* *}$
29	$59,173,349,463$	$59,173,347$
31	$311,373,619,683$	$311,433,557^{* *}, 743^{* *}$
37	$739,1109,1259$	$73,149,443,887$
41	$83,163,1229$	$163,739,821,983^{*}$
43	$257,431,859^{* *}, 947^{* *}, 1033^{* *}$	$257,431,773,1117$
47	$281,659,751,1129^{*}$	563,659

The numbers with ${ }^{*}$, resp. ${ }^{* *}$, are used in the case $b_{l}=w_{4 l}$, resp. $b_{l}=w_{4 l-2}$ only. In the actual running of this algorithm for all cases $2 \leq k \leq 28$, no prime p required more than eight values of q, and the greatest value of q which appeared was 3011. The computer program was developed in FORTRAN and the computation time was about 50 seconds on a HP 9000 workstation.

5 Final remarks

We can prove Theorem 1 for $k \leq 28$ using the reduction method based on the BakerDavenport lemma ([2], see also [8, Lemma 2]). Let $\kappa=\log \left(k+\sqrt{k^{2}-1}\right) / \log (2 k-$ $\left.1+2 \sqrt{k^{2}-k}\right)$ and $\mu_{1,2}=\log \frac{2(\sqrt{k-1}+\sqrt{k+1}) \sqrt{k}}{(\pm \sqrt{k-1}+2 \sqrt{k}) \sqrt{k+1}} / \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)$. Assume that $m<M$. Let p / q be the convergent of the continued fraction expansion of κ such that $q>3 M$ and let $\varepsilon=\|\mu q\|-M \cdot\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\varepsilon>0$, then

$$
m<\frac{1}{2 \log (2 k-1)} \log \frac{q}{\varepsilon \log \left(2 k-1+2 \sqrt{k^{2}-k}\right)} .
$$

Starting with $M=5 \cdot 10^{17}$ we obtain after reduction that $m \leq 14$ (for all $3 \leq k \leq 28$), and the next step of the reduction gives $m \leq 0$ for μ_{1} and $m \leq 2$ for μ_{2}, which completes the proof.

We can combine Lemma 3 and inequality (18) to prove the statement of Theorem 1 for k sufficiently large, without using Rickert's result. The bound obtained in this way ($k \leq 2 \cdot 10^{19}$) can be slightly improved by considering the sequences $\left(v_{m}\right)$ and (w_{n}) $\bmod (2 k-1)^{2}$, but it will be still much weaker than the bound $(k \leq 28)$ obtained in Proposition 1.

From Theorem 1 it follows that for $k \geq 2$ the Diophantine quadruple $\{k-1$, $\left.k+1,4 k, 16 k^{3}-4 k\right\}$ cannot be extended to a Diophantine quintuple. However, the rational number

$$
\frac{4 k(2 k-1)(2 k+1)\left(4 k^{2}-2 k-1\right)\left(4 k^{2}+2 k-1\right)\left(8 k^{2}-1\right)}{\left(64 k^{6}-80 k^{4}+16 k^{2}-1\right)^{2}}
$$

has the property that its product with any of the elements of the above set increased by 1 is the square of a rational number (see $[1,7]$). This is a special case of the more general fact that for every Diophantine quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ there exists a positive rational number a_{5} such that $a_{i} a_{5}+1$ is the square of a rational number for $i=1,2,3,4$ (see [7 , Corollary 1]).

Acknowledgments. The author would like to thank Professor Аttila Рethő for many helpful comments and improvements on an earlier draft of the manuscript.

References

[1] J. Arkin and G. E. Bergum, More on the problem of Diophantus, Application of Fibonacci Numbers, Vol. 2 (A. N. Philippou, A. F. Horadam, G. E. Bergum, eds.), Kluwer, Dordrecht, 1988, pp. 177-181.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[4] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[5] Diofant Aleksandrĭ̌skĭ̆, Arifmetika i kniga o mnogougol'nyh chislakh, Nauka, Moscow, 1974.
[6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
[7] A. Dujella, On Diophantine quintuples, Acta Arith. to appear.
[8] I. GaÁL, On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp. 51 (1988), 359-373.
[9] C. M. Grinstead, On a method of solving a class of Diophantine equations, Math. Comp. 32 (1978), 936-940.
[10] B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2) 27 (1976), 349-353.
[11] B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), 155-165.
[12] P. Kanagasabapathy and T. Ponnudurai, The simultaneous Diophantine equations $y^{2}-3 x^{2}=-2$ and $z^{2}-8 x^{2}=-7$, Quart. J. Math. Oxford Ser. (2) 26 (1975), 275-278.
[13] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm, Wiley, New York, 1951.
[14] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46.
[15] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
[16] G. Sansone, Il sistema diofanteo $N+1=x^{2}, 3 N+1=y^{2}, 8 N+1=z^{2}$, Ann. Mat. Pura Appl. (4) 111 (1976), 125-151.
[17] P. G. Tsangaris, Fermat-Pell equation and the numbers of the form $w^{2}+(w+1)^{2}$, Publ. Math. Debrecen 47 (1995), 127-138.
[18] M. Veluppillai, The equations $z^{2}-3 y^{2}=-2$ and $z^{2}-6 x^{2}=-5$, A Collection of Manuscripts Related to the Fibonacci sequence (V. E. Hoggatt, M. Bicknell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75.

ANDREJ DUJELLA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ZAGREB
BIJENIČKA CESTA 30
10000 ZAGREB
CROATIA
E-MAIL: DUJE@MATH.HR

[^0]: ${ }^{0}$ Mathematics subject classification (1991): Primary 11D09, 11D25; Secondary 11B37, 11J68, 11J86, 11 Y50.

