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Abstract

It is proved that if k and d are positive integers such that the
product of any two distinct elements of the set

{F2k, F2k+2, F2k+4, d}

increased by 1 is a perfect square, than d has to be 4F2k+1F2k+2F2k+3.
This is a generalization of the theorem of Baker and Davenport for
k = 1.

1 Introduction

Diophantus studied the following problem: Find four (positive rational)
numbers such that the product of any two of them increased by 1 is a perfect
square. He obtained the following solution: 1

16 , 33
16 , 17

4 , 105
16 (see [5]). The first

set of four positive integers with the above property was found by Fermat,
and it was {1, 3, 8, 120}. Euler gave the solution {a, b, a + b + 2r, 4r(r +
a)(r + b)}, where ab+1 = r2 (see [4]). For a = F2k and b = F2k+2 we obtain
the well-known generalization of the Fermat set in the term of Fibonacci
numbers (see [9, Theorem 1.2]):

Theorem 1 For k ≥ 1, the four numbers F2k, F2k+2, F2k+4 and d =
4F2k+1F2k+2F2k+3 have the property that the product of any two of them
increased by 1 is a perfect square.

In [9], Hoggatt and Bergum conjectured that the value d of Theorem
1 is unique. The conjecture for k = 1 was proved in 1969 by Baker and
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Davenport [2]. The same result was proved later by Kanagasabapathy and
Ponnudurai [11], Sansone [14], Grinstead [8] and Kedlaya [12]. In the present
paper we prove the Hoggatt-Bergum conjecture for all positive integers k.

Definition 1 A set of positive integers {a1, a2, . . . , am} is said to have the
property of Diophantus if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m.
Such a set is called a Diophantine m-tuple.

The main result of the present paper is the following theorem.

Theorem 2 Let k be a positive integer. If the set {F2k, F2k+2, F2k+4, d} has
the property of Diophantus, then d has to be 4F2k+1F2k+2F2k+3.

Corollary 1 If {F2k, F2k+2, F2k+4, d} is a Diophantine quadruple, then d
cannot be a Fibonacci number.

Proof. Jones [10] proved that

F6k+5 < F2k+1F2k+2F2k+3 < F6k+6 ,

and the assertion follows directly from Theorem 2.
The proof of Theorem 2 is devided into several parts. We may assume

that k ≥ 2 and we first prove the theorem for k ≥ 49. We transform our
problem in the problem of finding the intersection of two binary recurrence
sequaences. Then we transform the exponential equation into inequality
for linear forms in three logarithms of algebraic numbers. A comparison
of the theorem of Baker and Wüstholz [3] with the lower bounds for the
solution obtained from the congruence condition modulo 2F2kF2k+2 finishes
the proof for k ≤ 49. We prove the statement for 2 ≤ k ≤ 48 by a version
of the reduction procedure due to Baker and Davenport [2].

2 Preliminaries

Let k ≥ 2 be a positive integer. Let a = F2k, b = F2k+2, c = F2k+4.
Then c = 3b− a. Furthermore,

ab + 1 = (b− a)2, ac + 1 = b2, bc + 1 = (a + b)2.

Assume that d is a positive integer such that {a, b, c, d} has the property
of Diophantus. It implies that there exist positive integers x, y and z such
that the following holds:
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ad + 1 = x2, bd + 1 = y2, (3b− a)d + 1 = z2.

Eliminating d, we obtain the following system of Pellian equations:

ay2 − bx2 = a− b , (1)
az2 − (3b− a)x2 = 2a− 3b . (2)

Since a < b < 4a, [10, Theorem 8] implies that all solutions of (1) are given
by x = vm, m ∈ Z, where two-sided recurrence sequence (vm) is defined by

v0 = 1, , v1 = b, vm+2 = 2(b− a)vm+1 − vm, m ∈ Z. (3)

Since b +
√

ac is a non-trivial unit of norm 1 in the number ring Z[
√

ac],
the theory of Pellian equations guaranties that there is a finite set {z(i)

0

√
a+

x
(i)
0

√
c, i = 1, . . . , i0} of elements of Z[

√
ac] such that if (z, x) is any solution

of (2) in integers then

z
√

a + x
√

c = (z(i)
0

√
a + x

(i)
0

√
c)(b +

√
ac)n

for some index i and integer n ≥ 0. In this case, z = w
(i)
n , where the sequence

(w(i)
n ) is defined by

w
(i)
0 = x

(i)
0 , w

(i)
1 = bx

(i)
0 + az

(i)
0 , w

(i)
n+2 = 2bw

(i)
n+1 − w(i)

n . (4)

We call the set {z(i)
0

√
a + x

(i)
0

√
c, i = 1, . . . , i0} of solutions of (2) funda-

mental if we choose representatives so that the |z(i)
0 | are minimal.

By [13, Theorem 108a] we have the following estimate for the fundamen-
tal solutions of (2):

0 < x
(i)
0 ≤

√
a(3b− 2a)
2(b− 1)

=

√
(b + 1)(3b− 2a)

2(3b− a)
<

√
b + 1

2
≤

√
3a

2
< a . (5)

From (3) and (4) it follows easily by induction that

v2m ≡ 1 (mod a), v2m+1 ≡ b (mod a),

w
(i)
2n ≡ x

(i)
0 (mod a), w

(i)
2n+1 ≡ bx

(i)
0 (mod a).

Hence, if the equation vm = w
(i)
n has a solution in integers m and n, then

we must have x
(i)
0 ≡ 1 (mod a) or x

(i)
0 ≡ b (mod a) or bx

(i)
0 ≡ 1 (mod a)
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or bx
(i)
0 ≡ b (mod a). Now the estimate (5) implies that x

(i)
0 = 1 or x

(i)
0 =

b− 2a.
But if k ≥ 3, then a ≥ 8 and

√
3a
2 > b − 2a >

√
5−1
2 a leads to a

contradiction. If k = 2, than a = 3, b = 8, and 2 = b−2a ≥
√

(b+1)(3b−2a)
2(3b−a) =

2
√

3√
7

leads to a contradiction again. Therefore x
(i)
0 = 1 and z

(i)
0 = ±1.

We have thus proved the following lemma.

Lemma 1 Let x, y, z be positive integer solutions of the system of Pellian
equations (1) and (2). Then there exist integers m and n such that

x = vm = wn ,

where (vm) is given by (3), and the two-sided sequence (wn) is defined by

w0 = 1, w1 = a + b, wn+2 = 2bwn+1 − wn, n ∈ Z .

3 Congruence condition modulo 2F2kF2k+2

Lemma 2 Let m and n be integers such that vm = wn. Then m ≡ 0
or 2 (mod 2F2k+2).

Proof. Let us consider the sequences (vm mod 2ab) and (wn mod 2ab).
It follows easily by induction that

v2m ≡ 2mb2 − (2m− 1) (mod 2ab), v2m+1 ≡ b + 2(m− 1)a (mod 2ab),

w4n ≡ 1 (mod 2ab), w4n+2 ≡ 2b2 − 1 (mod 2ab),

w4n+1 ≡ a + b (mod 2ab), w4n+3 ≡ b− a (mod 2ab).

We need to consider four cases.

1) If v2m ≡ w2n, then we have two possibilities:

a) 2mb2 − (2m− 1) ≡ 1 (mod 2ab)
It implies 2ma(3b− a) ≡ 0 (mod 2ab) and 2m ≡ 0 (mod 2b).

b) 2mb2 − (2m− 1) ≡ 2b2 − 1 (mod 2ab)
It implies (2m− 2)a(3b− a) ≡ 0 (mod 2ab) and 2m ≡ 2 (mod 2b).

2) If v2m = w2n+1, then 2mb2 − (2m− 1) ≡ b± a (mod 2ab). It implies
b ≡ 1 (mod a). Thus b−2a = 1, which is possible only if a = 1, b = 3,
contradicting the assumption that k ≥ 2.
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3) If v2m+1 = w2n, then b + 2(m − 1)a ≡ 1 (mod 2ab). We have again
b ≡ 1 (mod a) which leads to a contradiction as in 2).

4) If v2m+1 = w2n+1, then b + 2(m − 1)a ≡ b ± a (mod 2ab). It implies
2(m− 1) ≡ ±1 (mod 2b), a contradiction.

4 Linear forms in three logarithms

In order to apply Baker’s method it is convenient to consider a two-sided
sequence as two ordinary sequences. Therefore, insted of the sequences
(vm, m ∈ Z) we will consider two sequences (vm, m ≥ 0) and (vm, m ≤ 0),
and similary for the sequence (wn, n ∈ Z). Thus, we will actually consider
four equations of the form vm = wn.

Lemma 3 If vm = wn, and m 6= 0, then

0 < m log(b− a +
√

ab)− n log(b +
√

ac) + log
√

c(±
√

a +
√

b)√
b(±

√
a +

√
c)

< 4(b− a +
√

ab)−2m.

Proof. We have by Lemma 1 that

vm =
1

2
√

b
[(±

√
a +

√
b)(b− a +

√
ab)m − (±

√
a−

√
b)(b− a−

√
ab)m] ,

wn =
1

2
√

c
[(±

√
a +

√
c)(b +

√
ac)n − (±

√
a−

√
c)(b−

√
ac)n] .

If we put

P =
±
√

a +
√

b√
b

(b− a +
√

ab)m, Q =
±
√

a +
√

c√
c

(b +
√

ac)n,

then the relation vm = wn implies

P +
b− a

b
P−1 = Q +

c− a

c
Q−1. (6)

It is clear that P > 1 and Q > 1, and from

P −Q >
b− a

b
(Q−1 − P−1) =

b− a

a
(P −Q)P−1Q−1
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it follows that P > Q. We may assume that m ≥ 2. Thus, we have
P ≥

√
b−
√

a√
b

· 4ab > 2(3−
√

5)ab. On the other hand, c−a
a ≤ 7 and we obtain

that P > c−a
a . Relation (6) implies, Q > P − c−a

c Q−1 > P − c−a
c . Hence,

P −Q =
c− a

c
Q−1 − b− a

b
P−1 <

c− a

c
(P − c− a

c
)−1 − b− a

b
P−1

< P−1 − b− a

b
P−1 =

a

b
P−1,

and finally

0 < log
P

Q
= − log(1− P −Q

P
)

<
a

b
P−2 +

a2

b2
P−4 <

3a

2b
P−2 =

3a

2(
√

b−
√

a)2
(b− a−

√
ab)2m

<
3(3 +

√
5)

4
(b− a +

√
ab)−2m < 4(b− a +

√
ab)−2m.

Now we apply the following theorem of Baker and Wüstholz [3]:

Theorem 3 For a linear form Λ 6= 0 in logarithms of l algebraic numbers
α1, . . . , αl with rational coefficients b1, . . . , bl we have

log Λ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log B ,

where B = max(|b1|, . . . , |bl|), and where d is the degree of the number field
generated by α1, . . . , αl.

Here
h′(α) =

1
d

max (h(α), | log α|, 1) ,

and h(α) denotes the standard logarithmic Weil height of α.
In the present situation we have l = 3, d = 4, B = m, and

α1 = b− a +
√

ab, α2 = b +
√

ac, α3 =
√

c(±
√

a +
√

b)√
b(±

√
a +

√
c)

,

h′(α1) =
1
2

log α1 < 1.05 log a, h′(α2) =
1
2

log α2 < 1.27 log a,

h′(α3) =
1
4

log[bc(c− a)(
√

a +
√

b)2] < 2.52 log a,
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log 4(b− a +
√

ab)−2m < log a−2m = −2m log a.

Hence,
2m log a < 3.822 · 1015 · 3.361 · log3a log m,

and

m

log m
< 6.423 · 1015 log2 a. (7)

Now we will apply Lemma 2. We want to prove that v0 = w0 = 1 and
v2 = w−2 = 2b2 − 2ab − 1 are the only solutions of the equation vm = wn,
m,n ∈ Z. These solutions correspond to d = 0 and d = 4F2k+1F2k+2F2k+3.

Let d be a positive integer such that the set {F2k, F2k+2, F2k+4, d} has
the property of Diophantus and assume that d 6= 4F2k+1F2k+2F2k+3. Let
ad + 1 = x2. Then, by Lemma 1, x = vm = wn and m 6= 0, 2. Lemma 2
implies that

|m| ≥ 2b− 2 > 4a. (8)

If we compare (7) and (8), we obtain

m

log3 m
< 6.423 · 1015,

which implies m < 8 · 1020, a = F2k < 2 · 1020 and finally k ≤ 48.
Thus we proved Theorem 2 for k ≥ 49.

5 The Baker-Davenport reduction procedure

It remains to prove Theorem 2 for 2 ≤ k ≤ 48 and we will do it using
a version of the reduction procedure due to Baker and Davenport [2]. The
followinf lemma is a slight modification of [7, Lemma 5] and its proof is
completely analogous.

Lemma 4 Suppose that M is a positive integer. Let p/q be the convergent
of the continued fraction expansion of κ such that q > 6M and let ε =
‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the distance from the nearest integer.

a) If ε > 0, then there is no solution of the inequality

0 < mκ− n + µ < AB−m (9)
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in integers m and n with

log(Aq/ε)
log B

≤ m ≤ M .

b) Let r = bµq + 1
2c. If 2p − 2q + r = 0, then there is no solution of

inequality (9) in integers m and n with

max(
log(3Aq)

log B
, 2) < m ≤ M .

c) If p−q−r = 0, then there is no solution of inequality (9) in integers
m and n with

log(3Aq)
log B

≤ m ≤ M .

We apply Lemma 4 with κ = log α1

log α2
, µ = log α3

log α2
, A = 4

log α3
, B = (b −

a +
√

ab)2 and M = 8 · 1020. If the first convergent such that q > 6M
does not satisfy the conditions a), b) or c) of Lemma 4, then we use the
next convergent. We have to consider 4 · 47 = 188 cases, and the use of
next convergent is necessary in 10 cases. In all cases the reduction gives
new bound m ≤ M0, where M0 ≤ 12. The next step of the reduction
(the applying of Lemma 4 with M = M0) gives m ≤ 2 in all cases, which
completes the proof of Theorem 2.

6 Final remarks

The Hoggatt-Bergum conjecture is a special case of a more general con-
jecture. Namely, Arkin, Hoggatt and Strauss [1] proved that every Diophan-
tine triple {a, b, c} can be extended to the Diophantine quadruple {a, b, c, d}.
More precisely, if

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2,

then we can take
d = a + b + c + 2abc± 2rst.

The conjecture is that, in the above notation, d has to be a+b+c+2abc±2rst.
In [12], Kedlaya verified the conjecture for the triples {1, 3, 120},

{1, 8, 15}, {1, 8, 120}, {1, 15, 24}, {1, 24, 35} and {2, 12, 24}. In [6], the con-
jecture was verified for all triples of the form {k, k + 2, 4k + 4}, and in [7]
for all Diophantine triples of the form {1, 3, c}.
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