Complete solution of a family of simultaneous
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Abstract

Let ¢, = P22k + 1, where P, denotes the k" Pell number. It is
proved that for all positive integers k all solutions of the system of
simultaneous Pellian equations

22—016962:%—17 2z2—cky2:ck—2

are given by (z,y,2) = (0, £1, £Pay).
This result implies that there does not exist positive integers
d > ¢ > 2 such that the product of any two distinct elements of the set

{1,2,¢,d}
diminished by 1 is a perfect square.
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1 Introduction

Diophantus studied the following problem: Find four (positive rational)
numbers such that the product of any two of them increased by 1 is a
perfect square. He obtained the following solution: %, %, 1?7, 11—065 (see [7]).
The first set of four positive integers with the above property was found by
Fermat, and it was {1, 3,8,120}.

In [4] and [8] the more general problem was considered.

Definition 1 Let n be an integer. A set of positive integers {a1,as,...,
am} is said to have the property D(n) if a;a; + n is a perfect square for all
1 <i < j < m. Such a set is called a Diophantine m-tuple (with the property
D(n)) or a P,-set of size m.
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In 1985, Brown [4], Gupta and Singh [13] and Mohanty and Ramasamy
[16] proved independently that if n = 2 (mod 4), then there does not exist a
Diophantine quadruple with the property D(n). In 1993, Dujella [8] proved
that if n Z 2 (mod 4) and n ¢ S = {—4,-3,—1,3,5,8,12,20}, then there
exists at least one Diophantine quadruple with the property D(n). The
conjecture is that for n € S there does not exist a Diophantine quadruple
with the property D(n).

A famous open question is whether there exists a Diophantine quintuple
with the property D(1). The first result in that direction was proved in
1969 by Baker and Davenport [2]. They proved that the Diophantine triple
{1, 3,8} cannot be extended to a Diophantine quintuple with the property
D(1). Recently, we generalized this result to the parametric families of Dio-
phantine triples {k, k+2,4k+4} and { For, Fogt2, Forta}, k € N (see [9, 10]),
and in the joint paper with A. Pethé [12] we proved that the Diophantine
pair {1,3} cannot be extended to a Diophantine quintuple.

In the present paper we will apply the similar methods to the special
cases of the following conjecture.

Conjecture 1 There does not exist a Diophantine quadruple with the prop-
erty D(—1).

It follows from the theory of integer points on elliptic curves (see [1])
that for fixed Diophantine triple {a, b, ¢} with the property D(—1) there are
only finitely many effectively computable Diophantine quadruples D with
{a,b,c} C D.

Assume that the Diophantine triple {a,b,c} with the property D(—1)
can be extended to a Diophantine quadruple. Then there exist d,z,y, z
such that

ad — 1 =22, bd—1:y2, ed—1= 22

Eliminating d, we obtain the following system of Pellian equations

ay®> —bz? = b—a,
az’ —ca? = c¢—a,
bz —cy? = c—b.

Thus Conjecture 1 can be rephrased in the terms of Pellian equations.

Conjecture 2 Let a,b, c be distinct positive integers with the property that
there exist integers r, s,t such that

ab—1=1r% ac—1=35> bc—1="+¢.
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If 1 ¢ {a,b,c}, then the system of Pellian equations
ay? — bz’ =b—a, a? —cr* =c—a (1)

has no solution. If a = 1, then all solutions system (1) are given by
(z,y,2) = (0,£r, ).

For certain triples {a,b,c} with 1 & {a,b, c}, the validity of Conjecture
2 can be verified by simple use of congruences (see [4]). It seems that the
case ¢ = 1 is more involved and until now Conjecture 2 was verified for
triples {1, 2,5} (by Brown [4]), {1,5,10} (by Mohanty and Ramasamy [15]),
{1,2,145}, {1,2,4901}, {1,5,65}, {1,5,20737}, {1,10,17} and {1,26,37}
(by Kedlaya [14]).

In the present paper we will verify Conjecture 2 for all triples of the form

{1,2,c}.
First of all, observe that the conditions ¢ — 1 = s? and 2c¢ — 1 = ¢? imply

t? — 252 =1. (2)

All solutions in positive integers of Pell equation (2) are given by s = s =
Py, t =t = Qap, where (Py) and (Qy) are sequences of Pell and Pell-Lucas
numbers defined by

P =1, P=2, PFrio=2P1+ B,

Qi=1, Q2=3, Qri2=2Q%+1 + Qk.

Hence, if {1,2,c} is a Diophantine triple with the property D(—1), then
there exists £ > 1 such that

1
c:ck:P§k+1:g[(1+\/§)4’“+(1—\/§)4’“+6]. (3)
Now we formulate our main results.

Theorem 1 Let k be a positive integer and ¢y, = P3 + 1. All solutions of

the system of simultaneous Pellian equations
2 —qat=c,—1 (4)

22% — ey’ = ¢ — 2 (5)

are given by (z,y,z) = (0, £1, £ Pyy).
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Remark 1 Since ¢; = 5, ¢co = 145 and ¢35 = 4901 we may observe that the
case k = 1 of Theorem 1 was proved by Brown [4] and the cases k = 2 and
k = 3 by Kedlaya [14].

From Theorem 1 we obtain the following corollaries immediately.

Corollary 1 The pair {1,2} cannot be extended to a Diophantine quadruple
with the property D(—1).

Corollary 2 Let k be a positive integer. Then the system of simultaneous
Pell equations

y? —2P5x* =1
22— (Pl +1)2?=1

has only the trivial solutions (x,y,z) = (0,£1, £1).

Let us mention that Bennett [3] proved recently that systems of simul-
taneous Pell equations of the form

¥ —mat=1, 22—na’=1, (0#m#n#0)

have at most three nontrivial solutions, and suggested that such systems
have at most one nontrivial solution, provided that they are not of a very
specific form which is described in [3].

2 Preliminaries

Let k£ be the minimal positive integer, if such exists, for which the statement
of Theorem 1 is not valid. Then results of Brown and Kedlaya imply that
k> 4.

Since neither ¢ nor 2¢j, is a square we see that Q(,/¢x) and Q(v/2¢y)
are real quadratic number fields. Moreover 2c; — 14 2s3,/cx = (53 + \/@)2
and 4cy, — 1+ 2tp\/2¢;, = (t, ++/2cx)? are non-trivial units of norm 1 in the
number rings Z[,/c;] and Z[\/2c;] respectively.

The theory of Pellian equations guarantees that there are finite sets
{zéi) —I—x(()i)\/@ i =1,...,i} and {zgj) —I—ygj)\/ﬂ 7 =1,...,j0} of
elements of Z[/c;] and Z[\/2¢;] respectively, such that all solutions of (4)
and (5) are given by

z+xve= (z(()i) + x(()i)ﬁ)@c —1+4+2sy/c)™, i=1,...,99, m >0, (6)
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V24 yve = PV V) (e — 1420V20)", j=1,... jo,n >0, ()

respectively. For simplicity, we have omitted here the index k and will
continue to do so. 4
From (6) we conclude that z = v%) for some index ¢ and integer m, where

of) =20, o) = 2e=1)2+ 2y, 0y = (de =20 =0, (8)

and from (7) we conclude that z = w,@ for some index j and integer n,
where

wi? = 27, wi? = (e = 1)+ 2teyi”, wlly = (8¢ = 2wl —w). (9)

Thus we reformulated the system of equations (4) and (5) to finitely many
Diophantine equations of the form

o) = ).

If we choose representatives z(()i) —l—:n(()i)\/é and zgj V2 + y%j)ﬁ such that |z(()i)]
and |z§] )] are minimal, then, by [17, Theorem 108], we have the following

estimates:
(i) 1
0<|zy’| < 5-200(cfl)<c,

1

; 1
0<|z§])\§§ 5-40-2(0—2)<c.

3 Application of congruence relations

From (8) and (9) it follows easily by induction that

vg) = z(()i) (mod 2¢), ”éin)1+1 = —zéi) (mod 2¢),

wéjn) = zgj) (mod 2¢), wgl)ﬂ =20 (mod 2c).
Therefore, if the equation 07(7? = w7(lj ) has a solution in integers m and n,
then we must have ]zéz)| = |z§‘7)].

Let dy = [(z(()z))2 + 1]/c. Then we have:

do—1= (), 2do—1=()2 edo—1= (") (10)
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and

2
— 1
d< Sl oo (11)
c
Assume that dp > 1. It follows from (10) and (11) that there exist a positive
integer [ < k such that dy = ¢;. But now the system

22—05:1:2201—1, 2z2—qy2:cl—2
has a non-trivial solution (z,y, z) = (sg, t, z((f)), contradicting the minimal-
ity of k. Accordingly, dy = 1 and |(zél))] = |(Z§J))| = s. Thus we proved the
following lemma.

(%) ()

Lemma 1 If the equation vy’ = wy;’ has a solution, then \z(()i)| = |z§j)\ =s.

The following lemma can be proved easily by induction. (We will omit
the superscripts (i) and (7).)

Lemma 2
U = (—1)™(20 — 2cm?2z9 — 2csmag) (mod 8¢?)
wy, = (=1)"(21 — 4en?z; — 2ctnyr) (mod 8c?)
Observe that |z9| = |21| = s implies g = 0 and y; = +1. Furthermore,

since we may restrict ourself to positive solutions of the system (4) and (5),
we may assume that zg = 21 = s. If y = 1, then v; < w; for [ > 0, and
Um = Wnp, n # 0 implies m > n. If y = —1, then from vy < w; it follows
vy < wyyq for I > 0, and thus v, = w, implies m > n.

Lemma 3 If v,, = wy,, then m and n are even.

PROOF: Lemma 2 and the relation zp = z; = s imply m =n (mod 2).
If vom+1 = wapt1, then Lemma 2 implies

(2m +1)%s = (2n +1)[(4n +2)s £ t] (mod 4c),
and we have a contradiction with the fact that s is even and ¢ is odd. O

Lemma 4 If vo,, = wa,, thenn < m < nv2.
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PROOF: We have already proved that m > n. From (8) and (9) we
have

vng[(Qc—l—l—Qs\/E)m +(2c— 1 —2s/0)™] > (2c—1+2s\/)
- 2;[@@ + /E)(de — 1426v/20)" + (V2 F V) (de — 1—26v/20)"]
sV2+c+1
< T(zl ¢ —142tV/20)" < (c—1+2tf)

Since k > 4, we have ¢ > ¢4 = 166465. Thus ve,, = ws, implies

2m - In(4c — 1+ 27&/%)
2n+ 3 In(2c -1+ 2sy/c)

< 1.0517. (12)

If n =0 then m = 0, and if n > 1 then (12) implies

m < 1.0517n + 0.2630 < 1.3147n < nV?2.

1
Lemma 5 If v, = wa, and n # 0, then m > n > —/c.

V2

Proor: If vy, = wa,, then Lemma 2 implies
2s(m? — 2n?) = +tn (mod 2c)

and
4(m? — 2n%)? =n? (mod 2¢).

Assume that n # 0 and n < %% Since n < m < nv/2 by Lemma 4, we
have
12s(m? — 2n?)| < 2y/en? < ¢,

4(m? —2n?)? <4n* < e
Thus, from n? < ¢ and tn < v/2cn < ¢ we conclude that
4(m? —2n*)? =n? and 2s(m?—2n?) = —tn.

These two relations imply s> = t2, a contradiction. O
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4 Application of a result of Rickert

In this section we will use a result of Rickert [18] on simultaneous rational

approximations to the numbers /(N — 1)/N and /(N + 1)/N and we will

finish the proof of Theorem 1. For the convenience of the reader, we recall
Rickert’s result.

Theorem 2 For an integer N > 2 the numbers
=4/(N—-1)/N, 6;=+/(N+1)/N

max (|61 — p1/ql, |02 — p2/q|) > (27IN)"1g~ 17>

for all integers p1, p2, q with ¢ > 0, where

satisfy

log (12NV/3 + 24)
log [27(N2 —1)/32]

Lemma 6 Let N =t and 01 = /(N —1)/N, 65 = \/(N +1)/N. Then

all positive integer solutions x, y, z of the simultaneous Pellian equations

(4) and (5) satisfy

A=A(N) =

2sx 2z
ax (|0 — —|, 160 — —|) <
max (101 — 71,162 )

Proor: We have 01 = g\/ﬁ and 6y = %\/% Hence,

y ot y?
s 2|y2—2m2| 1 _9
< — <
<- 2 5 <Y
and
2z 2
0 i iadl I i) I P 1
o= 2y = pvEe - 2= 2o - 2 v
2 |cy —22| 1 c—2 1 1
< - 5 : = 5 <Y
t y 2v2¢  tvV2¢ Y 2
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Lemma 7 Let x,y,z be positive integers satisfying the system of Pellian
equations (4) and (5). Then

logy > 0.6575+/clog (4c — 3) . (13)

PROOF: Let z = v,,. Since > 0, we have m # 0. From 3% — 222 =1
we obtain

s
>avV2 = ——[(2c — 1+ 25/)™ — (2¢ — 1 — 2s/c)™
y vorl Ve = ( Ve,
> (2¢ — 14 2sv/c)™ ! > (4¢ — 3)™ 1,
Now from Lemma 5 and k > 4 we conclude that
logy > (m — 1) log(4c — 3) > 0.6575+/clog(4c — 3).

O
PROOF OF THEOREM 1. We will apply Theorem 2 for N = t?> = 2c— 1.
Lemma 6 and Theorem 2 imply

(271) L ty) " < 2.
It follows that
Yl < 27183 < 271(2¢ — 1)% < 108462
Since ¢ > 166465, we have

1 log[27(N?—1)/32]  2log(1.8372c)

1—A 27(N?-1) log (0.08118
log [32(12N\/§+24)] o8 ( c)
and log (1.8372¢) log (1084c?)
2log (1.8372c) log (1084c
1 14
0By < log (0.08118¢) (14)
Combining (13) and (14) we obtain
2log (1.8372¢) log (1084¢?
Ve < og (1.8372¢) log (1084c¢*) (15)

0.6575 log (4c — 3) log (0.08118¢)

Since the function f(c) on the right side of (15) is decreasing, it follows that
Ve < f(eq) = f(166465) < 9.349

and ¢ < 7639, which contradicts the fact that k£ > 4. O
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5 Concluding remarks

In [14], Kedlaya proved the statement of Theorem 1 for £ = 1, 2 and 3 using
the quadratic reciprocity method introduced by Cohn in [5].

However, the application of elliptic curves gives us a stronger result.
Namely, consider the family of elliptic curves Fy, k > 1, given by

y? = (r—1)2x — 1)(cgx — 1).

The computational numbertheoretical program package SIMATH ([19]) can
be used to check that for £ = 1,2, 3 the rank of Ej is zero, and the torsion
points on Ej are O, 1, %, é It implies that for k = 1,2, 3 the set {1,2, ¢}
cannot be extended to a rational Diophantine quadruple with the property
D(-1).

Let us mention that Euler found a rational Diophantine quadruple with
the property D(—1) and it was {Z, 85, 233 289} (see [6]), and as a special case
of a two-parametric formula for Diophantine quintuples in [11] the rational
Diophantine quintuple {%, 2—85, %, 10, %} with the property D(—1) was
obtained.
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