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Abstract

Let ck = P 2
2k + 1, where Pk denotes the kth Pell number. It is

proved that for all positive integers k all solutions of the system of
simultaneous Pellian equations

z2 − ckx2 = ck − 1, 2z2 − cky2 = ck − 2

are given by (x, y, z) = (0,±1,±P2k).
This result implies that there does not exist positive integers

d > c > 2 such that the product of any two distinct elements of the set

{1, 2, c, d}

diminished by 1 is a perfect square.
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1 Introduction

Diophantus studied the following problem: Find four (positive rational)
numbers such that the product of any two of them increased by 1 is a
perfect square. He obtained the following solution: 1

16 , 33
16 , 17

4 , 105
16 (see [7]).

The first set of four positive integers with the above property was found by
Fermat, and it was {1, 3, 8, 120}.

In [4] and [8] the more general problem was considered.

Definition 1 Let n be an integer. A set of positive integers {a1, a2, . . . ,
am} is said to have the property D(n) if aiaj + n is a perfect square for all
1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple (with the property
D(n)) or a Pn-set of size m.
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In 1985, Brown [4], Gupta and Singh [13] and Mohanty and Ramasamy
[16] proved independently that if n ≡ 2 (mod 4), then there does not exist a
Diophantine quadruple with the property D(n). In 1993, Dujella [8] proved
that if n 6≡ 2 (mod 4) and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there
exists at least one Diophantine quadruple with the property D(n). The
conjecture is that for n ∈ S there does not exist a Diophantine quadruple
with the property D(n).

A famous open question is whether there exists a Diophantine quintuple
with the property D(1). The first result in that direction was proved in
1969 by Baker and Davenport [2]. They proved that the Diophantine triple
{1, 3, 8} cannot be extended to a Diophantine quintuple with the property
D(1). Recently, we generalized this result to the parametric families of Dio-
phantine triples {k, k+2, 4k+4} and {F2k, F2k+2, F2k+4}, k ∈ N (see [9, 10]),
and in the joint paper with A. Pethő [12] we proved that the Diophantine
pair {1, 3} cannot be extended to a Diophantine quintuple.

In the present paper we will apply the similar methods to the special
cases of the following conjecture.

Conjecture 1 There does not exist a Diophantine quadruple with the prop-
erty D(−1).

It follows from the theory of integer points on elliptic curves (see [1])
that for fixed Diophantine triple {a, b, c} with the property D(−1) there are
only finitely many effectively computable Diophantine quadruples D with
{a, b, c} ⊂ D.

Assume that the Diophantine triple {a, b, c} with the property D(−1)
can be extended to a Diophantine quadruple. Then there exist d, x, y, z
such that

ad− 1 = x2, bd− 1 = y2, cd− 1 = z2.

Eliminating d, we obtain the following system of Pellian equations

ay2 − bx2 = b− a,

az2 − cx2 = c− a,

bz2 − cy2 = c− b.

Thus Conjecture 1 can be rephrased in the terms of Pellian equations.

Conjecture 2 Let a, b, c be distinct positive integers with the property that
there exist integers r, s, t such that

ab− 1 = r2, ac− 1 = s2, bc− 1 = t2.
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If 1 6∈ {a, b, c}, then the system of Pellian equations

ay2 − bx2 = b− a, az2 − cx2 = c− a (1)

has no solution. If a = 1, then all solutions system (1) are given by
(x, y, z) = (0,±r,±s).

For certain triples {a, b, c} with 1 6∈ {a, b, c}, the validity of Conjecture
2 can be verified by simple use of congruences (see [4]). It seems that the
case a = 1 is more involved and until now Conjecture 2 was verified for
triples {1, 2, 5} (by Brown [4]), {1, 5, 10} (by Mohanty and Ramasamy [15]),
{1, 2, 145}, {1, 2, 4901}, {1, 5, 65}, {1, 5, 20737}, {1, 10, 17} and {1, 26, 37}
(by Kedlaya [14]).

In the present paper we will verify Conjecture 2 for all triples of the form
{1, 2, c}.

First of all, observe that the conditions c− 1 = s2 and 2c− 1 = t2 imply

t2 − 2s2 = 1. (2)

All solutions in positive integers of Pell equation (2) are given by s = sk =
P2k, t = tk = Q2k, where (Pk) and (Qk) are sequences of Pell and Pell-Lucas
numbers defined by

P1 = 1, P2 = 2, Pk+2 = 2Pk+1 + Pk,

Q1 = 1, Q2 = 3, Qk+2 = 2Qk+1 + Qk.

Hence, if {1, 2, c} is a Diophantine triple with the property D(−1), then
there exists k ≥ 1 such that

c = ck = P 2
2k + 1 =

1
8
[(1 +

√
2)4k + (1−

√
2)4k + 6]. (3)

Now we formulate our main results.

Theorem 1 Let k be a positive integer and ck = P 2
2k + 1. All solutions of

the system of simultaneous Pellian equations

z2 − ckx
2 = ck − 1 (4)

2z2 − cky
2 = ck − 2 (5)

are given by (x, y, z) = (0,±1,±P2k).
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Remark 1 Since c1 = 5, c2 = 145 and c3 = 4901 we may observe that the
case k = 1 of Theorem 1 was proved by Brown [4] and the cases k = 2 and
k = 3 by Kedlaya [14].

From Theorem 1 we obtain the following corollaries immediately.

Corollary 1 The pair {1, 2} cannot be extended to a Diophantine quadruple
with the property D(−1).

Corollary 2 Let k be a positive integer. Then the system of simultaneous
Pell equations

y2 − 2P 2
2kx

2 = 1
z2 − (P 2

2k + 1)x2 = 1

has only the trivial solutions (x, y, z) = (0,±1,±1).

Let us mention that Bennett [3] proved recently that systems of simul-
taneous Pell equations of the form

y2 −mx2 = 1, z2 − nx2 = 1, (0 6= m 6= n 6= 0)

have at most three nontrivial solutions, and suggested that such systems
have at most one nontrivial solution, provided that they are not of a very
specific form which is described in [3].

2 Preliminaries

Let k be the minimal positive integer, if such exists, for which the statement
of Theorem 1 is not valid. Then results of Brown and Kedlaya imply that
k ≥ 4.

Since neither ck nor 2ck is a square we see that Q(
√

ck) and Q(
√

2ck)
are real quadratic number fields. Moreover 2ck − 1 + 2sk

√
ck = (sk +

√
ck)2

and 4ck − 1 + 2tk
√

2ck = (tk +
√

2ck)2 are non-trivial units of norm 1 in the
number rings Z[

√
ck] and Z[

√
2ck] respectively.

The theory of Pellian equations guarantees that there are finite sets
{z(i)

0 + x
(i)
0
√

ck : i = 1, . . . , i0} and {z(j)
1 + y

(j)
1

√
2ck : j = 1, . . . , j0} of

elements of Z[
√

ck] and Z[
√

2ck] respectively, such that all solutions of (4)
and (5) are given by

z + x
√

c = (z(i)
0 + x

(i)
0

√
c)(2c− 1 + 2s

√
c)m, i = 1, . . . , i0, m ≥ 0, (6)
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z
√

2 + y
√

c = (z(j)
1

√
2+y

(j)
1

√
c)(4c− 1+2t

√
2c)n, j = 1, . . . , j0, n ≥ 0, (7)

respectively. For simplicity, we have omitted here the index k and will
continue to do so.

From (6) we conclude that z = v
(i)
m for some index i and integer m, where

v
(i)
0 = z

(i)
0 , v

(i)
1 = (2c− 1)z(i)

0 + 2scx
(i)
0 , v

(i)
m+2 = (4c− 2)v(i)

m+1 − v(i)
m , (8)

and from (7) we conclude that z = w
(i)
n for some index j and integer n,

where

w
(j)
0 = z

(j)
1 , w

(i)
1 = (4c− 1)z(j)

1 + 2tcy
(j)
1 , w

(j)
n+2 = (8c− 2)w(j)

n+1 − w(j)
n . (9)

Thus we reformulated the system of equations (4) and (5) to finitely many
Diophantine equations of the form

v(i)
m = w(j)

n .

If we choose representatives z
(i)
0 +x

(i)
0

√
c and z

(j)
1

√
2+y

(j)
1

√
c such that |z(i)

0 |
and |z(j)

1 | are minimal, then, by [17, Theorem 108], we have the following
estimates:

0 < |z(i)
0 | ≤

√
1
2
· 2c · (c− 1) < c ,

0 < |z(j)
1 | ≤ 1

2

√
1
2
· 4c · 2(c− 2) < c .

3 Application of congruence relations

From (8) and (9) it follows easily by induction that

v
(i)
2m ≡ z

(i)
0 (mod 2c), v

(i)
2m+1 ≡ −z

(i)
0 (mod 2c),

w
(j)
2n ≡ z

(j)
1 (mod 2c), w

(j)
2n+1 ≡ −z

(j)
1 (mod 2c).

Therefore, if the equation v
(i)
m = w

(j)
n has a solution in integers m and n,

then we must have |z(i)
0 | = |z(j)

1 |.
Let d0 = [(z(i)

0 )2 + 1]/c. Then we have:

d0 − 1 = (x(i)
0 )2, 2d0 − 1 = (y(j)

1 )2, cd0 − 1 = (z(i)
0 )2 (10)
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and

d0 ≤
c2 − c + 1

c
< c . (11)

Assume that d0 > 1. It follows from (10) and (11) that there exist a positive
integer l < k such that d0 = cl. But now the system

z2 − clx
2 = cl − 1, 2z2 − cly

2 = cl − 2

has a non-trivial solution (x, y, z) = (sk, tk, z
(i)
0 ), contradicting the minimal-

ity of k. Accordingly, d0 = 1 and |(z(i)
0 )| = |(z(j)

1 )| = s. Thus we proved the
following lemma.

Lemma 1 If the equation v
(i)
2 = w

(j)
n has a solution, then |z(i)

0 | = |z(j)
1 | = s.

The following lemma can be proved easily by induction. (We will omit
the superscripts (i) and (j).)

Lemma 2

vm ≡ (−1)m(z0 − 2cm2z0 − 2csmx0) (mod 8c2)

wn ≡ (−1)n(z1 − 4cn2z1 − 2ctny1) (mod 8c2)

Observe that |z0| = |z1| = s implies x0 = 0 and y1 = ±1. Furthermore,
since we may restrict ourself to positive solutions of the system (4) and (5),
we may assume that z0 = z1 = s. If y = 1, then vl < wl for l > 0, and
vm = wn, n 6= 0 implies m > n. If y = −1, then from v0 < w1 it follows
vl < wl+1 for l ≥ 0, and thus vm = wn implies m ≥ n.

Lemma 3 If vm = wn, then m and n are even.

Proof: Lemma 2 and the relation z0 = z1 = s imply m ≡ n (mod 2).
If v2m+1 = w2n+1, then Lemma 2 implies

(2m + 1)2s ≡ (2n + 1)[(4n + 2)s± t] (mod 4c) ,

and we have a contradiction with the fact that s is even and t is odd. 2

Lemma 4 If v2m = w2n, then n ≤ m ≤ n
√

2.
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Proof: We have already proved that m ≥ n. From (8) and (9) we
have

vm =
s

2
[(2c− 1 + 2s

√
c)m + (2c− 1− 2s

√
c)m] >

1
2
(2c− 1 + 2s

√
c)m,

wn =
1

2
√

2
[(s
√

2±
√

c)(4c− 1+2t
√

2c)n + (s
√

2∓
√

c)(4c− 1−2t
√

2c)n]

<
s
√

2 +
√

c + 1
2
√

2
(4c− 1+2t

√
2c)n <

1
2
(4c− 1+2t

√
2c)n+ 1

2 .

Since k ≥ 4, we have c ≥ c4 = 166465. Thus v2m = w2n implies

2m

2n + 1
2

<
ln(4c− 1 + 2t

√
2c)

ln(2c− 1 + 2s
√

c)
< 1.0517 . (12)

If n = 0 then m = 0, and if n ≥ 1 then (12) implies

m < 1.0517n + 0.2630 < 1.3147n < n
√

2 .

2

Lemma 5 If v2m = w2n and n 6= 0, then m ≥ n >
1√
2

4
√

c.

Proof: If v2m = w2n, then Lemma 2 implies

2s(m2 − 2n2) ≡ ±tn (mod 2c)

and
4(m2 − 2n2)2 ≡ n2 (mod 2c).

Assume that n 6= 0 and n ≤ 1√
2

4
√

c. Since n ≤ m ≤ n
√

2 by Lemma 4, we
have

|2s(m2 − 2n2)| ≤ 2
√

cn2 ≤ c,

4(m2 − 2n2)2 ≤ 4n4 ≤ c.

Thus, from n2 < c and tn <
√

2cn < c we conclude that

4(m2 − 2n2)2 = n2, and 2s(m2 − 2n2) = −tn.

These two relations imply s2 = t2, a contradiction. 2
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4 Application of a result of Rickert

In this section we will use a result of Rickert [18] on simultaneous rational
approximations to the numbers

√
(N − 1)/N and

√
(N + 1)/N and we will

finish the proof of Theorem 1. For the convenience of the reader, we recall
Rickert’s result.

Theorem 2 For an integer N ≥ 2 the numbers

θ1 =
√

(N − 1)/N, θ2 =
√

(N + 1)/N

satisfy
max (|θ1 − p1/q|, |θ2 − p2/q|) > (271N)−1q−1−λ

for all integers p1, p2, q with q > 0, where

λ = λ(N) =
log (12N

√
3 + 24)

log [27(N2 − 1)/32]
.

Lemma 6 Let N = t2 and θ1 =
√

(N − 1)/N , θ2 =
√

(N + 1)/N . Then
all positive integer solutions x, y, z of the simultaneous Pellian equations
(4) and (5) satisfy

max (|θ1 −
2sx

ty
|, |θ2 −

2z

ty
|) < y−2 .

Proof: We have θ1 = s
t

√
2 and θ2 = 1

t

√
2c. Hence,

|θ1 −
2sx

ty
| = s

t
|
√

2− 2x

y
| = s

t
|2− 4x2

y2
| · |
√

2 +
2x

y
|−1

≤ s

t
· 2|y2 − 2x2|

y2
· 1√

2
< y−2

and

|θ2 −
2z

ty
| = 1

t
|
√

2c− 2z

y
| = 2

t
|c− 2z2

y2
| · |
√

2c +
2z

y
|−1

<
2
t
· |cy

2 − 2z2|
y2

· 1
2
√

2c
=

c− 2
t
√

2c
· 1
y2

<
1
2
y−2.

2
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Lemma 7 Let x, y, z be positive integers satisfying the system of Pellian
equations (4) and (5). Then

log y > 0.6575 4
√

c log (4c− 3) . (13)

Proof: Let z = vm. Since x > 0, we have m 6= 0. From y2 − 2x2 = 1
we obtain

y > x
√

2 =
s√
2c

[(2c− 1 + 2s
√

c)m − (2c− 1− 2s
√

c)m]

> (2c− 1 + 2s
√

c)m−1 > (4c− 3)m−1.

Now from Lemma 5 and k ≥ 4 we conclude that

log y > (m− 1) log(4c− 3) > 0.6575 4
√

c log(4c− 3).

2

Proof of Theorem 1. We will apply Theorem 2 for N = t2 = 2c−1.
Lemma 6 and Theorem 2 imply

(271)−1(ty)−1−λ < y−2.

It follows that

y1−λ < 271t3+λ < 271(2c− 1)2 < 1084c2.

Since c ≥ 166465, we have

1
1− λ

=
log [27(N2 − 1)/32]

log [ 27(N2−1)

32(12N
√

3+24)
]

<
2 log (1.8372c)
log (0.08118c)

and

log y <
2 log (1.8372c) log (1084c2)

log (0.08118c)
. (14)

Combining (13) and (14) we obtain

4
√

c <
2 log (1.8372c) log (1084c2)

0.6575 log (4c− 3) log (0.08118c)
. (15)

Since the function f(c) on the right side of (15) is decreasing, it follows that

4
√

c < f(c4) = f(166465) < 9.349

and c < 7639, which contradicts the fact that k ≥ 4. 2
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5 Concluding remarks

In [14], Kedlaya proved the statement of Theorem 1 for k = 1, 2 and 3 using
the quadratic reciprocity method introduced by Cohn in [5].

However, the application of elliptic curves gives us a stronger result.
Namely, consider the family of elliptic curves Ek, k ≥ 1, given by

y2 = (x− 1)(2x− 1)(ckx− 1).

The computational numbertheoretical program package SIMATH ([19]) can
be used to check that for k = 1, 2, 3 the rank of Ek is zero, and the torsion
points on Ek are O, 1, 1

2 , 1
ck

. It implies that for k = 1, 2, 3 the set {1, 2, ck}
cannot be extended to a rational Diophantine quadruple with the property
D(−1).

Let us mention that Euler found a rational Diophantine quadruple with
the property D(−1) and it was {7

2 , 65
56 , 233

224 , 289
224} (see [6]), and as a special case

of a two-parametric formula for Diophantine quintuples in [11] the rational
Diophantine quintuple {130

40 , 25
8 , 37

10 , 10, 533
40 } with the property D(−1) was

obtained.
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