Newton’s formula and continued fraction

expansion of vd
ANDREJ DUJELLA

Abstract

It is known that if the period s(d) of the continued fraction ex-
pansion of v/d satisfies s(d) < 2, then all Newton’s approximants

R, = %(2—" + iq—") are convergents of v/d, and moreover we have
R, = Z';’”—ii for all n > 0. Motivated with this fact we define two
numbers j = j(d,n) and b = b(d) by R, = Z;::ﬁ if R, is a conver-

gent of Vd; b= |{n : 0<n<s—1and R, is a convergent of v/d}|.
The question is how large the quantities |j| and b can be. We prove
that |j] is unbounded and give some examples which support a con-
jecture that b is unbounded too. We also discuss the magnitude of |j]
and b compared with d and s(d).

1 Introduction

Let d be a positive integer which is not a perfect square. The simple con-
tinued fraction expansion of V/d has the form

Vd = [ag; a1, as, . - -, as_1, 2aq).

Here s = s(d) denotes the length of the shortest period in the expansion of
V. Moreover, the sequence ai,...,as—1 is symmetrical, i.e. a; = as—; for
1=1,...,s—1.

This expansion can be obtained using the following algorithm:

ap = [Vd], b1 =ag, c1=d—a},

_ | aot+bn-1 _ _ d—b?
an—-1 = { cn_n1 J7 bn = an—16p-1 —bp—1, cp= o

(1)

forn>2
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(see [Sierpinski 1987, p. 319]).
Let 2—: be the nth convergent of v/d. Then

1 1
< Wa-"r < 5 (2)
(aTH-l + 2)qn dn an-i—lQn

(see [Schmidt 1980, p. 23]). Furthermore, if there is a rational number 2
with ¢ > 1 such that

vi-2l<s )

then % equals one of the convergents of v/d.
Another method for the approximation of v/d is by Newton’s formula

Tyl = %(:Ek + i) . (4)

In this paper we will discuss connections between these two methods. More
precisely, if Z—: is a convergent of v/d, the questions is whether

1 /pn . dg
R”:§<%n+p%)

is also a convergent of V.

This question was discussed by several authors. It was proved by Mikusinski
[1954] (see also [Clemens at al. 1995; Elezovi¢ 1997; Sharma 1959]) that

DP2ks—1
Rys—1 =",
q2ks—1

and if s = 2¢ then

for all positive integers k. These results imply that if s(d) =1 or 2, then all
approximants R, are convergents of v/d. Moreover, under these assumptions
we have

R, = Pan+1 ( 5)
q2n+1

for all n > 0.
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2  Which convergents may appear?

Lemma 1 o D )
Rn_\/&:%<q7n_\/g)
PRrROOF.
_ P dgn  y5 _ P o Vean pn
2<R"_\/g)_(qn \/g)Jr(pn \/@_(qn vd) Pn (qn vd)
_‘Ln(lﬁ_\/g)z
Pn 4n

Theorem 1 If R, = %, then k is odd.

PROOF. Since % > v/d if and only if [ is odd, and by Lemma 1 we have
R, > \/ﬁ7 we conclude that & is odd. [

Assume that R, is a convergent of v/d. Then by Theorem 1 we have

Pon+1+25
R, = n+1+2j
d2n+1+2j

for an integer j = j(d,n). We have already seen that if s(d) < 2 then
j(d,n) = 0. In [Elezovi¢ 1997; Komatsu 1999; Mikusiriski 1954] some exam-
ples can be found with j = +1. We would like to investigate the problem
how large |j| can be.

The following result of Komatsu [1999] shows that all periods of the
continued fraction expansions of v/d have the same behavior concerning the
questions in which we are interested, i.e. we may concentrate our attention
on R; for 0 <¢<s—1.

Lemma 2 (Komatsu 1999) For n = 0,1,...,|s/2]| there exist o, such
that

o + _
Rks—i—n—l _ nDP2ks+2n T P2ks+2n—1 fO?” all k>0, and
nQ2ks+2n + Q2ks+2n—1
_oan—1 — —9On—
P2ks—2n—1 nP2ks—2n—2 for all k> 1.

Q2ks—2n—1 — Onq2ks—2n—2

Rks—n— 1 =

The following lemma reduces further our problem to the half-periods.
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Lemma 3 Let 0 <n < s/2. If R, = 2281421 then

Qon+1+42;5 7
P2(s—n—2)+1-25
Rs—n—2: ( ) J .
42(s—n—2)+1-2;
Proor. If
Pont142j  Qen+i+2j \ _ [ G2nyiv2; 1\ [ G2ngs 1 P2n+2  Q2n+2
Don+2; q2n+24 1 0 1 0 Do+l Q2n+1
_ d c Pon+2  G2n+2
= : (6)
[ e Pon+1  G2n+1
then

DP2s—2n—2-2j {2s—2n—2-2j _ —-e f P2s—2n—-3 G2s—2n-3 (7)
DP2s—2n—-3-2j G2s—2n—3-2j c —d P2s—2n—4 (42s—2n—4 '
By the assumption and formula (6), we have

d
Don+142j  P2nt1 + cD2n+2
R, = =

: d :
2n+142j  Gon+t1 + Cq2n+2

Now Lemma 2 and formula (7) imply

d

R P2s—2n—-3 — q2s—2n—4  DP2s—2n—3-2j  DP2(s—n—-2)+1-2j

S—TL—2 pu— d pu— p— .
Q2n—2s—3 — q2s—2n—4 q2s—2n—3—2j 42(s—n—2)+1-2j

|
Lemma 4
Rn+1 < Ry
PrROOF. The statement of the lemma is equivalent to
(—=1)"(dgngn+1 — Pupn+1) > 0. (8)

If n is even, then 2 < Vd and p”“ > v/d. Furthermore, since p"“ —Vd <
Vd — qn, we have 2: + z :ﬁ < 2[ . Therefore

o o <G/ <

and inequality (8) is satisfied. If n is odd, the proof is completely analogous.
[ ]
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Proposition 1 Ifd is a square-free positive integer such that s(d) > 2, then

s(d) —3

] <

for allm > 0.

PrOOF. According to Lemma 3 it suffices to consider the case j > 0.
Let R, = Z% By Lemma 2 there is no loss of generality in assuming
J
that n < s.

Assume first that s is even, say s = 2¢t. Then R;_; = 2= and R,_1 =
qs—1

Z;S—‘l If n <t —1, then Lemma 4 clearly implies that 2n+142j < s —2

and 2j < s — 3. Since s is even, we have j < *5=. Forn=t—-1lorn=s-1
we obtain j = 0. Ift—1<n<s—1, then2n+1—|—2] < 2s — 2 and
2§ <25 —3—2n < s— 3. Thus we have again j < 5;24.

Assume now that s is odd, say s = 2t + 1. Instead of applying Newton’s
method for zg = 2 ti , we will apply "regula falsi” method for z¢g = 2= 1 and
T = pt It was proved by Frank [1962] that with this choice of xg and z

we have

xo-x1+d _ DPs—1
To + x1 qs—1

Ift—1<n<s—1, then from Rs_1 = Z;z—j we obtain that j < % as

above. Thus, assume that n < ¢ — 1. Since the number 2021%% Jieg between

To+x1
the numbers xy and x;, we conclude that
|Rt—1,t — \/g| < |Rt71 — \/g|
Hence, by Lemma 4, we have 2n +1+4+2j < s—2and j < % [ |

The following lemma shows that the estimate from Proposition 1 is sharp.

Lemma 5 Lett > 1 and m > 5 be integers such that m = £1 (mod 6) and
let d=F2 _,[(2F,_ot — Fyn_4)? +4]/4. Then

1
Vid = (5Fm—2(2Fn—gt = Fpn_a):2t = L1 1, 11,2~ 1 Fyp 5(2Fmat — Frua)].

m—3

Therefore, s(d) = m.

Furthermore, Ry = 2:—:; and hence j(d,0) = j(d,km) = T_ and

j(d,km —2) = =23 for k> 1.
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PROOF. Sincem = +1 (mod 6), the number %Fm_gFm_4 is an integer.
It is clear that ag = [Vd]| = %Fm_g(QFm_gt — Fy—4). Then we have

o = gl =L = Pl = L) = [ 2
Vd — ap d— ag F%—Q Fqu—Q Fr—2
= 2t—1.
Let
1
\/& =ag + -
a1 + o
Then
i . Vd - ag+ FroFy—3
az Fis
and
1 Fo_
— > om3 (10)
az  Fpo
Since
\/g:\/a2+F2 = a 1+F31_2<a +Fﬁl_2<a +7F3L_2
0 Fm=2 10 a3 """ 200 = FuaFa
Fm—2
0 Fm—l
we have
Frs
L _ Py P m2fms B i Fog 41 Foos a1
a2 FTQn_Q Fo1Fmnm o Fra .
From inequalities (10) and (11) we conclude that
1
— =1[0;1,1,...,1,9] (12)
(8%) ——
m—3
and ag = a3 = --+ = ay—2 = 1. Furthermore, from (12) we have

1 yFm3+ Fp-a

a2 - yEFm—2+ 3
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and

by g — Frs
Frio—aoFy,_3

Fpo+ Frn_3ag — Fp_3Vd ‘ Vd+ ag Fmoo + Fry3a0 + Frn_3Vd
Fp—o(Vd — ag) Vd+ag Fp_o+ Fp_sag + Fp3Vd
\/g-i- ag

" FnaFns + Frnos(Vd+ ag)] L+ P Fin—2(20 = 1)]. (13)

Let 2 =y — (2t — 1). From (13) we obtain

F? FpoFy,_ _oF,,_
5= m—2+ m—2 m3(\/&+(lo)>2a0Fm 2Fm32éa02a0+1'
Vd—ag+ Fy_oFnm_3 1+ Fp2Fm-3 3

We have a,—1 = |y| = 2t —1 and a,, > ap+ 1. But now from [Perron 1954,
Satz 3.13] it follows that a,, = 2ap and s(d) = m.

Let us consider now the approximant

1 dy\ aj+d 2d — F?_
Ro—f(ag%——): 0 _ m—2

2 a 2&0 Fm,Q(QFm,Qt - Fm,4)
meQ[(2me2t - me4)2 + 2]

2(2F ot — Fro_a)

From (9) we have

Pm—2 — a + # — ag + Fm—2
Gm—2 ay + % (2t = 1)Fyp2 + Fip—3
Fm72
— =Ry,
OF Fy g~ Fpg

as we claimed. Now Lemmas 2 and 3 imply that
j(d,km) = 253 and j(d, km —2) = =23 for k > 1.

:

Corollary 1
sup{1j(d, m)[} = +o0

2

\j(dan)!} 1

limsup{ 5(d) =
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It remains the question how large can be |j| compared with d. In
[Cohn 1977] it was proved that s(d) < #\/alogd + O(v/d). However,
under the extended Riemann Hypothesis for Q(v/d) one would expect that
s(d) = O(v/dloglogd) (see [Williams 1981; Patterson and Williams 1985])
and therefore |j(d,n)| = O(v/dloglog d).

Let

d(7) = min{d : there exist n such that j(d,n) > j}.

In Table 1 we list values of d(j) for 1 < j < 48 such that d(j) > d(j’) for
— Pe

j' < j. We also give corresponding values n and k such that R,
P2n+1+2j5
Q2n+1425

We don’t have enough data to support any conjecture about the rate of

growth of d(j). In particular, it remains open whether lim sup{%} > 0.

dk

3 Number of good approximants

Proposition 2 If a1 > 2\/Vd + 1, then R, is a convergent of v/d.

PrROOF. From (2) and Lemma 1 we have

1
Ry—Vd< ————

2pnqn n+1

Let R, = %, where (u,v) = 1. Then certainly v < 2p,g,, and

’\/g_,‘ 4p" DL (\/g+#)<i

8pnqn Wy 207 Vd+1 an+1q3 202’

which proves the proposition. [
Theorem 2 R, is a convergent of \/d for allmn > 0 if and only if s(d) < 2.

PROOF. As we mentioned in the introduction, the result of Mikusinski
[1954] imply that if s(d) < 2, then all R,, are convergents of v/d.

Assume now that R, is a convergent of v/d for all n > 0. Then we must
have R,, = g 2”11 for all n > 0. Indeed, this is a consequence of the fact that

R 1= p 21 Corollary 1 and Lemma 4. Therefore, Ry = p—i and

DP2ks+1
Rys_q = 22t (14)
q2ks+1
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dig) | s(d) | n | k| j(dn)|logd(j)/logj(d,n) | d(5)/i(d,n)
13 5 5 3 1 3.60555
124 16 1 7 2 6.95420 5.56776
181 21 4 15 3 4.73188 4.48454
989 32 7 23 4 4.97491 7.86209
1021 49 12 35 5 4.30494 6.39062
1549 69 18 49 6 4.09953 6.55956
3277 35 6 27 7 4.15984 8.17787
3949 128 | 79 | 175 8 3.98242 7.85513
10684 | 212 | 46 | 113 10 4.02873 10.3363
12421 | 121 | 30 89 14 3.57216 7.96068
22081 | 218 | 62 | 155 15 3.69361 9.90645
33619 | 282 | 83 | 199 16 3.75925 11.4597
39901 | 449 | 287 | 609 17 3.73927 11.7501
45109 | 470 | 143 | 325 19 3.63969 11.1784
48196 | 374 | 129 | 299 20 3.59946 10.9768
60631 | 504 | 149 | 343 22 3.56273 11.1924
78439 | 696 | 208 | 467 25 3.50125 11.2028
81841 | 494 | 153 | 361 27 3.43237 10.5955
170689 | 743 | 207 | 473 29 3.57783 14.2464
179356 | 776 | 500 | 1063 31 3.52276 13.6614
194374 | 738 | 220 | 505 32 3.51370 13.7775
224239 | 1008 | 302 | 673 34 3.49382 13.9276
238081 | 979 | 613 | 1297 35 3.48218 13.9410
241021 | 1008 | 311 | 695 36 3.45823 13.6372
242356 | 1090 | 710 | 1499 39 3.38418 12.6230
253324 | 984 | 291 | 667 42 3.32893 11.9836

Table 1: d(j) for 1 < j <42
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for all n > 0. Let v/d = [ag; a1, - . -, as_1,2a0) and d = a3 +t. Then

o +
Ry = D2ks+2 T D2ks+1 ’ (15)
Qaq2ks+2 + G2ks+1

where
N 2a0 —aqt

(a1a2 + 1)t — 2ag

(see [Komatsu 1999, Corollary 1]). From (14) and (15) it follows that o =0
and therefore t = 2% Tt is well known (see e.g. [Sierpiriski 1987, p. 322])

ay ’

that if d = a3 + t, where t is a divisor of 2ag, then s(d) < 2. |

If R, is a convergent of v/d, then we will say that R,, is a ”good approx-
imant”. Let

b(d)=|{n : 0<n<s—1and R, is a convergent of v/d}|.

Theorem 2 shows that if s(d) > 2 then Z(—fg >
that if d = (22 4+ 1)* + 4 then b(d) = 3, s(d)

and if d = (2 + 3)? — 4 then b(d) = 4, s(d)

Komatsu [1999] proved

1.
=5 (see also [Elezovi¢ 1997])
6.

Example 1 If d = 162* — 1623 — 1222 + 162 — 4, where x > 2, then s(d) = 8
and b(d) = 6. Using algorithm (1) it is straightforward to check that

Vd=[(2z+1)(2z —2);2,1,1,222 —x — 2,1, 1,2,2(2z + 1)(2z — 2)].

Hence, s(d) = 8.
Now the direct computation shows that

p3 27 (422 — 3)

B = = ort
R — Ps _ (2z — 1)(82* — 822 + 1)
qs 2x(22%2 — 1)
Ry = 7T _ (2z% — 1)(162* — 162% + 1)
qr z(2z + 1)(422 — 3)
Ry = P _ (20 —1)(1282° — 2562° + 160z" — 3222 + 1)
q9 4x(222 — 1)(8z4 — 822 + 1)
Ry = PU _ 22 (42 — 3)(6425 — 962 + 3622 — 3)
a1 (2z+1)(8x3 — 62— 1)(8z3 — 6z + 1)
R, — D5 _ (8z* — 82?4 1)(2562° — 5122° + 3202* — 642% + 1)

a5 22(2x + 1)(222 — 1)(422 — 3)(162* — 1622 + 1)
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Hence, b(d) = 6.
In the same manner we can check that for d = 16z* 4 4823 + 5222 +
32x + 12, x > 1, we have also s(d) = 8 and b(d) = 6.

Let
sp = min{s : there exist d such that s(d) = s and b(d) = b}.

We know that s; =1, sg =2, s3 =5, s4 = 6 and sg = 8. In Table 2 we list
upper bounds for s, obtained by experiments.

S
»

<o
A

Sb/bg b | s < Sb/bS

5 1.66667 | 17 | 43 | 2.52941
6 1.50000 || 18 | 32 | 1.77778
9 1.80000 || 19 | 41 | 2.15789
8 1.33333 || 20 | 34 | 1.70000
13 | 1.85714 || 21 | 41 | 1.95238
1.50000 || 22 | 46 | 2.09091
17 | 1.88889 || 23 | 69 | 3.00000
14 | 1.40000 || 24 | 38 | 1.58333
23 | 2.09091 || 25 | 69 | 2.76000

— =
CPE©w-o ok w
—
O

12 | 18 | 1.50000 || 26 | 50 | 1.92308
13| 27 | 2.07692 || 27 | 97 | 3.59259
14| 22 | 1.57143 || 28 | 58 | 2.07143
15| 41 | 2.73333 || 29 | 97 | 3.34483
16 | 26 | 1.62500 || 30 | 58 | 1.93333

Table 2: upper bounds for s

Questions: Is it true that inf{s,/b : b >3} = 3?
What can be said about sup{s;/b : b > 1}7?

Example 2 Let d = 25[(10x + 1) + 4]. Then

Vd = 50z + 5;2,9,1,2 —1,4,1,4x — 1,1,1,1,1,2 — 1,1, 1,252 + 2,
4x,2,2, 2 —1,1,2,2, 1,2 — 1,2,2,4x,25x + 2,1,1,x — 1,
1,1,1,1,42 — 1,1,4,2 — 1,1,9, 2, 100z + 10] .
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Hence, s(d) = 43. Furthermore, b(d) > 15. Indeed, it may be verified that
R, = p—z for (n, k) € {(0,3), (3,11), (6,15), (11,23), (14, 27), (15, 35), (18,41),
(23,43). (26, 49), (27, 57), (30, 61), (35,69), (38, 73), (41,81), (42, 85)}.

We expect that Example 2 may be generalized to yield positive inte-
gers d with b(d) arbitrary large. In this connection, we have the following
conjecture.

Conjecture 1 Let d = F2[(2F,,x £ F,,_3)? + 4], where m = +1 (mod 6).
Then b(d) > 3F,,.

We have checked Conjecture 1 for m < 25. We have also the more pre-
cise form of Conjecture 1. Namely, we have noted that if d = F2[(2F,,x +
Fy_3)%+4], where z is sufficiently large, then in the sequence ay, as, . . ., as_1
the numbers x — 1, x, 4z — 1 and 4x appear 2F,, — F,,_3 — 3, F,,_3 + 2,
L,—3 + 1 and 2F,,_3 times, respectively, and the number “OTfl appears
once. If this conjecture on the sequence ai,as,...,as—1 is true, then at

least 3F), elements in that sequence are greater then 21/v/d + 1, and Propo-
sition 2 implies b(d) > 3F,. We have also noted similar phenomena for
d=F2[(2Fnz — Fp_3)%+4)].

As in the case of j(d,n), we are also interested in the question how large
can be b(d) compared with d. Let

dy = min{d : b(d) > b}.

In Table 3 we listed values of dj, for 1 < b < 102 such that dp > dy for ¥’ < b.

Consider the expression lfogg%". Conjecture 1 implies that

up{lfoggczb b > 2} <4

and Table 3 suggests that this bound might be less than 4. It would be

interesting to find exact value for sup{lfoggcéb : b > 2}
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dp s(dp) | b | logdy/logh
2 1 1
3 2 2 1.58496
13 5 3 2.33472
21 6 4 2.19616
43 10 6 2.09917
76 12 8 2.08264
244 26 14 2.08300
796 44 16 2.40916
1141 58 18 2.43556
1516 76 20 2.44475
2629 100 22 2.54748
3004 108 | 24 2.51969
3949 128 26 2.54173
4204 116 | 28 2.50399
6589 134 | 30 2.58531
10021 190 | 32 2.65815
12229 174 | 36 2.62635
18484 | 258 | 38 2.70087
19996 | 272 | 40 2.68463
22309 | 250 | 42 2.67887
23149 | 288 | 50 2.56893
31669 | 368 | 52 2.62274
46981 | 430 | 58 2.64934
52789 | 514 | 62 2.63477
73516 | 644 | 64 2.69430
76549 | 548 | 68 2.66517
87109 | 648 | 72 2.65976
103741 | 618 74 2.65100
140701 | 690 | 80 2.70523
163669 | 776 | 82 2.72439
180709 | 954 | 86 2.71749
228229 | 1160 | 90 2.74192
249601 | 950 | 92 2.74839
273361 | 1076 | 94 2.75539
279301 | 1214 | 98 2.73503
344509 | 1164 | 102 2.75675

Table 3: dp for b < 102

13
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