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1 Introduction

Diophantus found four positive rational numbers 1
16 , 33

16 , 17
4 , 105

16 with the
property that the product of any two of them increased by 1 is a perfect
square. The first set of four positive integers with the above property was
found by Fermat and that set was {1, 3, 8, 120} (see [6, 7]). These two
examples motivate the following definition.

Definition 1 A set {a1, a2, . . . , am} of m positive integers (rationals) is
called a (rational) Diophantine m-tuple if ai · aj + 1 is a perfect square for
all 1 ≤ i < j ≤ m.

The famous conjecture is that there does not exist a Diophantine quin-
tuple. There is a stronger version of this conjecture. Let {a, b, c} be a
Diophantine triple, i.e.

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, r, s, t ∈ N.

Define

d+ = a + b + c + 2abc + 2rst, d− = a + b + c + 2abc− 2rst. (1)

Then it is easy to verify (see [1]) that {a, b, c, d+} and {a, b, c, d−} are Dio-
phantine quadruples.

Conjecture 1 If {a, b, c, d} is a Diophantine quadruple, then d = d+ or
d = d−.

Remark 1 We have

d+ · d− = (a + b + c + 2abc)2 − 4(ab + 1)(ac + 1)(bc + 1)
= a2 + b2 + c2 − 2ab− 2ac− 2bc− 4. (2)

1
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Assume that a < b < c. Then (2) implies d+d− < c2 and d− < c. There-
fore the validity of Conjecture 1 would imply that there does not exist a
Diophantine quintuple.

Remark 2 It is possible that d− = 0. By (2), this is equivalent to

(c− a− b)2 = 4ab + 4 = 4r2.

Hence we proved that d− = 0 iff c = a + b + 2r. According to [18], we may
say that d− = 0 iff c is the smallest positive integer greater than b such that
{a, b, c} is a Diophantine triple.

Conjecture 1 was verified for the triple {1, 3, 8} by Baker and Davenport
[2], for the triple {2, 4, 12} by Veluppillai [27] and for the triples {1, 3, 120},
{1, 8, 120}, {1, 8, 15}, {1, 15, 35} and {1, 24, 35} by Kedlaya [19]. We ver-
ified Conjecture 1 for the parametric families of triples {k − 1, k + 1, 4k},
{F2k, F2k+2, F2k+4} and {1, 3, ck} (see [9, 10] and a joint paper with Attila
Pethő [13]). Here Fn denotes nth Fibonacci number, and the sequence (ck)
is defined by c1 = 8, c2 = 120, ck+2 = 14ck+1 − ck + 8, k ∈ N.

However, Conjecture 1 is still unproved and as far as we know the best
general result is our recent result that there does not exist a Diophantine
9-tuple [12].

Let {a, b, c} be a (rational) Diophantine triple. In order to extend this
triple to a quadruple, we have to solve the system

ax + 1 = 2, bx + 1 = 2, cx + 1 = 2. (3)

It is natural idea to assign to the system (3) the elliptic curve

E : y2 = (ax + 1)(bx + 1)(cx + 1). (4)

The purpose of this paper is to study properties of elliptic curves obtained
in this manner and to study connections between solutions of the system (3)
and the equation (4).

Let us mention that the system (3) where a, b, c are arbitrary integers
(rationals) is called Fermat’s triple equation, and in that general case some
connections between (3) and (4) were studied in [15, 25, 28].
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2 Obvious points on E

The coordinate transformation

x 7→ x

abc
, y 7→ y

abc

applied on the curve E leads to the elliptic curve

E′ : y2 = (x + bc)(x + ac)(x + ab).

There are three rational points on E of order 2:

A = (−1
a
, 0), B = (−1

b
, 0), C = (−1

c
, 0),

and also other obvious rational points

P = (0, 1), S =
( 1
abc

,
rst

abc

)
.

It is not so obvious, but it is easy to verify that S ∈ 2E(Q). Namely,
S = 2R, where

R =
(rs + rt + st + 1

abc
,

(r + s)(r + t)(s + t)
abc

)
∈ E(Q).

It is clear that every rational point on (3) induce a rational point on E.
Thus, the question is which rational points on E induce a rational solution
of (3). The answer is given in the following proposition.

Proposition 1 The x-coordinate of the point T ∈ E(Q) satisfies (3) iff
T − P ∈ 2E(Q).

Proof. For X = (x, y) ∈ E(Q) we denote by X ′ = (xabc, yabc) ∈ E′(Q).
By [20, 4.6, p.89], the function ϕa : E′(Q) → Q∗/Q∗2 defined by

ϕa(X ′) =


(x + bc)Q∗2 if X ′ = (x, y) 6= O, A′

(ac− bc)(ab− bc)Q∗2 if X = A′

Q∗2 if X = O

is a group homomorphism. The same is also valid for the analogously defined
functions ϕb and ϕc. We have ϕa(P ′) = bcQ∗2, ϕb(P ′) = acQ∗2, ϕc(P ′) =
abQ∗2. Now, x(T ) satisfies (3) iff

ϕa(T ′) = ϕa(P ′), ϕb(T ′) = ϕb(P ′), ϕc(T ′) = ϕc(P ′),
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and this is equivalent to

ϕa(T ′ − P ′) = ϕb(T ′ − P ′) = ϕc(T ′ − P ′) = Q∗2.

By the 2-descent Proposition (see [17, 4.1, p.37], [20, 4.2, p.85]), this is
equivalent to T ′ − P ′ ∈ 2E′(Q).

By Proposition 1 and the relation S = 2R it follows that the numbers
x(P + S) and x(P − S) satisfy the system (3). It is easy to check that
x(P + S) = d− and x(P − S) = d+, where d+ and d− are defined by (1).

The addition and subtraction of point S has another interesting property.

Theorem 1 If x-coordinate of the point T = (x, y) ∈ E(Q) satisfies (3),
then for the points T ± S = (u, v) it holds that x · u + 1 is a square.

Proof. Direct computation shows that x(T ± S) are exactly the num-
bers x−5 and x+

5 , obtained from [8, Theorem 1] applied to (x1, x2, x3, x4) =
(a, b, c, x). Since x4x

+
5 + 1 and x4x

−
5 + 1 are perfect squares, the proof is

finished.

Corollary 1 Every Diophantine quadruple {a, b, c, d} can be extended to a
rational Diophantine quintuple {a, b, c, d, e}.

Note that by [8, Corollary 1], if e in Corollary 1 is obtained by con-
struction from Theorem 1, then e < 1, and therefore e is not a positive
integer.

3 Torsion group and rank of E

In this section we assume that a, b, c are positive integers and a < b < c.

Lemma 1 A′, B′, C ′ 6∈ 2E′(Q)

Proof. If A′ ∈ 2E′(Q), then 2-descent Proposition implies that c(a− b)
is a square. But c(a− b) < 0, a contradiction. Similarly B′ 6∈ 2E′(Q).

If C ′ ∈ 2E′(Q), then

a(c− b) = 2, b(c− a) = 2. (5)

Let

ac− ab = s2 − r2 = (s− α)2,
bc− ab = t2 − r2 = (t− β)2,
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where 0 < α < s, 0 < β < t. Then we have

r2 = 2sα− α2 = 2tβ − β2. (6)

From (6) we have
4(bc + 1)β2 = (ab + 1 + β2)

and
(β2 − 1)2 = b[4c− a2b− 2a(1 + β2)]. (7)

From (7) we conclude that c > a2b
4 and furthermore either β = 1 or β2−1 ≥√

b.
If β2 − 1 ≥

√
b, then β > 4

√
b, and if we put this in (6), we obtain

ab = t2− (t−β)2−1 > 2t
4
√

b−
√

b−1 > 2
√

bc
4
√

b−
√

b−1 > ab
4
√

b−
√

b−1,

which implies ab < 4
√

b + 1, a contradiction.
If β = 1, then from (7) we find that

c =
a2b + 4a

4
. (8)

Now we have

s2 = ac + 1 =
1
4
(a3b + 4a2 + 4) =

1
4
(a2r2 + 3a2 + 4).

Hence s2 >
(

ar
2

)2
and s2 <

(
ar+2

2

)2
. Therefore s2 =

(
ar+1

2

)2
which is

equivalent to
2ar = 3a2 + 3. (9)

It is obvious that (9) implies a ∈ {1, 3}. For a = 1 we find from (9) and (8)
that b = 8 and c = 3 < b. For a = 3 we find b = 8 and c = 21, and this does
not satisfy the first equation in (5).

Theorem 2 E′(Q)tors ' Z/2Z× Z/2Z or Z/2Z× Z/6Z

Proof. The statement follows directly from Lemma 1 and the theorem
of Mazur [21].

Remark 3 In [11] it is proved that for the triples of the form {k−1, k+1, 4k}
it holds E′(Q)tors ' Z/2Z×Z/2Z. In [14] the same result is proved for the
triples {1, 3, ck}, where ck is defined in the introduction.
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Theorem 3 rank E(Q) ≥ 1

Proof. It suffices to prove that the point S′ on E′(Q) has an infinite
order. Assume that S′ has finite order. Then S′ + A′ has finite order too,
and by Lutz-Nagell Theorem [20, 1.6, p.15], the coordinates of S′ + A′ are
integers. The first coordinate of S′ + A′ is(rst

t2

)2
− ab− ac + 1.

If this number is an integer, then

r2s2

t2
=

a2bc + ab + ac + 1
bc + 1

= a2 +
ab + ac + 1− a2

bc + 1

is also an integer, and hence ab + ac + 1 − a2 ≥ bc + 1. But this implies
(b− a)(c− a) ≤ 0, a contradiction.

Remark 4 In general, we may expect that the points P and S are two
independent points of infinite orders, and therefore that rankE(Q) ≥ 2.
This is checked for the triples {1, 3, ck}, k ≥ 2, in [14]. However, if c is
smallest possible, i.e. c = a+ b+2r, then the direct computation shows that
2P = −S.

4 Integer points on E

Let {a, b, c} be a Diophantine triple. We would like to find all integer points
on the elliptic curve

E : y2 = (ax + 1)(bx + 1)(cx + 1).

We have always the following integer points:

(0,±1), (d+,±(at+rs)(bs+rt)(cr+st)), (d−,±(at−rs)(bs−rt)(cr−st)),

and also (−1, 0) if 1 ∈ {a, b, c}. The question is whether there is any other
integer point on E. We don’t know any counterexample to the conjecture
that there are no other points on E. However, we can prove this conjecture
only in very special cases. First of all, in these cases we have to prove
Conjecture 1.

If we can prove Conjecture 1 for the triple {a, b, c}, then we may try to
prove that in that case there are no other integer points on E apart from
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seven points listed above. However, we are able to do this only under the
assumption that the rank is ”the smallest possible”.

More precisely, we proved in [11] that if rank Ek(Q) = 1, where

Ek : y2 = ((k − 1)x + 1)((k + 1)x + 1)(4kx + 1), (10)

then all integer points on Ek are given by

(x, y) ∈ {(0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1))}. (11)

We also verified this statement for all 3 ≤ k ≤ 1000. The condition
rank Ek(Q) = 1 is not unrealistic since the generic rank of (10), i.e.
rank E(Q(k)), is equal to 1. In the range 2 ≤ k ≤ 100 we obtained (us-
ing mwrank [5] and Simath [26]) the following distribution of ranks: 41
cases of rank 1, 49 cases of rank 2 and 9 cases of rank 3.

If k = k1(n) = 3n2 + 2n − 2, n ∈ Z \ {−1, 0, 1}, or k = k2(m) =
1
2(3m2 +5m), m ∈ Z\{−2,−1, 0}, then rankEk(Q) ≥ 2 and we proved that
if in these cases rank Ek(Q) = 2, then all integer points on Ek are given by
(11). Here for the generic ranks it holds rankE(Q(n)) = rank E(Q(m)) = 2.
Finally, we considered the intersection of the families Ek1(n) and Ek2(m). We
proved that if k = 1

24(t2i − 25), where

t0 = 1, t1 = 19, ti+2 = 6ti+1 − ti, i ∈ Z,

then rankEk(Q) ≥ 3 for i 6= −1, 0, and if rank Ek(Q) = 3, then again all
integer points on Ek are given by (11).

In the joint paper with Attila Pethő [14] we considered the family

Ck : y2 = (x + 1)(3x + 1)(ckx + 1),

where ck is defined in the introduction. Here rankCk(Q) ≥ 2 for k ≥ 2. Let
ck + 1 = s2

k and 3ck + 1 = t2k. We proved that if rank Ck(Q) = 2, then all
integer points om Ck are given by

(x, y) ∈ {(−1, 0), (0,±1), (ck−1,±sk−1tk−1(2ck − sktk),
(ck+1,±sk+1tk+1(2ck + sktk))}.

We also verified this statement for k ≤ 40, with possible exceptions k = 23
and k = 37.

Lemma 2 Let {a, b, c}, a < b < c, be a Diophantine triple. Then P, P +
A, P +B 6∈ 2E(Q). Furthermore, P +C 6∈ 2E(Q) unless c = a+ b+2r and
c, c− a and c− b are all twice a square.
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Proof. If P ∈ 2E(Q), then the 2-descent Proposition implies that ab is
a square, which is in a contradiction with ab + 1 = r2. Since a(a − b) < 0
and b(b− c) < 0, the 2-descent Proposition implies P + A, P + B 6∈ 2E(Q).

Assume that P + C ∈ 2E(Q). Then by the 2-descent Proposition we
have

c(c− a) = 2, c(c− b) = 2. (12)

Let c2 − ac = (c − e)2, where 0 < e < c. From e2 = c(2e − a) we conclude
that e ≥

√
c. This implies 2

√
c ≤ a + 1 and c ≤ a2 < ab. By [18], c < 4ab

implies c = a + b + 2r. Then t = b + r and a = b + c− 2t. Now system (12)
becomes

c(2t− b) = 2, c(c− b) = 2.

Assume c, 2t−b and c−b are all a square multiplied by δ. Then c ≡ b ≡ 2t ≡ 0
(mod δ) and from 2bc + 2 = 2t2 we find that δ = 1 or δ = 2.

Assume that δ = 1. Then c = α2, c−b = β2, 2t−b = γ2. If α is even and
β is odd, then we have c ≡ 0 (mod 4), b ≡ 3 (mod 4) and γ2 ≡ 3 (mod 4),
a contradiction. If α is odd and β is even, then we have b ≡ c ≡ 1 (mod 4)
and t2 ≡ 2 (mod 4), a contradiction. Finally, if α and β are odd, then we
have c ≡ 1 (mod 4), b ≡ 0 (mod 4) and γ2 ≡ 2 (mod 4), a contradiction.

Therefore δ = 2 and c, c− a and c− b are all twice a square.

Theorem 4 Let ab + 1 = r2 and c = a + b + 2r. Assume that among the
numbers a, 2a, b, 2b, c, 2c there are no perfect squares. If rank E(Q) = 1,
then all integer points (x, y) on E satisfy the system

ax + 1 = 2, bx + 1 = 2, cx + 1 = 2.

Proof. Let E′(Q)/E′(Q)tors =< U >. If X ∈ E′(Q), then we can rep-
resent X in the form X = mU + T , where m ∈ Z and T ∈ E′(Q)tors. We
have also P ′ = nU + T1 for an integer mP and a torsion point T1. Since
E′(Q)tors ' Z/2Z × Z/2Z or Z/2Z × Z/6Z, we have T1 ≡ O, A′, B′ or C ′

(mod 2E′(Q)). Now Lemma 2 implies that n is odd. Therefore we have
X ≡ X1 (mod 2E′(Q)), where

X1 ∈ S = {O, A′, B′, C ′, P ′, P ′ + A′, P ′ + B′, P ′ + C ′}.

Since the functions ϕa, ϕb, ϕc defined in the proof of Proposition 1 are
homomorphisms, in order to find all integer points on E, it suffices to solve
in integers all systems of the form

ax + 1 = α2, bx + 1 = β2, cx + 1 = γ2 (13)
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where for X1 = (abcu, abcv) ∈ S, the numbers α, β, γ are defined by α =
au + 1, β = bu + 1, γ = cu + 1 if all of these three expressions are nonzero,
and if e.g. au + 1 = 0 then we define α = βγ. Here 2 denotes a square of a
rational number.

Since for X1 = P ′ the system (13) is equivalent to system (3), we have
to prove that for X1 ∈ S \ {P ′}, the system (13) has no integer solutions.

For X1 ∈ {A′, B′, P ′ + A′, P ′ + B′} exactly two among the numbers
α, β, γ are negative and therefore the system (13) has no integer solution.
Let e′ denote the square-free part of an integer e and let e′′ = min{|e′|, |2e|′}.

If X1 = O, then the system (13) becomes

ax + 1 = bc2, bx + 1 = ac2, cx + 1 = ab2.

First we will prove that gcd(a′, b′) = 1 or 2. Assume that a prime p divides a′

and b′. Then from ax+1 = bc2 we conclude that p|c′, and from c = a+b+2r
that p|2r. Now from 2ab + 2 = 2r2 it follows that p = 2. Analogously we
can prove that gcd(a′, c′) = 1 or 2 and gcd(b′, c′) = 1 or 2.

Since a′′ divides bx + 1 and cx + 1, we conclude that a′′ divides c− b =
a+2r. Therefore a′′|2r. Analogously we find that b′′|2r and c′′|2s. But now
the relations 2ab+2 = 2r2 and 2ac+2 = 2s2 imply a′′, b′′, c′′ ∈ {1, 2}. Thus
at least one of the numbers ab, ac and bc is a perfect square, a contradiction.

If X1 = C ′, then the system (13) becomes

ax + 1 = c(c− a)2, bx + 1 = c(c− b)2, cx + 1 = (c− a)(c− b)2.

Assume that p|c′ and p|(c − a)′. Then from cx + 1 = (c − a)(c − b)2 we
conclude that p|(c − b)′. Hence we have p|a, b, c and therefore p|2r and we
obtain that p = 2, as before. Hence we proved that gcd(c′, (c − a)′) = 1 or
2, and in the same manner we can prove that gcd(c′(c − b)′) = 1 or 2 and
gcd((c − a)′, (c − b)′) = 1 or 2. Since c′′ divides b − a = c − 2s we find as
above that c is either a square or twice a square.

If X1 = P ′ + C ′, then the system (13) becomes

ax + 1 = b(c− a)2, bx + 1 = a(c− b)2, cx + 1 = ab(c− a)(c− b)2.

As before we can prove that gcd(a′, (c− b)′), gcd(a′, (c− a)′), gcd(a′, b′) = 1
or 2, and since a′′ divides c− b we conclude that a is either a square or twice
a square. Similarly we can prove that b is either a square or twice a square.
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5 On the Hoggatt-Bergum conjecture

In 1977, Hoggatt and Begum [16] proved that for k ≥ 1 the set

{F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}

is a Diophantine quadruple. They conjectured that the fourth number
4F2k+1F2k+2F2k+3 with the above property is unique. This is a special case
of Conjecture 1. We proved the Hoggatt-Bergum conjecture in [10]. We will
give a sketch of the proof.

Eliminating d from the system

F2kd + 1 = x2
1, F2k+2d + 1 = x2

2, F2k+4d + 1 = x2
3 (14)

we obtain the system of Pellian equations

F2kx
2
2 − F2k+2x

2
1 = −F2k+1 ,

F2kx
2
3 − F2k+4x

2
1 = F2k − F2k+4 .

We reformulate our problem to the problem of finding the intersection of two
binary recurrence sequences. We then transform the exponential equation
into an inequality for linear forms in three logarithms of algebraic numbers.
A comparison of the theorem of Baker and Wüstholz [3] with the lower bound
for the solutions obtained for the congruence condition modulo 2F2kF2k+2

finishes the proof for k ≥ 49. We prove the statement for k ≤ 48 by a version
of the reduction procedure due to Baker and Davenport [2].

Since we can solve the system (14) completely, we may try to find all
integer points on the elliptic curve

Ek : y2 = (F2kx + 1)(F2k+2x + 1)(F2k+4x + 1). (15)

Theorem 5 Ek(Q)tors ' Z/2Z× Z/2Z.

Proof. By Theorem 2, it suffices to prove Ek(Q)tors 6' Z/2Z × Z/6Z.
Assume Ek(Q)tors ' Z/2Z× Z/6Z. By a theorem of Ono [24], this implies
that there exist integers α and β such that α

β 6∈ {−2,−1,−1
2 , 0, 1} and

F2kF2k+3 = α4 + 2α3β, F2k+2(F2k+4 − F2k) = 2αβ3 + β4. (16)

Adding the two expressions in (16) we obtain

F2k+2F2k+4 + F2kF2k+1 = (α2 + αβ + β2)2 − 3α2β2. (17)



Diophantine m-tuples and elliptic curves 11

The sequence (F2k+2F2k+4 + F2kF2k+1)k≥1 is periodic with period equal 3:
(2, 7, 3, 2, 7, 3, . . .). Therefore, the left hand side of (17) is congruent to 2, 3
or 7 modulo 8. Since the right hand side of (17) is congruent to 0, 1, 5 or 6
modulo 8, we obtain a contradiction.

Theorem 6 Let k ≥ 2 be an integer. If rank Ek(Q) = 1, then all integer
points on Ek are given by

(x, y) ∈ {(0,±1),
(4F2k+1F2k+2F2k+3,±(2F2k+1F2k+2 − 1)(2F 2

2k+2 + 1)(2F2k+2F2k+3 + 1)}.
(18)

Proof. The statement follows directly from [10, Theorem 2] and Theo-
rem 4, unless at least one of the numbers F2k, F2k+2, F2k+4 is a square or
twice a square. By [4], this is the case iff 2 ≤ k ≤ 6.

However, from the proof of Theorem 4 it follows that if F2k+4 is neither
a square nor twice a square, then we should have that F2k and F2k+2 are
both either a square or twice a square. This observation eliminates all cases
except k = 4.

If k = 4, we have to solve the system (13) for X1 = C ′. In this case the
system (13) becomes

21x + 1 = 1232, 55x + 1 = 892, 144x + 1 = 123 · 892, (19)

where 2 denotes a square of a rational number. But the first equation in
(19) is clearly impossible modulo 3.

In the following table we list the values of rank (Ek(Q)) which we were
able to compute using John Cremona’s program mwrank [5]:

k 1 2 3 4 5 6 7 8 9 12 16 17
rank (Ek(Q)) 1 1 2 2 3 1 3 2 3 1 1 2

Theorem 7 If 2 ≤ k ≤ 50, then all integer points on Ek are given by (18).

Proof. We will use the approach introduced in our joint paper with
Attila Pethő [14].

Assume that (x, y) is an integer solution of (15). Then there exist integers
x1, x2, x3 such that

F2kx + 1 = D2D3x
2
1

F2k+2x + 1 = D1D3x
2
2

F2k+4x + 1 = D1D2x
2
3,
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where D1|F2k+3, D2|F2k+4 − F2k and D3|F2k+1. This leads to the system

F2k+2D2D3x
2
1 − F2kD1D3x

2
2 = F2k+1

F2k+4D2D3x
2
1 − F2kD1D2x

2
3 = F2k+4 − F2k.

Hence, to find all integer solutions of (15), it is enough to find all integer
solutions to the systems of equations

d1x
2
1 − d2x

2
2 = j1, (20)

d3x
2
1 − d2x

2
3 = j2, (21)

where

• d1 = F2k+2D2, D2 is a square-free factor of F2k+4 − F2k,

• d2 = F2kD1, D1 is a square-free factor of F2k+4,

• d3 = F2k+4D3, D3 is a square-free factor of F2k+1,

• j1 = F2k+1

D3
,

• j2 = F2k+4−F2k

D2
.

By [10, Theorem 2], we may assume (D1, D2, D3) 6= (1, 1, 1).
We first considered the equations (20) and (21) separately modulo ap-

propriate prime powers (see [14] and [11] for details). We tested all possible
systems for 2 ≤ k ≤ 50 using A. Pethő’s program developed for the purposes
of our joint paper [14]. We found that all systems are unsolvable apart from
three systems listed in the following table.

k d1, d2, d3, j1, j2

10 233802911, 193864605, 46368, 10946, 3

11 192736, 17711, 121393, 28567, 51841

40 61305790721611591, 23416728348467685,
526330180412678411039070274032,

11554, 137083915467899403
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Remaining three cases we consider separately.

k = 10

Assume that the equation 46368x2
1 − 193864605x2

3 = 3 has an integer solu-
tion. Then there is an integer solution of the equation

x2 − 15456 · 64621535y2 = 15456. (22)

Note that 15456 = 2 ·3 ·7 ·23 ·42 = 966 ·42 and 64621535 = 5 ·11 ·41 ·28657.
Since the equation a2 − 966 · 64621535b2 = 6601 = 7 · 23 · 41 has an integer
solution ((a, b) = (p854, q854), where pn

qn
is the nth convergent in the continued

fraction expansion of
√

966 · 64621535), by a theorem of Nagell [23, Theorem
11], equation (22) has no integer solution.

k = 11

We have the system

92736x2
1 − 17711x2

2 = 28657,

121393x2
1 − 17711x2

3 = 51841,

121393x2
2 − 92736x2

3 = 75025.

Let consider this system modulo 5. The third equation implies x2 ≡ x3 ≡ 0
(mod 5). Now the first equation implies x2

1 ≡ 2 (mod 5), a contradiction.

k = 40

Assume that the equation d1x
2
1 − d2x

2
2 = j1 has an integer solution. Then

the equation
x2 − d1d2y

2 = −d2j1 (23)

also has an integer solution. The fundamental solution of the equation
u2 − d1d2v

2 = 1 is (u0, v0) = (37889062373143906, 1). By a theorem of
Nagell [22, Theorem 108], it follows that if (23) has an integer solution, then
there is a solution of (23) such that

0 < y ≤
√

d2j1√
2(u0 − 1)

< 60.

It is easy to check that there are no solutions of (23) with 1 ≤ y ≤ 59, and
therefore there are no solutions of the original equation d1x

2
1 − d2x

2
2 = j1.
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