
Indecomposability of polynomials and related

Diophantine equations

Andrej Dujella and Ivica Gusić

Abstract

We present a new criterion for indecomposability of polynomials
over Z. Using the criterion we obtain general finiteness result on poly-
nomial Diophantine equation f(x) = g(y).

1 Introduction

The polynomial equation of the form f(x) = g(y) has been studied by
several authors. The essential question is whether this equation has finitely
or infinitely many integer solutions.

Bilu and Tichy [3] obtained a completely explicit finiteness criterium.
Their result generalize a previous one due to Schinzel [6, Theorem 8], who
gave a finiteness criterium under the assumption (deg f,deg g) = 1. To for-
mulate the criterium of Bilu and Tichy, we have to define five types of
standard pairs (f(x), g(x)).

In what follows, a and b ∈ Q\{0},m and n are positive integers, and
p(x) is a non-zero polynomial.

A standard pair of the first kind is the pair of the form (xm, axrp(x)m), or
switched, (axrp(x)m, xm) where 0 ≤ r < m, (r, m) = 1 and r +deg p(x) > 0.
A standard pair of the second kind is (x2, (ax2 + b)p(x)2) (or switched).

Denote by Dm,a(x) the m-th Dickson’s polynomial, defined by

Dm,a(z + a/z) = zm + (a/z)m.

A standard pair of the third kind is (Dm,an(x), Dn,am(x)), where gcd(m,n)
= 1. A standard pair of the fourth kind is

(
a−m/2Dm,a(x),−b−n/2Dn,b(x)

)
,

where gcd(m,n) = 2.
A standard pair of the fifth kind is ((ax2− 1)3, 3x4− 4x3) (or switched).
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Theorem 1 (Bilu-Tichy [3].) Let f(x), g(x) ∈ Q[x] be non-constant poly-
nomials. Then the following two assertions are equivalent.

(a) The equation f(x) = g(y) has infinitely many rational solutions with
a bounded denominator.

(b) We have f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ, where λ(x), µ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x)) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator.

Theorem 1 has been already applied to several Diophantine equations
of the form fn(x) = gm(y), where (fn) and (gn) are sequences of classical
polynomials (see [1, 2, 4, 5, 9]).

As we can easily see, the conditions from Theorem 1 are closely con-
nected with decomposability properties of polynomials f and g. In the above
mentioned results, the indecomposability of corresponding polynomials was
usually proved using some analytical properties of these polynomials. See
[8] for systematical approach, where two such properties: simple stationary
points (P1) and two-interval monotonicity (P2), were discussed in details.

The purpose of the present paper is to give general criteria for inde-
composability of polynomials in terms of the degree and two leading coef-
ficients (Corollary 1, Theorem 4 and Corollary 2). As a corollary of that
results, we will obtain also general finiteness results on Diophantine equation
f(x) = g(y) (Theorem 7). Although these results are too restrictive to be
applied to most of classical orthogonal polynomials, they are very suitable
for application to polynomials defined by binary recursive relations. Details
will be given in our forthcoming paper. In particular, the main result from
[4] (and its very extensive generalization) follows easily from the results of
the present paper.

2 A criterium for indecomposability of polynomi-
als

A polynomial f ∈ C[x] is called indecomposable (over C) if f = g ◦ h,
g, h ∈ C[x] implies deg g = 1 or deg h = 1.

Two decompositions of f , say f = g1 ◦ h1 and f = g2 ◦ h2 are equivalent
if there exist a linear function L such that g2 = g1 ◦ L, h2 = L−1 ◦ h1 (see
[6, pp. 14–15]).
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Theorem 2 Let f(x) ∈ Z[x] be monic and decomposable over C. Then f
is decomposable over Z (as a composition of two monic polynomials).

Proof.
First note that if f is decomposable over C, then f is also decomposable

over Q (see [7, Theorem 6]). Also, if f is decomposable over Q, then obvi-
ously there exists a decomposition of f over Q with two monic polynomials
as composite factors.

Let now f = g ◦ h, where g, h ∈ Q[x] are monic and deg f,deg g ≥ 2.
Moreover, replacing g(x) by g(x + h(0)) and h(x) by h(x) − h(0), we may
assume that h(0) = 0.

Then f(x) = (x − α1) · · · (x − αn), g(x) = (x − β1) · · · (x − βm), for
algebraic integers α1, . . . , αn and algebraic numbers β1, . . . , βm. Thus,

f(x) = (h(x)− β1) · · · (h(x)− βm).

The polynomials f(x) and h(x) − βj , j = 1, 2, ...,m have a factorization
into linear polynomials over a suitable algebraic number field K containing
α1, ..., αn;β1, ..., βm. Since the factorization is unique,

h(x)− βj = const ·
∏
i∈I

(x− αi),

for a suitable set of indices I ⊂ {1, 2, ..., n}. But h(x)− βj is monic, which
implies that const = 1. Since αi’s are algebraic integers and h(0) = 0, we
conclude that βj , j = 1, ...,m (the roots of g(x)) are algebraic integers and
also the coefficients of h(x) are algebraic integers. Therefore, g, h ∈ Z[x].

Theorem 3 Let f(x) = xn + axn−1 + · · · ∈ Z[x]. If gcd(a, n) = 1, then f
is indecomposable.

Proof. Assume that f is decomposable. Theorem 2 implies that there
exist monic polynomials G, H ∈ Z[x] such that f = G◦H, deg G, deg H ≥ 2.
Hence,

f(x) = (xk + ck−1x
k−1 + · · ·)m + · · ·

where ck−1 ∈ Z. Therefore n = mk and a = mck−1, which implies that
gcd(a, n) ≥ m ≥ 2.

Corollary 1 Let f(x) = dxn + axn−1 + · · · ∈ Z[x]. If gcd(a, n) = 1, then
f is indecomposable.
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Proof. We have

dn−1f(x) = (dx)n + a(dx)n−1 + · · · = F (dx),

where F (x) ∈ Z[x] is monic of degree n and the coefficient with xn−1 equal
to a. By Theorem 3, the polynomial F is indecomposable, and this clearly
implies that f is indecomposable, too.

3 Even and odd polynomials

The results of the previous section cannot be applied to polynomials having
the coefficient with xn−1 equal to 0. In particular, this excludes the impor-
tant classes of even and odd polynomials. In this section, we show that for
such polynomials the analogous results are valid.

Theorem 4 Let f(x) = dx2n + ax2n−2 + · · · ∈ Z[x] be an even polyno-
mial and define g(x) = f(

√
x). Assume that gcd(a, n) = 1. Then every

decomposition of f is equivalent to one of the following decompositions:
(i) f = g(x2),
(ii) f =

(
xp(x2)

)2.
The case (ii) appears if and only if g(x) = xp(x)2 for some polynomial

p(x) ∈ Z[x].

Proof. We have f(x) = g(x2), where, according to Corollary 1, the
polynomial g is indecomposable. Now, the statement of the Theorem follows
from the second Ritt’s theorem [7, Theorem 8].

In order to prove a similar statement for odd polynomials, we need three
lemmas.

Lemma 1 Let f, S, T be polynomials over a field of characteristic 0, and let
deg f ≥ 1 and deg S 6= deg T .

(i) Assume that
f ◦ (S + T ) = f ◦ (S − T ).

Then T = 0, or S is a constant polynomial such that f ′(S) = f ′′′(S) =
· · · = 0.

(ii) Assume that
f ◦ (S + T ) = −f ◦ (S − T ).

Then T = 0 and S is a constant such that f(S) = 0, or S is a constant
such that f(S) = f ′′(S) = · · · = 0.
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Proof. Consider the Taylor’s expansions

f ◦ (S + T ) = f ◦ S + (f ′ ◦ S)T + (f ′′ ◦ S)
T 2

2!
+ · · · ,

f ◦ (S − T ) = f ◦ S − (f ′ ◦ S)T + (f ′′ ◦ S)
T 2

2!
− · · · .

(i) From the assumption and the above formula, it follows

(f ′ ◦ S)T + (f ′′′ ◦ S)
T 3

3!
+ · · · = 0. (3.1)

With the notation deg f = m, deg S = n, deg T = k, we have

deg(f (2r+1) ◦ S)T 2r+1 = (m− 2r − 1)n + (2r + 1)k.

Assume that (m − 2r − 1)n + (2r + 1)k = (m − 2l − 1)n + (2l + 1)k for
positive integers r, l. Then l = r or k = n. Since k 6= n by the assumption
of the lemma, we must have l = r. This implies that all terms in (3.1)
have different degrees (if they are not zero-polynomials). Hence, we obtain
a contradiction, unless T = 0 or f ′(S) = f ′′′(S) = · · · = 0. In the last case,
S has to be a constant polynomial.

(ii) As in the case (i), we obtain

(f ◦ S)T + (f ′′ ◦ S)
T 2

2!
+ · · · = 0,

and we conclude that T = 0 and f ◦ S = 0, or T 6= 0 and f(S) = f ′′(S) =
· · · = 0. In both cases, S has to be a constant polynomial.

Lemma 2 Let f = g ◦ h be a decomposition of an odd polynomial f . This
decomposition is equivalent to a decomposition G ◦ H, where G and H are
odd polynomials, i.e. g = G ◦L and h = L−1 ◦H for a linear polynomial L.

Proof. We have f(−x) = g(h(−x)) = −g(h(x)). Let S and T be the
even and odd part of h, respectively. Then h = S + T , and we obtain

g ◦ (S − T ) = −g ◦ (S + T ).

By Lemma 1 (ii), we conclude that S is a constant and g(S) = g′′(S) =
· · · = 0. Hence,

g(x) = g′(S)(x− S) + g′′′(S)(x− S)3 + · · · ,
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i.e. g(x) = G(x−S), where G is an odd polynomial. Also, h(x) = H(x)+S,
where H := T is an odd polynomial. Finally, we have

f = g ◦ h = G ◦ L ◦ L−1 ◦H,

where L(x) = x− S.

Lemma 3 Let f = g ◦ h be a decomposition of an even polynomial f . Then
h is an even polynomial, or g = G ◦ L and h = L−1 ◦H, where G is even,
H is odd and L is a linear polynomial.

Proof. If we write h = S + T , where S is even and T is odd part of h,
then g ◦ (S + T ) = g ◦ (S − T ). By Lemma 1 (i), we have two possibilities.
If T = 0, then h is an even polynomial. If S is a constant such that g′(S) =
g′′′(S) = · · · = 0, then

g(x) = g(S) + g′′(S)
(x− S)2

2!
+ · · · .

Therefore, g(x) = G(x−S) for an even polynomial G. Also, h(x) = H(x)+S,
where H := T is an odd polynomial.

Theorem 5 Let f(x) = xn + axn−2 + · · · ∈ Z[x] be an odd polynomial. If
gcd(a, n) = 1, then f is indecomposable.

Proof. Assume that f is decomposable. By Lemma 2, we may assume
that f = g ◦ h, where f, g are odd polynomials. From the proofs of Lemma
2 and Theorem 2, it follows that we may also assume that g, h ∈ Q[x] are
monic polynomials. As in the proof of Theorem 2, we obtain

f(x) = h(x)(h(x)− β2) · · · (h(x)− βm).

We see that h ∈ Z[x]. Now we have

f(x) = (xk + ck−2x
k−2 + · · ·)m + b(xk + ck−2x

k−2 + · · ·)m−2 + · · · ,

which implies mck−2 = a and gcd(a, n) 6= 1.

Corollary 2 Let f(x) = dxn + axn−2 + · · · ∈ Z[x] be an odd polynomial.
If gcd(da, n) = 1, then f is indecomposable.

Proof. The proof is analogous to the proof of Corollary 1.
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4 Polynomials associated with Dickson’s polyno-
mials

We say that polynomials f, g are associated if there exist linear polynomials
L,M such that g = L ◦ f ◦M .

Dickson’s polynomials Dn,A satisfy the recurrence D0,A = 2, D1,A = x,
Dn+1,A(x) = xDn,A(x)−ADn−1,A(x).

The following properties of Dickson’s polynomials are well-known:

Dn,A(x) =
∑
k≤n

2

n

n− k

(
n− k

k

)
(−A)kxn−2k (4.1)

= xn − nAxn−2 +
n(n− 3)

2!
A2xn−4 − n(n− 4)(n− 5)

3!
A3xn−6 + · · ·

Dn,b2A(bx) = bnDn,A(x). (4.2)

From (4.2) it follows that every Dickson’s polynomial Dn,A with A 6= 0
is associated with some Dickson’s polynomial of the form Dn,1.

Theorem 6 Suppose that the polynomial f(x) = dxn − axn−1 + bxn−2 −
cxn−3 + exn−4 − · · · ∈ Z[x] is associated (over C) with Dn := Dn,1, for
n ≥ 4. Then 4a3 ≡ 0 (mod n). If a = 0, then c = 0 and (b, n) 6= 1.

Proof. Assume that f(x) = αDn(γx + δ) + β. Then

d = αγn,

a = αγn−1 · δn,

b =
(

n

2

)
αγn−2δ2 − nαγn−2,

c =
(

n

3

)
αγn−3δ3 − n(n− 2)αγn−3δ.

This leads to

aγ = dnδ, (4.3)

bγ2 = d
((

n

2

)
δ2 − n

)
, (4.4)

cγ3 = d
((

n

3

)
δ3 − n(n− 2)δ

)
. (4.5)
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From (4.3) and (4.4) we obtain

δ2((n− 1)a2 − 2bdn) = 2a2. (4.6)

If a 6= 0, then (4.5) and (4.6) imply

(n− 1)(n− 2)a3 − 6cd2n2 = 3(n− 2)a((n− 1)a2 − 2bdn),

and 4a3 ≡ 0 (mod n).
If a = 0, then δ = 0 (by (4.3)) and c = 0 (by 4.5)). The relation

αγn−4 · n(n− 3)
2

= e

implies dn(n− 3) = 2eγ4, and from (4.4) we obtain −dn = bγ2. Combining
these two equalities we obtain

b2(n− 3) = 2den. (4.7)

Hence, if n 6≡ 0 (mod 3) then n|b2, and if n ≡ 0 (mod 3) then n
3 |b

2. Since
n ≥ 4, we conclude that gcd(b, n) 6= 1.

Corollary 3 (i) Let f(x) = dxn +axn−1+ · · · ∈ Z[x] and gcd(a, n) = 1.
If n ≥ 5, then f is not associated with any Dn,A.

(ii) Let f(x) = dxn + axn−2 + · · · ∈ Z[x] be an odd or even polynomial
satisfying gcd(a, n) = 1. If n ≥ 4, then f is not associated with any
Dn,A.

5 The equation f(x) = g(y)

Let us introduce the following notation:

A = {f ∈ Z[x] : f(x) = dxn + axn−1 + · · · , n ≥ 3, gcd(a, n) = 1},
B = {f ∈ Z[x] : f is odd, f(x) = dxn + axn−2 + · · · , n ≥ 3, gcd(da, n) = 1},
C = {f ∈ Z[x] : f is even, f(x) = dx2n + ax2n−2 + · · · , n ≥ 2, gcd(a, n) = 1}.

Theorem 7 The equation f(x) = g(y) has only finitely many integer solu-
tions if one of the following conditions are satisfied:

a) f, g ∈ A, deg f ≥ 5, unless g(x) = f(γx + δ), γ, δ ∈ Q.
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b) f ∈ A, g ∈ B and deg f ≥ 5, unless g(x) = f(γx + δ), γ, δ ∈ Q.

c) f, g ∈ B, unless g(x) = f(γx), γ ∈ Q.

d) f ∈ A, g ∈ C, unless G(x) = f(γx+δ), γ, δ ∈ Q, where G(x) := g(
√

x).

e) f ∈ B, g ∈ C, deg g 6= 2, unless G(x) = f(γx + δ), γ, δ ∈ Q, where
G(x) := g(

√
x).

f) f, g ∈ C, unless G(x) = F (γx + δ), where G(x) := g(
√

x), F (x) :=
f(
√

x).

Proof. We apply the criterium of Bilu and Tichy (Theorem 1). By
Corollaries 1 and 2, the polynomials from A ∪ B are indecomposable, and,
by Theorem 5, polynomials from C have only trivial decompositions. The
results of the previous section show that the polynomials from A∪B∪C with
degree greater that 4 cannot be associated with Dickson’s polynomials. Also
they are not associated with mth power for m ≥ 3. Indeed, the statement
is trivially valid for even and odd polynomials. Assume that α(γx + δ)m +
β = dxm + axm−1 + bxm−2 + · · ·. Then from αδm = d, mαγm−1δ = a,
m(m−1)

2 αγm−2δ2 = b, we obtain (m− 1)a2 = 2mbd. Hence, gcd(a,m) > 1.
Note that this argument is not valid for m = 2. The examples x(x +

1)m + 1 = 2y2 + 1 and x2n + x2n−2 + 1 = 2y2 + 1 show that the polynomials
of degree 2 have to be excluded from the sets A and C.

To exclude the standard pairs of fifth kind we will show that a polynomial
f ∈ A cannot be associated to (ux2−1)3. Assume that α(u(γx+δ)2−1)3 +
β = dx6 + ax5 + bx4 + cx3 + · · ·. We have d = αu3γ6, a = 6αu3γ5δ,
b = 15αu3γ4δ2 − 3αu2γ4, c = 20αu3γ3δ3 − 12αu2γ3δ. Combining these
relations, we obtain 5a3 = 9d(2ab − 3cd). This clearly implies that 3|a,
which contradicts the assumption that gcd(a, n) = 1.

Therefore, we have excluded all standard pairs, assuming that the de-
grees of f and g are not very small. It remains to prove the case c) if
deg f = deg g = 3. We have to check when the equation

dx3 − ax = Dy3 − by,

where (ad, 3) = (bD, 3) = 1, will have infinitely many solutions. It is easily
seen that no standard pair is possible in this situation, except the trivial
pair (x, p(x)) with p linear. Therefore

Dx3 − bx = d(γx + δ)3 − a(γx + δ).

This implies δ = 0, dγ3 = D and aγ = b.
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As we have mentioned in the introduction, our general finiteness result
from Theorem 7 is very suitable for application to polynomials defined by
binary recursive relations. In our forthcoming paper, we will apply it to
Diophantine equations with polynomials satisfying very general binary re-
currence. Here, we give results on Fibonacci polynomials, which are related
to the main result from [4].

Corollary 4 Let (Fn) be the sequence of Fibonacci polynomials defined by
F0(x) = 0, F1(x) = 1, Fn+1 = xFn(x) + Fn−1 for n ≥ 1. Let Q ∈ A∪B ∪C,
and if Q ∈ A then assume that deg Q ≥ 5. If n ≥ 4 and deg Q 6= n−1, then
the equation Fn(x) = G(y) has only finitely many integer solutions.

In particular, the equation Fm(x) = Fn(y) for m,n ≥ 4, m 6= n, has
only finitely many integer solutions.

Proof. It is well known that

Fn(x) =
b(n−1)/2c∑

j=0

(
n− j − 1

j

)
xn−2j−1 = xn−1 + (n− 2)xn−3 + · · ·

Therefore, if n is even and n ≥ 4 then Fn ∈ B, and if n is odd and n ≥ 5
then Fn ∈ C. Hence, the statement of the corollary follows from Theorem 7.
We only have to check that in the case e), the possibility G(x) = f(γx + δ)
cannot appear. This can be done by following the same approach as in the
proof of Theorem 6.

Acknowledgements. The authors would like to thank the referee for
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manuscript.
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