Some polynomial formulas for Diophantine quadruples

Andrej Dujella

The Greek mathematician Diophantus of Alexandria studied the following problem: Find four (positive rational) numbers such that the product of any two of them increased by 1 is a perfect square. He obtained the following solution: $\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}$ (see [4]).

Fermat obtained four positive integers satisfying the condition of the problem above: $1,3,8,120$. For example, $3 \cdot 120+1=19^{2}$. Later, Davenport and Baker [3] showed that if d is a positive integer such that the set $\{1,3,8, d\}$ has the property of Diophantus, then d has to be 120 .

There are two direct generalizations of the set $\{1,3,8,120\}$: the sets

$$
\begin{gather*}
\{n, n+2,4 n+4,4(n+1)(2 n+1)(2 n+3)\}, \tag{1}\\
\left\{F_{2 n}, F_{2 n+2}, F_{2 n+4}, 4 F_{2 n+1} F_{2 n+2} F_{2 n+3}\right\} \tag{2}
\end{gather*}
$$

have the property of Diophantus for all positive integers n (see [9], [8]). For $n=1$ we get the Fermat's solution. In [7] it was proved that these sets are two special cases of more general fact. Let the sequence $\left(g_{n}\right)$ be defined as:

$$
g_{0}=0, \quad g_{1}=1, \quad g_{n}=p g_{n-1}-g_{n-2}, \quad n \geq 2
$$

where $p \geq 2$ is an integer. Then the sets

$$
\left\{g_{n}, g_{n+2},(p \pm 2) g_{n+1}, 4 g_{n+1}\left[(p \pm 2) g_{n+1}^{2} \mp 1\right]\right\}
$$

have the property of Diophantus. For $p=2$ we get the set (1), and for $p=3$ we get the set (2).

Let us now consider the more general problem.
Definition 1 Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus of order n, symbolically $D(n)$, if the product of its any two distinct elements increased by n is a perfect square. Such a set is called a Diophantine m-tuple.

In [5], the problem of the existence of the Diophantine quadruples with the property $D(n)$ was considered for an arbitrary integer n. The main results can be divided in the three groups.
1° If n is a perfect square then there exists an infinite number of Diophantine quadruples with the property $D(n)$. Precisely, for any set $\{a, b\}$ with the property
$D(n)$, where $a b$ is not a perfect square, there exists an infinite number of Diophantine quadruples of the form $\{a, b, c, d\}$ with the property $D(n)$. There are also some explicit formulas for Diophantine quadruples with the property $D\left(l^{2}\right)$ (see [7]). For example: $\left\{1, l^{4}-3 l^{2}+1, l^{2}\left(l^{2}-1\right), 4 l^{2}\left(l^{2}-1\right)\left(l^{2}-2\right)\right\}$.
$\mathbf{2}^{\circ}$ If n is an integer of the form $n=4 k+2, k \in \mathbf{Z}$, then there does not exist Diophantine quadruple with the property $D(n)$ (see also [2]).
3° If $n \not \equiv 2(\bmod 4)$ and $n \notin S=\{-4,-3,-1,3,5,8,12,20\}$ then there exists at least one Diophantine quadruple with the property $D(n)$ and if $n \notin S \cup T$, where $T=$ $\{-15,-12,-7,7,13,15,21,24,28,32,48,60,84\}$, then there exist at least two different Diophantine quadruples with the property $D(n)$.

The results from the third group are proved by considering the following cases:

$$
n=4 k+3, \quad n=8 k+1, \quad n=8 k+5, \quad n=8 k, \quad n=16 k+4, \quad n=16 k+12 .
$$

In any of this cases, we can find two sets with the property $D(n)$ consisted of the four polynomials in k with integral coefficients. For example, the sets

$$
\begin{gather*}
\left\{1, k^{2}-2 k+2, k^{2}+1,4 k^{2}-4 k-3\right\} \tag{3}\\
\left\{1,9 k^{2}+8 k+1,9 k^{2}+14 k+6,36 k^{2}+44 k+13\right\} \tag{4}
\end{gather*}
$$

have the property $D(4 k+3)$. The elements from the sets S and T are exceptions because we can get the sets with nonpositive or equal elements for some values of k.

We will try now to describe how we can systematically find sets like (3) and (4).
For a polynomial P, the set of polynomials is said to have the property $D(P)$ if the product of any two its distinct elements increased by P is a square of a certain polynomial with a integral coefficients. In application of this formulas it is necessary (see [5]) to additionally discuss the problem for which parameters Diophantine quadruples, i. e. four different positive integers, are obtained.

The idea is similar to the original solution of Diophantus: $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$. Namely, his set is of the form

$$
\{x, x+2,4 x+4,9 x+6\} .
$$

Product of any two distinct elements of this set, except second and fourth, increased by 1 is a square of a linear polynomial. So, it is sufficient to find a rational number x satisfying the equation $(x+2)(9 x+6)+1=y^{2}$. Diophantus found one solution: $x=\frac{1}{16} \quad$ (see [4]).

We will deal with the similar idea. Let $\{a, b\}$ be an arbitrary pair with the property $D(n)$, for an integer n. It means that

$$
\begin{equation*}
a b+n=x^{2} . \tag{5}
\end{equation*}
$$

It is easy to check that the set $\{a, b, a+b+2 x\}$ also has the property $D(n)$. Indeed,

$$
\begin{aligned}
a(a+b+2 x)+n & =(a+x)^{2}, \\
b(a+b+2 x)+n & =(b+x)^{2} .
\end{aligned}
$$

Applying this construction to the Diophantine pair $\{b, a+b+2 x\}$ we get the set $\{b, a+b+2 x, a+4 b+4 x\}$. Therefore, the set

$$
\begin{equation*}
\{a, b, a+b+2 x, a+4 b+4 x\} \tag{6}
\end{equation*}
$$

has the property $D(n)$ iff the product of its first and fourth element increased by n is a perfect square, i. e. iff it holds:

$$
\begin{equation*}
a(a+4 b+4 x)+n=y^{2} . \tag{7}
\end{equation*}
$$

We will try to solve this equation using as less as possible restrictions on number n. We have: $a^{2}+\left(4 x^{2}-4 n\right)+4 a x+n=y^{2}$, and

$$
3 n=(a+2 x-y)(a+2 x+y)
$$

Let us consider two following cases:
1)

$$
\begin{aligned}
& a+2 x-y=3 \\
& a+2 x+y=n
\end{aligned}
$$

From this, $n=2 a+4 x-3$ and from (5) it follows: $a(b+2)=(x-1)(x-3)$.
Putting $x=a k+1$ we get $b=a k^{2}-2 k-2, n=2 a(2 k+1)+1$. Hence, we get the set

$$
\begin{equation*}
\left\{a, a k^{2}-2 k-2, a(k+1)^{2}-2 k, a(2 k+1)^{2}-8 k-4\right\} \tag{8}
\end{equation*}
$$

with the property $D(2 a(2 k+1)+1)$. Putting $a=1$ in (8) we get the set (3) with the property $D(4 k+1)$. For $a=2$ we get the set with the property $D(8 k+5)$ and for $a=4$, by substitution $k^{\prime}=2 k+1$, we get the set with the property $D\left(8 k^{\prime}+1\right)$. Multiplying all elements of the set (8) by 2 , putting $m=\frac{1}{2}$ and by substitution $k^{\prime}=k+1$, we get the set with the property $D\left(8 k^{\prime}\right)$. Also, putting $m=2$ and substituting $k^{\prime}=2 k+1$ we get the set with the property $D\left(16 k^{\prime}+4\right)$. Finally, we get the set with the property $D(16 k+12)$ by multiplying all elements of the set (3) by 2.

Putting $x=a k+3$, we get $b=a k^{2}+2 k-2$ and $n=2 a(2 k+1)+9$. Hence, the set

$$
\begin{equation*}
\left\{a, a k^{2}+2 k-2, a(k+1)^{2}+2 k+4, a(2 k+1)^{2}+8 k+4\right\} \tag{9}
\end{equation*}
$$

has the property $D(2 a(2 k+1)+9)$. Note that the formulas obtained by putting $a=1$ in (8) and (9) are equivalent.

$$
\begin{align*}
& a+2 x-y=1 \\
& a+2 x+y=3 n
\end{align*}
$$

From this, $3 n=2 a+4 x-1$ and it follows from (5) that $a(3 b+2)=(3 x-1)(x-1)$.
Let us put $x=a m+1$. Now, from $3 b+2=m(3 x-1)$ we conclude that m is of the form $m=3 k+1$. Using that, we get $b=a(3 k+1)^{2}+2 k, n=2 a(2 k+1)+1$ and the set

$$
\begin{equation*}
\left\{a, a(3 k+1)^{2}+2 k, a(3 k+2)^{2}+2 k+2,9 a(2 k+1)^{2}+8 k+4\right\} \tag{10}
\end{equation*}
$$

has the property $D(2 a(2 k+1)+1)$. For $a=1$, we get the set (4) with the property $D(4 k+3)$.

Putting $3 x=a l+1$, we have $b=\frac{1}{9}\left(a l^{2}-2 l-6\right)$ and we get the formula for the Diophantine quadruples with the property $D\left(\frac{1}{9}(2 a(2 l+3)+1)\right)$. For $a=1$ and $l=9 k+5$, the same quadruple is obtained as quadruple obtained by putting $a=1$ in (10).

Let us now discuss the conditions if b and n are required to be the integers. From $l(a l-2) \equiv 6(\bmod 9)$ and $4 a l+6 a \equiv-1(\bmod 9)$ we have that $a \equiv l \not \equiv 0(\bmod 3)$. Putting $l=3 k-2$ and $a=3 d-1$ we get that $4 k-d \equiv 1(\bmod 3)$. Finally, putting $d=4 k-1+3 m$ we obtain the set

$$
\begin{gather*}
\left\{9 m+4(3 k-1),(3 k-2)^{2} m+2(k-1)\left(6 k^{2}-4 k+1\right),(3 k+1)^{2} m+2 k\left(6 k^{2}+2 k-1\right)\right. \\
\left.(6 k-1)^{2} m+4 k(2 k-1)(6 k-1)\right\} \tag{11}
\end{gather*}
$$

with the property $D\left(2 m(6 k-1)+(4 k-1)^{2}\right)$.
Choosing $l=3 k-1$ instead $l=3 k-2$ is equivalent to the change of the sign of k and m in the formula (11).

Summarizing the results obtained by examining the set (6) we have:
Theorem 1 The sets

$$
\begin{gathered}
\left\{m, m k^{2}-2 k-2, m(k+1)^{2}-2 k, m(2 k+1)^{2}-8 k-4\right\}, \\
\left\{m, m(3 k+1)^{2}+2 k, m(3 k+2)^{2}+2 k+2,9 m(2 k+1)^{2}+8 k+4\right\}
\end{gathered}
$$

have the property $D(2 m(2 k+1)+1)$, the set

$$
\left\{m, m k^{2}+2 k-2, m(k+1)^{2}+2 k+4, m(2 k+1)^{2}+8 k+4\right\}
$$

has the property $D(2 m(2 k+1)+9)$ and the set

$$
\begin{gathered}
\left\{9 m+4(3 k-1),(3 k-2)^{2} m+2(k-1)\left(6 k^{2}-4 k+1\right),(3 k+1)^{2} m+2 k\left(6 k^{2}+2 k-1\right)\right. \\
\left.(6 k-1)^{2} m+4 k(2 k-1)(6 k-1)\right\}
\end{gathered}
$$

has the property $D\left(2 m(6 k-1)+(4 k-1)^{2}\right)$.

The similar idea can be applied to the set

$$
\begin{equation*}
\{a, b, a+b+2 x, a+b-2 x\} . \tag{12}
\end{equation*}
$$

This set has the property $D(n)$ if and only if the product of its third and fourth element increased by n is a perfect square:

$$
(a+b+2 x)(a+b-2 x)+n=y^{2} .
$$

Hence, $3 n=(b-a-y)(b-a+y)$. Again, we are going to discuss two different cases:
1)

$$
\begin{aligned}
& b-a-y=3 \\
& b-a+y=n
\end{aligned}
$$

From this, $n=2 b-2 a-3$ and from (5) it follows: $(a+2)(b-2)=(x-1)(x+1)$.
Putting $x=(a+2) k+1$ we get $b=a k^{2}+2\left(k^{2}+k+1\right)$ and $n=2 a\left(k^{2}-1\right)+(2 k+1)^{2}$. Therefore, we have the set

$$
\begin{equation*}
\left\{a, a k^{2}+2\left(k^{2}+k+1\right), a(k-1)^{2}+2 k(k-1), a(k+1)^{2}+2(k+1)(k+2)\right\} \tag{13}
\end{equation*}
$$

with the property $D\left(2 a\left(k^{2}-1\right)+(2 k+1)^{2}\right)$.
For $x=(a+2) k-1$, we get the equivalent result. Namely, we can get the obtained Diophantine quadruple by substituting $k^{\prime}=-k$ in (13).
2)

$$
\begin{aligned}
b-a-y & =1 \\
b-a+y & =3 n
\end{aligned}
$$

Now, $3 n=2 b-2 a-1$ and, from (5), it follows: $\quad(3 a+2)(3 b-2)=(3 x-1)(3 x+1)$.
Let us put $3 x=(3 a+2) m+1$. As $3 b=m[(3 a+2) m+2]+2$, we conclude that m has to be of the form $m=3 k+1$. Putting that in the formula, we get the set

$$
\begin{equation*}
\left\{a, a(3 k+1)^{2}+2\left(3 k^{2}+3 k+1\right), a(3 k+2)^{2}+2(k+1)(3 k+2), 9 a k^{2}+2 k(3 k+1)\right\} \tag{14}
\end{equation*}
$$

with the property $D\left(2 a k(3 k+2)+(2 k+1)^{2}\right)$.
For $3 x=(3 a+2) k-1$, the Diophantine quadruple equivalent to the (14) is obtained.
We have thus proved

Theorem 2 The set

$$
\left\{m, m k^{2}+2\left(k^{2}+k+1\right), m(k-1)^{2}+2 k(k-1), m(k+1)^{2}+2(k+1)(k+2)\right\}
$$

has the property $D\left(2 m\left(k^{2}-1\right)+(2 k+1)^{2}\right)$ and the set

$$
\left\{m, m(3 k+1)^{2}+2\left(3 k^{2}+3 k+1\right), m(3 k+2)^{2}+2(k+1)(3 k+2), 9 m k^{2}+2 k(3 k+1)\right\}
$$

has the property $D\left(2 m k(3 k+2)+(2 k+1)^{2}\right)$.

Applying any formula from the Theorem 1 and 2 to the particular value of k gives the formula for the Diophantine quadruples with the property $D(n)$, where n is linear polynomial in m. Moreover, all elements of the quadruples are linear polynomials. For example, putting $k=1$ in (11) gives the set $\{m, 9 m+8,16 m+14,25 m+20\}$ with the property $D(10 m+9)$. The question is which linear polynomials $a m+b$ allow formulas of this type. Partial answer is given by the following theorem from [5].

Theorem 3 If the set of polynomials $\left\{a_{i} m+b_{i}: i=1,2,3,4\right\}$ has the property $D(a m+b)$, where a, b, a_{i}, b_{i} are the integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}, a\right)=\operatorname{gcd}(a, b)=1$, then a is even and b is a quadratic residue modulo a.

It was proved by Arkin and Bergum [1] that the set

$$
\left\{\frac{F_{12 p}-F_{12 r}}{4}, 9 F_{12 p}-F_{12 r}, \frac{25 F_{12 p}-9 F_{12 r}}{16}, \frac{49 F_{12 p}-F_{12 r}}{16}\right\}
$$

has the property $D\left(F_{12 p} F_{12 r}\right)$. This result is the direct consequence of the fact that the set $\{4 m, 144 m+8,25 m+1,49 m+3\}$ has the property $D(16 m+1)$.

It is shown in [6] how the similar result can be obtained when there is a set $\left\{a_{i} m+b_{i}\right.$: $i=1,2,3,4\}$ with the property $D(a m+b)$, where a, b, a_{i}, b_{i} are the integers. Namely, if we denote the index of the least Fibonacci number divisible by a with $Z(a)$, then the set

$$
\left\{\frac{a_{i} F_{Z(a) p}+\left(a b_{i}-a_{i} b\right) F_{Z(a) r}}{a}: i=1,2,3,4\right\}
$$

as the property $D\left(F_{Z(a) p} F_{Z(a) r}\right)$.

References

[1] J. Arkin and G. E. Bergum, More on the problem of Diophantus, in: Applications of Fibonacci Numbers, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 177-181.
[2] E. Brown, Sets in which $x y+k$ is always a square, Mathematics of Computation 45 (1985), 613-620.
[3] H. Davenport and A. Baker, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[4] Diofant Aleksandriiskiĭ, Arifmetika i kniga o mnogougol'nyh chislakh, Nauka, Moscow, 1974.
[5] A. Dujella, Generalization of a problem of Diophantus, Acta Arithmetica 65 (1) (1993), 15-27.
[6] A. Dujella, Diophantine quadruples for squares of Fibonacci and Lucas numbers, Portugaliae Mathematica 52 (3) (1995), 305-318.
[7] A. Dujella, Generalized Fibonacci numbers and the problem of Diophantus, accepted for publication in The Fibonacci Quarterly.
[8] V. E. Hoggatt and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, The Fibonacci Quarterly 15 (1977), 323-330.
[9] B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2) 27 (1976), 349-353.

Andrej Dujella
Department of Mathematics, University of Zagreb
Bijenička cesta 30
10000 Zagreb CROATIA
E-mail: duje@math.hr

