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Abstract

A set of m positive integers is called a Diophantine m-tuple if the product of its
any two distinct elements increased by 1 is a perfect square. Diophantus found a set
of four positive rationals with the above property. The first Diophantine quadruple
was found by Fermat (the set {1, 3, 8, 120}). Baker and Davenport proved that this
particular quadruple cannot be extended to a Diophantine quintuple.

In this paper, we prove that there does not exist a Diophantine sextuple and that
there are only finitely many Diophantine quintuples.

1 Introduction

A set of m positive integers {a1, a2, . . . , am} is called a Diophantine m-tuple if ai · aj + 1
is a perfect square for all 1 ≤ i < j ≤ m.

Diophantus first studied the problem of finding four numbers such that the product of
any two of them increased by unity is a square. He found a set of four positive rationals
with the above property: {1/16, 33/16, 17/4, 105/16}. However, the first Diophantine
quadruple, {1, 3, 8, 120}, was found by Fermat. Euler was able to add the fifth positive
rational, 777480/8288641, to the Fermat’s set (see [6], pp. 513–520). Recently, Gibbs [13]
found examples of sets of six positive rationals with the property of Diophantus.

A folklore conjecture is that there does not exist a Diophantine quintuple. The first
important result concerning this conjecture was proved in 1969 by Baker and Davenport
[3]. They proved that if d is a positive integer such that {1, 3, 8, d} forms a Diophantine
quadruple, then d = 120. This problem was stated in 1967 by Gardner [12] (see also [17]).

In 1979 Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple can be
extended to a Diophantine quadruple. More precisely, let {a, b, c} be a Diophantine triple
and ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, where r, s, t are positive integers. Define

d+ = a + b + c + 2abc + 2rst .

0Mathematics Subject Classification (2000): Primary 11D09, 11D25, 11D48; Secondary 11B37,
11J68, 11J86.
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Then {a, b, c, d+} is a Diophantine quadruple. Indeed,

ad+ + 1 = (at + rs)2, bd+ + 1 = (bs + rt)2, cd+ + 1 = (cr + st)2.

There is a stronger version of the ”Diophantine quintuple conjecture”.

Conjecture 1 If {a, b, c, d} is a Diophantine quadruple and d > max{a, b, c}, then d =
d+.

Conjecture 1 was proved for certain Diophantine triples [16, 20] and for some para-
metric families of Diophantine triples [7, 8, 10]. In particular, in [10] it was proved that
the pair {1, 3} cannot be extended to a Diophantine quintuple.

A Diophantine quadruple D = {a, b, c, d}, where a < b < c < d, is called regular if
d = d+. Equivalently, D is regular iff

(a + b− c− d)2 = 4(ab + 1)(cd + 1)(1)

(see [14]). The equation (1) is a quadratic equation in d. One root of this equation is d+,
and other root is

d− = a + b + c + 2abc− 2rst .

It is easy to check that all ”small” Diophantine quadruples are regular; e.g. there are
exactly 207 quadruples with max{a, b, c, d} ≤ 106 and all of them are regular.

Since the number of integer points on an elliptic curve

y2 = (ax + 1)(bx + 1)(cx + 1)(2)

is finite, it follows that, for fixed a, b and c, there does not exist an infinite set of positive
integers d such that a, b, c, d is a Diophantine quadruple. However, bounds for the size [2]
and for the number [19] of solutions of (2) depend on a, b, c and accordingly they do not
immediately yield an absolute bound for the size of such set.

The main result of the present paper is the following theorem.

Theorem 1 There are only finitely many Diophantine quintuples.

Moreover, this result is effective. We will prove that all Diophantine quintuples Q
satisfy max Q < 101026

. Hence we almost completely solve the problem of the existence of
Diophantine quintuples. Furthermore, we prove

Theorem 2 There does not exist a Diophantine sextuple.

Theorems 1 and 2 improve results from [9] where we proved that there does not exist
a Diophantine 9-tuple and that there are only finitely many Diophantine 8-tuples.

As in [9], we prove Conjecture 1 for a large class of Diophantine triples satisfying
some gap conditions. However, in the present paper these gap conditions are much weaker
than in [9]. Accordingly, the class of Diophantine triples for which we are able to prove
Conjecture 1 is much larger. In fact, in an arbitrary Diophantine quadruple, we may find
a triple for which we are able to prove Conjecture 1.
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In the proof of Conjecture 1 for a triple {a, b, c} we first transform the problem into
solving systems of simultaneous Pellian equations. This reduces to finding intersections of
binary recurrence sequences. In Section 5 we almost completely determine initial terms of
these sequences, under assumption that they have nonempty intersection which induces
a solution of our problem. This part is a considerable improvement of the corresponding
part of [9]. This improvement is due to new ”gap principles” developed in Section 4. These
”gap principles” follow from the careful analysis of the elements of the binary recurrence
sequences with small indices. Let us mention that in a joint paper with A. Pethő [10] we
were able to determine initial terms, in a special case of triples {1, 3, c}, using an inductive
argument.

Applying some congruence relations we get lower bounds for solutions. In obtaining
these bounds we need to assume that our triple satisfies some gap conditions like b > 4a
and c > b2.5. Let us note that these conditions are much weaker then conditions used in
[9], and this is due to more precise determination of the initial terms. Comparing these
lower bounds with upper bounds obtained from the Baker’s theory on linear forms in
logarithms of algebraic numbers (a theorem of Matveev [18]) we prove Theorem 1, and
comparing them with upper bounds obtained from a theorem of Bennett [5] on simulta-
neous approximations of algebraic numbers we prove Theorem 2. In the final steps of the
proofs, we use again the above mentioned ”gap principles”.

2 Systems of Pellian equations

Let us fix some notation. Let {a, b, c} be a Diophantine triple and a < b < c. Furthermore,
let positive integers r, s, t be defined by

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2.

In order to extend {a, b, c} to a Diophantine quadruple {a, b, c, d}, we have to solve the
system

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2,(3)

with positive integers x, y, z. Eliminating d from (3) we get the following system of Pellian
equations

az2 − cx2 = a− c ,(4)
bz2 − cy2 = b− c .(5)

In [9], Lemma 1, we proved the following lemma which describes the sets of solutions of
the equations (4) and (5).

Lemma 1 There exist positive integers i0, j0 and integers z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 , i = 1, . . . , i0,

j = 1, . . . , j0, with the following properties:

(i) (z(i)
0 , x

(i)
0 ) and (z(j)

1 , y
(j)
1 ) are solutions of (4) and (5), respectively.
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(ii) z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 satisfy the following inequalities

1 ≤ x
(i)
0 ≤

√
a(c− a)
2(s− 1)

<

√
s + 1

2
< 0.841 4

√
ac ,(6)

1 ≤ |z(i)
0 | ≤

√
(s− 1)(c− a)

2a
<

√
c
√

c

2
√

a
< 0.421c ,(7)

1 ≤ y
(j)
1 ≤

√
b(c− b)
2(t− 1)

<

√
t + 1

2
< 0.783 4

√
bc ,(8)

1 ≤ |z(j)
1 | ≤

√
(t− 1)(c− b)

2b
<

√
c
√

c

2
√

b
< 0.32c .(9)

(iii) If (z, x) and (z, y) are positive integer solutions of (4) and (5) respectively, then
there exist i ∈ {1, . . . , i0}, j ∈ {1, . . . , j0} and integers m,n ≥ 0 such that

z
√

a + x
√

c = (z(i)
0

√
a + x

(i)
0

√
c)(s +

√
ac)m,(10)

z
√

b + y
√

c = (z(j)
1

√
b + y

(j)
1

√
c)(t +

√
bc)n.(11)

Let (x, y, z) be a solution of the system (4) & (5). From (10) it follows that z = v
(i)
m

for some index i and integer m ≥ 0, where

v
(i)
0 = z

(i)
0 , v

(i)
1 = sz

(i)
0 + cx

(i)
0 , v

(i)
m+2 = 2sv

(i)
m+1 − v(i)

m ,(12)

and from (11) we conclude that z = w
(j)
n for some index j and integer n ≥ 0, where

w
(j)
0 = z

(i)
1 , w

(j)
1 = tz

(j)
1 + cy

(j)
1 , w

(j)
n+2 = 2tw

(j)
n+1 − w(j)

n .(13)

Let us consider the sequences (vm) and (wn) modulo 2c. From (12) and (13) it is easily
seen that

v
(i)
2m ≡ z

(i)
0 (mod 2c), v

(i)
2m+1 ≡ sz

(i)
0 + cx

(i)
0 (mod 2c),(14)

w
(j)
2n ≡ z

(j)
1 (mod 2c), w

(j)
2n+1 ≡ tz

(j)
1 + cy

(j)
1 (mod 2c).(15)

We are searching for solutions of the system (4) & (5) such that d = (z2 − 1)/c is an
integer. Using (14) and (15), from z = vm = wn we obtain

[z(i)
0 ]2 ≡ v2

m ≡ z2 ≡ 1 (mod c), [z(j)
1 ]2 ≡ w2

n ≡ z2 ≡ 1 (mod c).

Therefore we are interested only in equations vm = wn satisfying

[z(i)
0 ]2 ≡ [z(j)

1 ]2 ≡ 1 (mod c).
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We will deduce later more precise information on the initial terms z
(i)
0 and z

(j)
1 (see

Section 5). Let us mention now a result of Jones [15], Theorem 8, which says that if c < 4b

then |z(j)
1 | = 1.

As a consequence of Lemma 1 and the relations (14) and (15), we obtain the following
lemma. From now on, we will omit the superscripts (i) and (j).

Lemma 2
1) If the equation v2m = w2n has a solution, then z0 = z1.

2) If the equation v2m+1 = w2n has a solution, then z0 · z1 < 0 and cx0 − s|z0| = |z1|.
In particular, if b > 4a and c > 100a, then this equation has no solution.

3) If the equation v2m = w2n+1 has a solution, then z0 · z1 < 0 and cy1− t|z1| = |z0|.
4) If the equation v2m+1 = w2n+1 has a solution, then z0 · z1 > 0 and cx0 − s|z0| =

cy1 − t|z1|.

Proof. See [9], Lemma 3.

3 Relationships between m and n

In [9], Section 4, we proved that vm = wn implies m ≥ n if b > 4a, c > 100b and n ≥ 3. We
also proved that m ≤ 3

2n, provided {a, b, c} satisfies some rather strong gap conditions.
In this section we will first prove an unconditional relationship between m and n, and

then we will improve that result under various gap assumptions.

Lemma 3 If vm = wn, then n− 1 ≤ m ≤ 2n + 1.

Proof. We have the following estimates for v1:

v1 = sz0 + cx0 ≥ cx0 − s|z0| =
c2 − ac− z2

0

cx0 + s|z0|
>

c2 − c2

4 − c
√

c
2
√

a

2cx0
>

c

4x0
>

c

3.364 4
√

ac
,

v1 < 2cx0 < 1.682c 4
√

ac .

Hence
c

3.364 4
√

ac
(2s− 1)m−1 < vm < 1.682c 4

√
ac(2s)m−1 for m ≥ 1.(16)

If c > 4b, then

w1 ≥
c2 − bc− z2

1

cy1 + b|z1|
>

c

4y1
>

c

3.132 4
√

bc
.

If c < 4b then, by [15], Theorem 8, z1 = ±1, y1 = 1 and

w1 ≥ c− t = a + r = s >
√

ac >
c

3.132 4
√

bc
.

Furthermore, w1 < 2cy1 < 1.566c 4
√

bc and therefore
c

3.132 4
√

bc
(2t− 1)n−1 < wn < 1.566c

4
√

bc(2t)n−1 for n ≥ 1.(17)
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We thus get
(2s− 1)m−1 < 5.269 4

√
abc2 (2t)n−1 .(18)

Since

2s− 1 = 2
√

ac + 1− 1 > 1.767
√

ac and 2t = 2
√

bc + 1 < 2.042
√

bc,(19)

it follows that (2s− 1)2 > 3.12ac > 2t. It implies

(2s− 1)m−1 < 2.635 · (2t)n < (2t)n+0.43 < (2s− 1)2n+0.86

and m ≤ 2n + 1.
On the other hand, we have

(2t− 1)n−1 < 5.269 4
√

abc2 (2s)m−1 < 5.269 4
√

abc2 (2t− 1)m−1 < (2t− 1)m+0.489

and n ≥ m + 1.
Thus we proved the lemma for m,n 6= 0. It remains to check that v0 < w2 and w0 < v2.

Indeed,

w2 = 2tw1 − w0 >
2ct

3.132 4
√

bc
−

√
c
√

c

2
√

b
> c

( 4
√

bc

1.566
− 1√

2
√

bc

)
> 1.093c > v0 ,

v2 = 2sv1 − v0 >
2cs

3.364 4
√

ac
−

√
c
√

c

2
√

a
> c

(
4
√

ac

1.682
− 1√

2
√

ac

)
> 0.579c > w0 .

Lemma 4 Assume that c > 1010. If vm = wn and m,n ≥ 2, then
1) c > b4.5 =⇒ m ≤ 11

9 n + 7
9 ,

2) c > b2.5 =⇒ m ≤ 7
5n + 3

5 ,

3) c > b2 =⇒ m ≤ 3
2n + 1

2 ,

4) c > b5/3 =⇒ m ≤ 8
5n + 3

5 .

Proof. As in the proof of Lemma 3, assuming c > max{b5/3, 1010}, we have

vm >
0.999c

2x0
(2s− 1)m−1 >

c

1.416 4
√

ac
(2s− 1)m−1,

wn < 1.415 4
√

bc(2t)n−1,

for m,n ≥ 1. Hence (2s− 1)m−1 < 2.004 4
√

abc2 (2t)n−1 and

1.999m−1a(m−1)/2c(m−1)/2 < 2.004nb(n−1)/2+1/4c(n−1)/2+1/4a1/4 .(20)

If m ≥ 2 and c > bε, then (20) shows that at least one of the following two inequalities
holds:

m− 1
2

< (
n

2
− 1

4
) · 1

ε
+

n

2
,(21)

m− 1 < 1.004n .(22)

The inequality (22) implies all statements of the lemma. For ε = 4.5, (21) implies m <
11
9 n + 8

9 and m ≤ 11
9 n + 7

9 . Similar arguments apply to all other statements of the lemma.
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4 Gap principles

In [9], Lemma 14, we proved that if {a, b, c, d} is a Diophantine quadruple and a < b <
c < d, then d ≥ 4bc. The proof was based on the fact, proved by Jones [15], Lemma 4,
that c = a + b + 2r or c ≥ 4ab + a + b.

In this section we will develop a stronger and more precise gap principle by examining
the equality vm = wn for small values of m and n.

Let us note that since

c(4ab + 1) < d+ < 4c(ab + 1) ,

we may expect an essential improvement only if we assume that d 6= d+.

Lemma 5 Let vm = wn and define d = (v2
m − 1)/c. If {0, 1, 2} ∩ {m,n} 6= ∅, then d < c

or d = d+.

Proof. From the proof of Lemma 3 we have:

v0 < w2, w0 < v2, v1 < w3, w1 < v4, v2 < w4, w2 < v6.

Therefore, the condition {0, 1, 2} ∩ {m,n} 6= ∅ implies

(m,n) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (2, 3), (3, 2), (4, 2), (5, 2)}.

If 0 ∈ {m,n}, then d < c.

If (m,n) = (1, 1), then d < c for z0 < 0, and d = d+ for z0 > 0 (see [9], proof of
Theorem 3).

Assume that (m,n) = (1, 2). We have v1 = sz0 + cx0, w2 = z1 + 2c(bz1 + ty1). By
Lemma 2, if z1 > 0 then z0 < 0 and cx0 + sz0 = z1. Hence w2 > v1 = w0. If z1 < 0 then
z0 > 0 and

cx0 − sz0 = −z1.(23)

Inserting (23) into the relation v1 = w2 we obtain

bz1 + ty1 = x0.(24)

From (23), (24) and the system (4) & (5), we obtain (b − a)t = z2
0(b − a). Therefore,

z0 = t, x0 = r, z1 = st− cr, y1 = rt− bs. It implies v1 = st + cr and

d =
v2
1 − 1
c

=
1
c

(abc2 + ac + bc + 1 + 2crst + abc2 + c2 − 1) = d+ .

Assume now that (m,n) = (2, 1). In the same manner as in the case (m,n) = (1, 2),
we obtain z1 = s, y1 = r, z0 = st− cr, x0 = rs− at and d = d+.

Let (m,n) = (2, 2). We have v2 = z0 + 2c(az0 + sx0), w2 = z1 + 2c(bz1 + ty1), and
since z0 = z1, we obtain az0 + sx0 = bz0 + ty1 and

(b− a)(cy2
1 − cx2

0 + b− a) = acx2
0 + x2

0 − bcy2
1 + y2

1 − 2stx0y1 .
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Therefore (b− a)2 = (sy1 − tx0)2 and since sy1 = tx0, we have

tx0 − sy1 = b− a.(25)

Furthermore,

(ac + 1)(bx2
0 + a− b) = a(bcx2

0 + x2
0 + (b− a)2 − 2t(b− a)x0)

and
(b− a)(x2

0 + 2atx0 + a2t2) = (b− a)(ab + 1)(ac + 1) = (b− a)r2s2.

Finally, x0 = rs− at, y1 = rt− bs, z0 = st− cr. Now we obtain

v2 = st− cr + 2c(ast− acr + rs2 − ast) = st + cr

and d = d+.

Let (m,n) = (3, 1). We may assume that {a, b, c} 6= {1, 3, 8}. Then ac ≥ 15 and
bc ≥ 48. It implies 2s− 1 > 1.807

√
ac and 2t < 2.021

√
bc. From (18) we obtain

(1.807
√

ac)2 < 5.269 4
√

abc2 < 5.269 4
√

ac3 ,

which implies c ≤ 6, a contradiction.

Let (m,n) = (3, 2). Assume that z0 > 0, z1 < 0. We have v1 > 2sz0, v2 > (4s2 − 1)z0,
v3 > (4s2 − 1)(2s − 1)z0 > 7(ac)3/2z0, and w1 < c2

2t|z1| , w2 < 2tw1 < c2

|z1| . We have also
|z1| > c

4x0
and therefore w2 < 4cx0. Since x0 <

√
c, we obtain

w2 < 4c3/2 < 7(ac)3/2z0 < v3 .

Assume now that z0 < 0, z1 > 0. Then z1 = sz0 + cx0 and the condition v3 = w2

implies x0 + 2az1 = bz1 + ty1 > 2bz1 and x0 > 4z1 > c
x0

, a contradiction.

Let (m,n) = (2, 3). If z0 > 0, z1 < 0, then v2 = w3 implies y1 + 2bz0 = az0 + sx0 <
2az0 + c

z0
. Therefore z2

0 < c
4 . On the other hand, z2

0 ≡ 1 (mod c). Hence, z0 = 1. But, if
c > 4b then z0 > c

4y1
> 1. If c < 4b then z1 = −1, y1 = 1, and Lemma 2 implies c = b + 2,

which contradicts the fact that c = a + b + 2r.
Assume that z0 < 0, z1 > 0. As in the case (m, n) = (3, 2), we have v2 < c2

|z0| and

w3 > 7.3(bc)3/2z1 . If c > 4b then |z0| > c
4y1

and since y1 <
√

c, we obtain

v2 < 4c3/2 < 7.3(bc)3/2z1 < w3 .

If c < 4b then
w3 > 7.3b1.5c1.5 > 0.9c3 > c2 > v2 .

Let (m,n) = (4, 2). We have v4 = z0 + 4c(2az0 + sx0) + 8ac2(az0 + sx0), and the
relation v4 = w2 implies

bz0 + ty1 = 4az0 + 2sx0 + 4ac(az0 + sx0).(26)
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It holds ty1 − b|z0| < c
|z0| . Hence, if z0 > 0 then the left hand side of (26) is ≤ 2bz0 + c

z0
<

3cz0, while the right hand side is > 4a2cz0 > 3cz0. If z0 < 0, then the left hand side of
(26) is ≤ c

|z0| ≤ c, while the right hand side is ≥ 4ac− 4a|z0| > ac ≥ c.

Let (m,n) = (5, 2). It follows from (18) that

(1.807
√

ac)4 < 5.269
√

bc · 2.021
√

bc

and 10.66a2c2 < 10.65bc, a contradiction.

We now can prove the following gap principal, which we will improve again in Propo-
sition 1 below.

Lemma 6 If {a, b, c, d} is a Diophantine quadruple and a < b < c < d, then d = d+ or
d ≥ 1.16 c2.5b1.5.

Proof. By Lemma 5, if d 6= d+ then m ≥ 3 and n ≥ 3. From (17) it follows that

w3 > (2t− 1)2 · c

3.132 4
√

bc
>

81
24 · 3.132

4
√

b3c3 · c

and

d ≥ 1.161b1.5c3.5 − 1
c

> 1.16c2.5b1.5 .

Using the gap principle from Lemma 6 we can prove the following lemma.

Lemma 7 Under the notation from above, we have v3 6= w3.

Proof. If z0, z1 > 0 then define z′ := cx0 − sz0 = cy1 − tz1, and if z0, z1 < 0 then
define z′ := cx0 + sz0 = cy1 + tz1. Define also d0 = (z′2 − 1)/c. Then d0 is an integer.
Furthermore, cd0 + 1 = z′2,

ad0 + 1 =
1
c
(ac2x2

0 ∓ 2acsx0z0 + a2cz2
0 + az2

0 − a + c)

= (acx2
0 ∓ 2asx0z0 + a2z2

0 + x2
0) = (sx0 ∓ az0)2,

bd0 + 1 =
1
c
(bc2y2

1 ∓ 2bcty1z1 + b2cz2
1 − b + c) = (ty1 ∓ bz1)2.

We have

|z′| = c2 − ac− z2
0

cx0 + s|z0|
>

c

3.364 4
√

ac
and |z′| < c.

Therefore

d0 >
0.088 c

√
c√
a
− 1

c
> 0.043

√
c√
a

> 0 ,



There are only finitely many Diophantine quintuples 10

and thus the set {a, b, c, d0} forms a Diophantine quadruple. Since d0 < c, by Lemma 6,
we have two possibilities: the quadruple {a, b, c, d0} is regular or

c > 1.16d2.5
0 b1.5 .(27)

Assume that {a, b, c, d0} is regular, i.e. d0 = d−. Then z′ = cr − st. From c(x0 − r) =
s(|z0| − t) and gcd(c, s) = 1 it follows that |z0| ≡ t (mod c), and since |z0| < c, t < c, we
conclude that |z0| = t and x0 = r. We can proceed analogously to prove that |z1| = s and
y1 = r.

The condition v3 = w3 implies

sz0 + 3cx0 + 4ac(cx0 + sz0) = tz1 + 3cy1 + 4bc(cy1 + tz1)

and we obtain a = b, a contradiction.
Hence we may assume that the quadruple {a, b, c, d0} is not regular. But it means that

c > 106, which implies

|z′| = c2 − ac− z2
0

cx0 + s|z0|
>

0.749c

2x0
>

0.749c

1.415 4
√

ac
> 0.529

c
4
√

ac

and

d0 >
0.2798 c

√
c√
a
− 1

c
> 0.2797

√
c√
a

.

Thus from (27) we obtain c > 0.0479c1.25a−1.25b1.5 > 0.0479c1.25a0.25 and ac ≤ 189958,
which contradicts the assumption that c > 106.

Now we can prove the following strong gap principle, which is the main improvement
to [9] and which we will use several times later. Observe that especially the dependence
on c is much better than in the gap principle in [9].

Proposition 1 If {a, b, c, d} is a Diophantine quadruple and a < b < c < d, then d = d+

or d > 2.695 c3.5a2.5.

Proof. From Lemmas 5 and 7 it follows that m ≥ 4 or n ≥ 4. By (16), we have

v4 ≥
c

3.364 4
√

ac
(2s− 1)3 ≥ 125

8
√

8 · 3.36
4
√

a5c5 · c .

Therefore, if m ≥ 4 then

d ≥ 2.696a2.5c4.5 − 1
c

> 2.695c3.5a2.5 .

Similarly, from (17) it follows

w4 ≥
c

3.132 4
√

bc
(2t− 1)3 ≥ 729

24
√

24 · 3.132
4
√

b5c5 · c ,

and for n ≥ 4 we obtain

d ≥ 3.919b2.5c4.5 − 1
c

> 3.918c3.5b2.5 > 2.695c3.5a2.5 .
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Corollary 1 If {a, b, c, d, e} is a Diophantine quintuple and a < b < c < d < e, then
e > 2.695 d3.5b2.5.

Proof. Assume that {b, c, d, e} is a regular Diophantine quadruple. Then e ≤ 4d(bc +
1) < d3. The quadruple {a, c, d, e} is not regular and, by Proposition 1, we have e >
2.695d3.5a2.5 > d3.

Therefore the quadruple {b, c, d, e} is not regular and hence e > 2.695d3.5b2.5.

5 Determination of the initial terms

Using the gap principles developed in the previous section we will improve Lemma 2 and
obtain more specific information on the initial terms of the sequences (vm) and (wn).

Lemma 8
1) If the equation v2m = w2n has a solution, then z0 = z1. Furthermore, |z0| = 1 or

|z0| = cr − st or |z0| < min{0.869 a−5/14c9/14, 0.972 b−0.3c0.7}.
2) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = cr − st and

z0z1 < 0.

3) If the equation v2m = w2n+1 has a solution, then |z0| = cr − st, |z1| = s and
z0z1 < 0.

4) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s and z0z1 > 0.

Proof.
1) From Lemma 2 we have z0 = z1. Define d0 = (z2

0 − 1)/c. Then d0 is an integer and

cd0 + 1 = z2
0 , ad0 + 1 =

1
c
(az2

0 − a + c) = x2
0, bd0 + 1 =

1
c
(bz2

1 − b + c) = y2
1.

Hence, we have three possibilities: d0 = 0 or {a, b, c, d} is a regular Diophantine quadruple
or {a, b, c, d} is an irregular Diophantine quadruple. If d0 = 0 then |z0| = 1. If the
quadruple {a, b, c, d} is regular, then (since d0 < c) we have d0 = d− and |z0| = cr − st.
Otherwise we may apply Proposition 1 to obtain c ≥ 2.695d3.5

0 a2.5. Since |z0| 6= 1, we have
z2
0 ≥ c + 1. We may assume that c > 106 and therefore

d0 =
z2
0 − 1
c

≥ z2
0

c

(
1− 1

c + 1

)
> 0.999

z2
0

c
.

Hence we obtain c4.5 > 2.685|z7
0 |a2.5 and |z0| < 0.869a−5/14c9/14.

Analogously, from Lemma 6, we obtain |z0| < 0.972b−0.3c0.7.
2) Let z′ = z1 = cx0 + sz0 if z1 > 0, and z′ = −z1 = cx0 − sz0 if z1 < 0. Define

d0 = (z′2 − 1)/c. Then d0 is an integer and

cd0 + 1 = z′2, ad0 + 1 = (sx0 ± az0)2, bd0 + 1 = y2
1.

In the proof of Lemma 7 it is shown that d0 > 0 and d0 < c. Therefore {a, b, c, d} is a
Diophantine quadruple, and by the proof of Lemma 7, it must be regular. It means that
d0 = d− and |z′| = cr − st. It implies |z1| = cr − st and |z0| = t.
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3) Let z′ = z0 = cy1 + tz1 if z0 > 0, and z′ = −z0 = cy1 − tz1 if z0 < 0, and define
d0 = (z′2 − 1)/c. Then

cd0 + 1 = z′2, ad0 + 1 = x2
0, bd0 + 1 = (ty1 ± bz1)2

and 0 < d0 < c. If the quadruple {a, b, d0, c} is not regular, then from Lemma 6 we have

c ≥ 1.16d2.5
0 b1.5 .(28)

We can assume that c > 106. If c > 4b then

|z′| = c2 − bc− z2
1

cy1 + t|z1|
>

0.749c

2y1
>

0.749c

1.415 4
√

bc
> 0.529

c
4
√

bc
,

and if c < 4b then
|z′| >

√
ac > 0.529

c
4
√

bc
.

Therefore,

d0 >
0.2798 c

√
c√
b
− 1

c
> 0.279

√
c√
b

.

Now (28) implies c > 1
20.97c5/4b1/4 and bc ≤ 193372, a contradiction.

It follows that the quadruple {a, b, c, d} is regular, i.e. d0 = d− and |z′| = cr−st. Hence
|z0| = cr − st and c(y1 − r) = t(|z1| − s). Since gcd(t, c) = 1 we have |z1| ≡ s (mod c),
which implies |z1| = s.

4) Let z′ = cx0 − s|z0| = cy1 − t|z1| and d0 = (z′2 − 1)/c. In the proof of Lemma 7 we
have shown that {a, b, d0, c} is a regular Diophantine quadruple, and that this fact implies
|z0| = t and |z1| = s.

6 Standard Diophantine triples

In [9] we proved Conjecture 1 for triples satisfying some gap conditions like b > 4a and c >
max{b13, 1020}. In Section 7 we will prove Conjecture 1 under certain weaker assumptions.
This results will suffice for proving Theorem 1 since we will show that every Diophantine
quadruple contains a triple which satisfies some of our gap assumptions.

Definition 1 Let {a, b, c} be a Diophantine triple and a < b < c. We call {a, b, c} a
Diophantine triple of

• the first kind if c > b4.5,

• the second kind if b > 4a and c > b2.5,

• the third kind if b > 12a and b5/3 < c < b2,

• the fourth kind if b > 4a and b2 ≤ c < 6ab2.

A triple {a, b, c} is called standard if it is a Diophantine triple of the first, second, third
or fourth kind.
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The Diophantine triples of the first and the second kind appear naturally when we
try to modify results from [9] using Lemma 8. They correspond to triples with properties
b > 4a, c > b13 and b > 4a, c > b5, considered in [9]. On the other hand, triples of the third
and the fourth kind come from the analysis what kind of triples a regular Diophantine
quadruple may contain. Note also that these four cases are not mutually exclusive.

We now use the improved gap principle (Proposition 1) again to show that the set of
all standard Diophantine triples is large.

Proposition 2 Every Diophantine quadruple contains a standard triple.

Proof. Let {a, b, c, d} be a Diophantine quadruple. If it is not regular, then by Propo-
sition 1 and [9], Lemma 14, we have d > c3.5 and c > 4a. Hence {a, c, d} is a triple of the
second kind.

Assume that {a, b, c, d} is a regular quadruple. Then

c(4ab + 1) < d < 4c(ab + 1).

If b > 4a and c ≥ b1.5, then d > b2.5 and we see that {a, b, d} is a triple of the second kind.
If b > 4a and c < b1.5, then we have two possibilities: if c = a + b + 2r then c < 4b,

c2 < d < 4bc2 and therefore {b, c, d} is a triple of the fourth kind; if c ≥ 4ab + a + b then
d < c2, d > bc > c5/3 and it follows that {a, c, d} is a triple of the third kind.

We may now assume that b < 4a. By [15], Theorem 8, we have c = ck (k ≥ 1) or
c = ck (k ≥ 2), where the sequences (ck) and (ck) are defined by

c0 = 0, c1 = a + b + 2r, ck = (4ab + 2)ck−1 − ck−2 + 2(a + b),

c0 = 0, c1 = a + b− 2r, ck = (4ab + 2)ck−1 − ck−2 + 2(a + b).

If c > b2.5 then d > 4abc > b4.5 and we see that {a, b, d} is a triple of the first kind.
Since c2 = 4r(a+ r)(b+ r) > 4ab2 > b3, the condition c ≤ b2.5 implies c = c1 or c = c2.
If c = c1 then

c ≤ a + b +
4√
3

√
ab =

√
ab

(√
a

b
+

√
b

a
+

4√
3

)
≤
√

ab(0.5 + 2 +
4√
3
) < 4.81

√
ab

and c ≥ 4r. Hence d > 4abc > 0.172c3 > c2 and d < 4cr2 ≤ c2r < 2ac2. Therefore the
triple {a, c, d} is of the fourth kind.

If c ≤ b2.5 and c = c2 ≥ 4ab + 2a + 2b (we may assume b > a + 2, since otherwise
c2 = c1), then d < c2 and d > 4abc > b2c > c1.8 > c5/3. Therefore the triple {a, c, d} is of
the third kind.

7 Lower bounds for solutions

The main tool in obtaining lower bounds for m and n satisfying vm = wn (m,n > 2) is
the congruence method introduced in the joint paper of the author with A. Pethő [10].
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Lemma 9
1) v2m ≡ z0 + 2c(az0m

2 + sx0m) (mod 8c2)

2) v2m+1 ≡ sz0 + c[2asz0m(m + 1) + x0(2m + 1)] (mod 4c2)

3) w2n ≡ z1 + 2c(bz1n
2 + ty1n) (mod 8c2)

4) w2n+1 ≡ tz1 + c[2btz1n(n + 1) + y1(2n + 1)] (mod 4c2)

Proof. See [9], Lemma 4.

If vm = wn then, of course, vm ≡ wn (mod 4c2) and we can use Lemma 9 to obtain
some congruences modulo c. However, if a, b, m and n are small compared with c, then
these congruences are actually equations. It should be possible to prove that these new
equations are in contradiction with the starting equations vm = wn. This will imply that
m and n cannot be too small. We will prove a lower bound for n (and therefore also for
m by Lemma 3) depending on c and we will do this separately for Diophantine triples of
the first, second, third and fourth kind in the following four lemmas.

Lemma 10 Let {a, b, c} be a Diophantine triple of the first kind and c > 10100. If vm = wn

and n > 2, then n > c0.01.

Proof.
Assume that n ≤ c0.01. By Lemma 17, we have max{bm/2c+1, bn/2c+1} < n ≤ c0.01.
According to Lemma 8, we will consider six cases.
1.1) v2m = w2n, |z0| = 1
From Lemma 9 we have

±am2 + sm ≡ ±bn2 + tn (mod 4c).(29)

Since c > b4.5, we have am2 < c0.243 < c, sm < c0.623 < c, bn2 < c0.243 < c, tn < c0.623 < c.
Therefore we may replace ≡ by = in (29):

±am2 + sm = ±bn2 + tn.(30)

From (30), squaring twice, we obtain

[(am2 − bn2)2 −m2 − n2]2 ≡ 4m2n2 (mod c).

Since 4m2n2 < c0.047 < c and [(am2 − bn2)2 −m2 − n2]2 < c0.969 < c, we therefore have
[(am2 − bn2)2 −m2 − n2]2 = 4m2n2, and

am2 − bn2 = ±m± n.(31)

From (30) and (31) we obtain

m(s± 1) = n(t± 1).(32)

Inserting (32) into (30) we obtain

n =
(s± 1)[t(s± 1)− (t± 1)s]
±[a(t± 1)2 − b(s± 1)2]

=
(s± 1)(±t∓ s)

±(±2at + 2a± 2bs− 2b)
.(33)
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Since

|(s± 1)(±t∓ s)| ≥ (s− 1)(t− s) =
(s− 1)c(b− a)

t + s
>

2c(s− 1)
2
√

bc
> c ·

√
a

2
√

b

and | ± 2at + 2a ∓ 2bs − 2b| ≤ 4bs + 4b < 6b
√

ac, (33) implies that n >
√

c

12
√

b
> c0.377, a

contradiction.
1.2) v2m = w2n, |z0| = cr − st
We may assume that b ≥ 4. Then we have

|z0| = |z1| =
c2 − ac− bc− 1

cr + st
>

64
63c2

2rc
>

c

2.155
√

ab
,

and from |z1| <
√

c
√

c

2
√

b
it follows c < 5.4a2b < 5.4b3 < b4.5, a contradiction.

1.3) v2m = w2n, |z0| 6= 1, cr − st
From Lemma 9 we obtain

az0m
2 + sx0m ≡ bz0n

2 + ty1n (mod 4c).(34)

By Lemma 8, we have

|az0m
2| < c0.806 < c, |sx0m| < (a|z0|+

c

|z0|
)m < c0.8 < c,

|bz0n
2| < c0.876 < c, |ty1n| < (b|z1|+

c

|z1|
)n < c0.87 < c.

Therefore,
az0m

2 + sx0m = bz0n
2 + ty1n.(35)

Assume now that b > 4a. Since |z0| 6= 1, we have z2
0 ≥ max{c + 1, 3c/a}. This implies

0 ≤ sx0

a|z0|
− 1 =

x2
0 + ac− a2

a|z0|(sx0 + a|z0|)
≤ 1.001ac

2a2z2
0

< 0.1669,

0 ≤ ty1

b|z1|
− 1 =

y2
1 + bc− b2

b|z1|(ty1 + b|z1|)
≤ 1.001bc

2b2z2
0

< 0.0418.

If z0 > 1 then, by (35), we have az0m(m + 1.1669) ≥ bz0n(n + 1), and since m,n ≥ 2,
we obtain a · 1.5835m2 > bn2 and m

n ≥ 1.589. But now Lemma 4 implies n ≤ 1, a
contradiction.

If z0 < −1 then (35) implies a|z0|m(m − 1)) ≥ b|z0|n(n − 1.0418). Hence, by Lemma
4, we conclude that

4n(n− 1.0418) <
(11

9
n +

7
18

)(11
9

n− 11
18

)
< 1.4939n2 − 0.2716n− 0.2376,

which implies 2.5061n2 − 3.8956n + 0.2376 < 0 and n ≤ 1, a contradiction.
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Assume now that b < 4a. Squaring twice the relation (35) we obtain

[(am2 − bn2)2 − x2
0m

2 − y2
1n

2]2 ≡ 4x2
0y

2
1m

2n2 (mod c).(36)

By Proposition 1, we have

y2
1 <

b

c
z2
0 + 1 <

4a

c
· a−5/7c9/7 · 0.754 + 1 < 3.018(ac)2/7 < c0.364.

This implies that the both sides of the congruence (36) are less than c. Indeed, the left
hand side is bounded above by

max{c
8
9
+0.08, c

8
9
+0.08, c0.728+0.006+0.04} < c0.969 < c,

while 4x2
0y

2
1m

2n2 < c0.006+0.728+0.04 = c0.774 < c. Therefore we have an equality in (36),
and this implies

am2 − bn2 = ±x0m± y1n.(37)

From (35) and (37) we obtain x0m(s± 1) = y1n(t± 1) and n = A/B, where

A = x2
0y1(s± 1)(±t∓ s), B = z0[abc(y2

1 − x2
0) + 2(a− b)± 2aty2

1 ∓ 2bsx2
0].

We have the following estimates

|A| ≤ x2
0y1(s + 1)(t + s) < 2.005x2

0y1c
√

ab ,

|B| > |z0|[abc(2y1 − 1)− 2b− 4aty2
1 − 2s(b− a)]

> |z0|y1abc
[
2− 1

y1
− 2

acy1
− 4ty1

bc
− 2s

acy1

]
> 1.569|z0|y1abc.

These estimates yield

n <
2.005x2

0y1c
√

ab

1.569|z0|y1abc
< 1.278

x2
0

|z0|
√

ab
< 1.278

az2
0

0.999|z0|c
√

ab
< 1.28

|z0|
c

< c−1/4 < 1,

a contradiction.
2) v2m+1 = w2n

The impossibility of this case is proven in 1.2).
3) v2m = w2n+1

By Lemma 8 and 1.2), |z0| > c
2.155

√
ab

, and from |z0| <
√

c
√

c
2
√

a
it follows c < 5.4ab2 <

5.4b3 < b4.5, a contradiction.
4) v2m+1 = w2n+1

From Lemmas 8 and 9 we obtain

±astm(m + 1) + rm′ ≡ ±bstn(n + 1) + rn′ (mod 2c),(38)

where m′ = m, n′ = n if z0 < 0, and m′ = m + 1, n′ = n + 1 if z0 > 0. Multiplying (38)
by s and t, respectively, we obtain

±atm(m + 1) + rsm′ ≡ ±btn(n + 1) + rsn′ (mod 2c),(39)
±asm(m + 1) + rtm′ ≡ ±bsn(n + 1) + rtn′ (mod 2c).(40)

We have |btn(n + 1)| < c0.855 < c, rtn′ < c0.845 < c. Therefore we have equalities in (39)
and (40). This implies rm′ = rn′ and am(m + 1) = bn(n + 1), and finally m = n = 0.
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Lemma 11 Let {a, b, c} be a Diophantine triple of the second kind and c > 10100. If
vm = wn and n > 2, then n > c0.04.

Proof. Assume that n ≤ c0.04. Then max{bm/2c+ 1, bn/2c+ 1} < n ≤ c0.04.
1.1) v2m = w2n, |z0| = 1
Since am2 < c0.408, sm < c0.701, bn2 < c0.408 and tn < c0.701, (29) implies (30).

Furthermore

am2

sm
<

m
√

a√
c

< c−0.06 < 0.001,
bn2

tn
<

n
√

b√
c

< c−0.06 < 0.001.

Hence
m

n
≥ 0.999

1.001
· t

s
>

0.999
1.0012

√
b

a
> 1.99,

contrary to Lemma 4.
1.2) v2m = w2n, |z0| = cr − st
We have

|z0| = |z1| =
c2 − ac− bc− 1

cr + st
>

c2 − 5
4c1.4

2rc
>

c− 5
4c0.4

2.13
√

ab
,

and from |z1| <
√

c
√

c

2
√

b
it follows c < 5.25a2b < 1.32ab2. Hence {a, b, c} is a Diophantine

triple of the fourth kind, and this case will be treated in Lemma 13.
1.3) v2m = w2n, |z0| 6= 1, cr − st
By Proposition 1, we have c > b3.5, and Lemma 8 implies

|az0m
2| < c0.907 < c, |sx0m| < c0.871 < c, |bz0n

2| < c0.98 < c, |ty1n| < c0.944 < c.

Therefore, equation (35) holds again. As in Lemma 10, we obtain a contradiction with
Lemma 4.

2) v2m+1 = w2n

This case is impossible by Lemma 2. Namely, if c ≤ 100a then a ≥ 1098 and c ≤ a1.03,
a contradiction.

3) v2m = w2n+1

As in 1.2), we obtain c < 5.25ab2 and again {a, b, c} is a triple of the fourth kind.
4) v2m+1 = w2n+1

Relation (38) implies

[am(m + 1)− bn(n + 1)]2 ≡ r2(n−m)2 (mod 2c).

Since a2m2(m + 1)2 < c0.96, b2n2(n + 1)2 < c0.96, and r2m2 < c0.48, we obtain

bn(n + 1)− am(m + 1) = ±r(m− n),(41)

which implies

2n + 1
2m + 1

−
√

a

b
=

±4r(m− n) + b− a

[(2n + 1)
√

b + (2m + 1)
√

a]
√

b(2m + 1)
.(42)
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By Lemma 4, the right hand side of (42) is

≤ 4r(m− n)
b(2n + 1)(2m + 1)

+
b

b(2n + 1)(2m + 1)
<

4 · b
2 ·

4n+5
10

b(2n + 1)(2m + 1)
+

1
15

<
3
25

+
1
15

=
14
75

.

Therefore,
2n + 1
2m + 1

<
103
150

< 0.687 .(43)

If n = 1 then m = 1 (by Lemma 4), contrary to (43). If n = 2 then m = 2 or m = 3,
which both contradict the relation (43).

Hence we may assume that n ≥ 3, m ≥ 3, and now (42) implies 2n+1
2m+1 < 0.59. On the

other hand, from Lemma 4 we see that 2n+1
2m+1 ≥

5
7 −

3
7(2m+1) ≥ 0.653, a contradiction.

Lemma 12 Let {a, b, c} be a Diophantine triple of the third kind and c > 10100. If
vm = wn and n > 2, then n > c0.15.

Proof. Assume that n ≤ c0.15. Then max{bm/2c+ 1, bn/2c+ 1} < n ≤ c0.15.
1.1) v2m = w2n, |z0| = 1
Since am2 < c0.9, sm < c0.951, bn2 < c0.9 and tn < c0.951 < c, the proof is identical to

that of Lemma 11.
1.2) v2m = w2n, |z0| = cr − st
From (34) we have

±astm(m∓ 1) + rm ≡ ±bstn(n∓ 1) + rn (mod c).(44)

Multiplying (44) by 2st we obtain

±2[am(m∓ 1)− bn(n∓ 1)] ≡ 2rst(n−m) (mod 2c).(45)

Let α be the absolutely least residue of 2rst modulo 2c, and let A = (2rst−2cr2+c)(st+cr).
Then |α| · (st + cr) ≤ |A| and

A = 2acr + 2bcr + 2r + cst− c2r < 2acr + 2bcr + 2r.

Since cr−st = c2−bc−ac−1
cr+st < c2

2c
√

ab
< b

√
b < br, we obtain |A| < 2r(ac+bc+1) < 13

6 bcr and

|α| < 13bcr
12c

√
ab

< 1.15b. We have 2am(m∓1) < c0.904, 2bn(n∓1) < c0.904, |α(m−n)| < c0.651.
Therefore

±2[am(m∓ 1)− bn(n± 1)] = α(n−m),

and it implies

2n∓ 1
2m∓ 1

−
√

a

b
=

±2α(m− n) + b− a

[(2n∓ 1)
√

b + (2m∓ 1)
√

a]
√

b(2m∓ 1)
.(46)

By Lemma 4, the right hand side of (46) is

≤
1.15b · 6n+3

5

b(2n− 1)(2m− 1)
+

1
(2n− 1)(2m− 1)

< 0.495 ,
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and therefore
2n∓ 1
2m∓ 1

< 0.784 .(47)

If n = 2 then Lemma 4 implies m = 2 or 3. The case m = 2 contradicts the inequality
(47), while for m = 3 relation (46) implies 2n∓1

2m∓1 < 0.586 . But for n = 2, m = 3 we have
2n∓1
2m∓1 ∈ {3

5 , 5
7}, a contradiction.

Hence n ≥ 3, and since n = m = 3 contradicts (47), we have also m ≥ 4. Now, from
(46) we obtain 2n∓1

2m∓1 < 0.456 . But for m ≥ 4 we have 2m+1
2n+1 > 2n−1

2m−1 > 5
8−

3
4(2m−1) > 0.517,

a contradiction.
1.3) v2m = w2n, |z0| 6= 1, cr − st
Proposition 1 implies c > b3.5 and therefore this case is impossible.
2) v2m+1 = w2n

The impossibility of this case is shown in Lemma 11.
3) v2m = w2n+1

From Lemmas 8 and 9 it follows that

±2astm(m∓ 1) + r(2m± 1) ≡ ±2bstn(n + 1) + r(2n + 1) (mod 4c)

and
±2[am(m∓ 1)− bn(n + 1)] ≡ 2rst(n−m + δ) (mod 2c),(48)

where δ ∈ {0, 1}.
Let α be defined as in 1.2). As in 1.2), we obtain

±2[am(m∓ 1)− bn(n + 1)] = α(n−m + δ)

and
2n + 1
2m∓ 1

−
√

a

b
=

±2α(m− n− δ) + b− a

[(2n + 1)
√

b + (2m∓ 1)
√

a]
√

b(2m∓ 1)
.(49)

The right hand side of (49) is

≤
1.15b · 6n+11

5

b(2n− 1)(2m∓ 1)
+

1
(2n− 1)(2m∓ 1)

,

and therefore
2n + 1
2m− 1

< 0.861 ,
2n + 1
2m + 1

< 0.617 ,(50)

respectively.
If n = 1, then by Lemmas 4 and 7 we have m = 2. This is clearly impossible if we have

2n+1
2m−1 on the left hand side of (49), while for 2n+1

2m+1 we obtain 3
5 < 0.509, a contradiction.

If n = 2 then, by Lemma 17, we have m = 2, 3 or 4, and (50) implies m = 4.
Since m = n = 3 is also impossible by (50), we conclude that n ≥ 2 and m ≥ 4.
This implies 2n+1

2m−1 < 0.469 , 2n+1
2m+1 < 0.429 , respectively. On the other hand, we have

2n+1
2m−1 > 2n+1

2m+1 ≥
5
8 −

1
2m+1 > 0.513, a contradiction.

4) v2m+1 = w2n+1
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Let α be defined as in 1.2). From (38) we obtain

±2[am(m + 1)− bn(n + 1)] = α(n−m),

which yields

2n + 1
2m + 1

−
√

a

b
=

±2α(m− n) + b− a

[(2n + 1)
√

b + (2m + 1)
√

a]
√

b(2m + 1)
.(51)

From (51) it follows that 2n+1
2m+1 < 0.494 . But Lemma 4 implies 2n+1

2m+1 ≥
5
8−

3
8(2m+1) ≥ 0.55,

a contradiction.

Lemma 13 Let {a, b, c} be a Diophantine triple of the fourth kind and c > 10100. If
vm = wn and n > 2, then n > c0.2.

Proof. Assume that n ≤ c0.2. Then max{bm/2c+ 1, bn/2c+ 1} < n ≤ c0.2.
1.1) v2m = w2n, |z0| = 1
The proof is identical to that of Lemma 11.
1.2) v2m = w2n, |z0| = cr − st
The first part of the proof is identical to that of Lemma 12. In particular, the relation

(45) is valid. Estimating cr − st, we get

cr − st <
c

2
√

ab
<

6ab2

2
√

ab
< 3b

√
ab < 3br .

Therefore |A| < 2r(ac + bc + 1) < 2.5bcr and |α| < 2.5bcr
2c
√

ab
< 1.33b . Note that

α2 ≡ 4r2s2t2 ≡ 4r2 (mod 2c),

4r2 ≤ 4.5ab < 1.125b2 < 2c and α2 < 1.77b2 < 2c. Hence, α2 = 4r2 and α = ±2r.
Since am(m + 1) < c0.9, bn(n + 1) < c0.9, r(m− n) < c0.7, we have

bn(n + 1)− am(m + 1) = ±r(m− n).(52)

Inserting α = ±2r in (46) and using Lemma 4 and the estimate |α| = 2r <
√

b2 + 4 <
1.001b, we obtain

2n∓ 1
2m∓ 1

<
1
2

+
1.001n + 1

(2n− 1)(2m− 1)
< 0.834 .(53)

If (m,n) = (3, 2), then (52) implies 6b− 12a = ±r and (4b− 9a)(9b− 16a) = 1, which
is clearly impossible for b > 4a.

Hence n ≥ 3, m ≥ 4 and (53) yields 2n∓1
2m∓1 < 0.615 . On the other hand, 2n+1

2m+1 >
2n−1
2m−1 ≥

2
3 −

1
3(2m−1) > 0.619, a contradiction.

1.3) v2m = w2n, |z0| 6= 1, cr − st
Proposition 1 implies c > b3.5, and we have c < 6ab2 < 1.5b3. Therefore, this case is

impossible.
2) v2m+1 = w2n
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The impossibility of this case is shown in Lemma 11.
3) v2m = w2n+1

The first part of the proof is the same as in Lemma 12. As in 1.2), we conclude that
α = ±r. We have

am(m∓ 1)− bn(n + 1)] = ±r(m− n− δ)(54)

and
2n + 1
2m∓ 1

−
√

a

b
=

±4r(m− n− δ) + b− a

[(2n + 1)
√

b + (2m∓ 1)
√

a]
√

b(2m∓ 1)
.(55)

The relation (55) implies

2n + 1
2m± 1

<
1
2

+
2r(n + 2− 2δ)

b(2n + 1)(2m∓ 1) + 1.001r(2m∓ 1)2
+

1
(2n + 1)(2m∓ 1)

<
1
2

+
1.001(n + 2− 2δ) + 1

(2n + 1)(2m∓ 1)
< 0.945 .(56)

If n = 1, then m = 2 and we must have the sign + in (56). But then (54) implies
6a− 2b = ±r and (9a− 4b)(4a− b) = ±1, a contradiction.

If (m,n) = (3, 2), then we obtain 12a − 6b = ±r, which has no solution by 1.2). If
(m,n) = (4, 2), we have two possibilities: 12a− 6b = ±r or 20a− 6b = ±2r. We have to
consider only the second possibility, and it implies (25a − 9b)(4a − b) = 1, which has no
integer solution.

Hence n ≥ 3, m ≥ 4 and 2n+1
2m∓1 < 0.623. We see that (m,n) 6= (4, 3), which implies

m ≥ 5 and 2n+1
2m+1 < 0.55 , 2n+1

2m−1 < 0.545 , respectively. On the other hand, 2n+1
2m−1 > 2n+1

2m+1 ≥
2
3 −

1
2m+1 > 0.576, a contradiction.

4) v2m+1 = w2n+1

As in the proof of Lemmas 11 and 12, using α = ±2r, we obtain (42). It implies

2n + 1
2m + 1

<
1
2

+
1.001(n + 1) + 1
(2n + 1)(2m + 1)

< 0.834 .(57)

If (m,n) = (2, 1), then (41) implies 2b − 6a = ±r, which is impossible (see 2)).
Hence we have n ≥ 2, m ≥ 3, and (57) actually gives 2n+1

2m+1 < 0.615 . On the other hand
2n+1
2m+1 ≥

2
3 −

1
3(2m+1) > 0.619, a contradiction.

8 Linear forms in three logarithms

Solving recurrences (12) and (13) we obtain

vm =
1

2
√

a
[(z0

√
a + x0

√
c)(s +

√
ac)m + (z0

√
a− x0

√
c)(s−

√
ac)m] ,(58)

wn =
1

2
√

b
[(z1

√
b + y1

√
c)(t +

√
bc)n + (z1

√
b− y1

√
c)(t−

√
bc)n] .(59)

Using standard techniques (see e.g. [3, 11]) we may transform the equation vm = wn

into an inequality for a linear form in three logarithms of algebraic numbers. In [9], Lemma
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5, we proved that (assuming c > 4b, but this assumption can be replaced by c > b +
√

c,
which is satisfied for any triple {a, b, c}) if m,n 6= 0, then

0 < m log(s +
√

ac)− n log(t +
√

bc) + log

√
b(x0

√
c + z0

√
a)

√
a(y1

√
c + z1

√
b)

<
8
3
ac(s +

√
ac)−2m.(60)

Thus, we have everything ready for the applications of the Baker’s theory of linear
forms in logarithms of algebraic numbers. We will use Matveev’s result ([18], Theorem
2.1), which is quoted below with some restrictions and simplifications.

Lemma 14 ([18]) Let Λ be a linear form in logarithms of l multiplicatively independent
totally real algebraic numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl (bl 6= 0).
Let h(αj) denotes the absolute logarithmic height of αj, 1 ≤ j ≤ l. Define the numbers
D, Aj, 1 ≤ j ≤ l, and B by D = [Q(α1, . . . , αl) : Q], Aj = max{D h(αj), | log αj |},
B = max{1, max{ |bj |Aj

Al
: 1 ≤ j ≤ l}}. Then

log Λ > −C(l)C0W0D
2Ω ,(61)

where C(l) = 8
(l−1)!(l + 2)(2l + 3)(4e(l + 1))l+1, C0 = log(e4.4l+7l5.5D2 log(eD)), W0 =

log(1.5eBD log(eD)), Ω = A1 · · ·Al.

Proposition 3 Assume that c > max{b5/3, 10100}. If vm = wn, then

m

log(31.3(m + 1))
< 3.826 · 1012 log2 c .(62)

Proof. We apply Lemma 14 to the form (60). We have l = 3, D = 4, α1 = s +
√

ac,
α2 = t +

√
bc,

α3 =

√
b(x0

√
c + z0

√
a)

√
a(y1

√
c + z1

√
b)

.

Furthermore, A1 = 2 log α1 < 1.608 log c, A2 = 2 log α2 < 1.608 log c. The conjugates of
α3 are √

b(z0
√

a± x0
√

c)
√

a(z1

√
b± y1

√
c)

,

and the leading coefficient of the minimal polynomial of α3 is a0 = a2(c− b)2. We proceed
with the following estimates:

√
b(x0

√
c + |z0|

√
a)

√
a(y1

√
c + |z1|

√
b)

<

√
b · 2x0

√
c√

a · y1
√

c
< 1.415 4

√
b2c

a
,

√
b(x0

√
c + |z0|

√
a)

√
a(y1

√
c− |z1|

√
b)

<

√
b · 2x0

√
c · 2y1

√
c√

a(c− b)
<

2.001c
√

b
4
√

abc2

0.999
√

a · c
< 2.004 4

√
b3c2

a
,

√
b(x0

√
c− |z0|

√
a)

√
a(y1

√
c + |z1|

√
b)

<

√
b(c− a)√

a · x0
√

c · y1
√

c
<

√
b

a
,
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√
b(x0

√
c− |z0|

√
a)

√
a(y1

√
c− |z1|

√
b)

<

√
b(c− a) · 2y1

√
c√

a(c− b) · x0
√

c
< 1.415 4

√
b3c

a2
.

Therefore, A3 = 4h(α3) < log(4.013 a1/2b5/2c3) < 4.804 log c. We also have A3 ≥
log(a2(c − b)2) ≥ 1.9999 log c. Since max{m,n} ∈ {m,m + 1} (by Lemma 3), we con-
clude that B < 0.8041(m + 1).

We may assume that m > 1012. Therefore we have

log
8
3
ac(s +

√
ac)−2m < −0.9999 m log c .

It is clear that α1, α2 and α3 are multiplicatively independent and totally real. Hence, we
may apply Lemma 14. Putting all the above estimates in (61), we obtain

0.9999 m log c < 3.8255 · 1012 · log3 c · log(31.3(m + 1))

and
m

log(31.3(m + 1))
< 3.826 · 1012 log2 c .

Note that the assumption c > max{b5/3, 10100} is not essential. It has an effect only
on the constant on the right hand side of (62) (see [9], Section 10). Baker’s method can
be applied without any gap assumption. However, gap assumptions are necessary for
obtaining lower bounds for solutions using the ”congruence method” of Section 7.

We now compare the lower bounds from Section 7 with the upper bound from Propo-
sition 3 to prove Conjecture 1 for all standard triples with c large enough.

Proposition 4 Let {a, b, c} be a standard Diophantine triple and c ≥ 102171. If {a, b, c, d}
is a Diophantine quadruple and d > c, then d = d+.

Proof. Let ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Then there exist integers m, n ≥ 0
such that

z = vm = wn ,

where the sequences (vm) and (wn) are defined by (12) and (13).
Assume that d 6= d+. Then from Lemma 5 it follows that m ≥ 3 and n ≥ 3. Hence

we may apply Lemmas 10 – 13. We get that in all cases n > c0.01. Now, by Lemma 3,
m + 1 ≥ n > c0.01. If we put this in (62), we obtain

m

log(31.3(m + 1)) log2(m + 1)
< 3.826 · 1016 ,

which implies m < 5.108 · 1021, and finally c < (m + 1)100 < 102171.

Corollary 2 Let {a, b, c} be a standard Diophantine triple such that c < 2.695 b3.5 and
c ≥ 102171. If {a, b, c, d} is a Diophantine quadruple, then d = d− or d = d+.
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Proof. By Proposition 4, we may assume that d < c. Since c < 2.695b3.5, Proposition
1 implies that {a, b, d, c} is a regular quadruple. From the proof of Lemma 5 it follows
that (m,n) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Assume that (m,n) = (0, 0). By Lemma 8 and the regularity of {a, b, d, c}, we conclude
that |z0| = 1 or |z0| = cr−st. Since d > 0, we have |z0| = cr−st and d = (z2

0 −1)/c = d−.
If (m,n) = (0, 1) then Lemma 8 implies |z0| = cr − st and d = d−. Analogously, if

(m,n) = (1, 0) then |z1| = cr − st and d = d−.
Assume finally that (m,n) = (1, 1). Then z0, z1 < 0 and Lemma 8 implies z0 = −t,

z1 = −s. We have v1 = cr − st and d = (v2
1 − 1)/c = d−.

Corollary 3 Let {a, b, c} be a Diophantine triple of the third or fourth kind and c ≥ 102171.
If {a, b, c, d} is a Diophantine quadruple, then d = d− or d = d+.

Proof. The statement follows directly from Corollary 2 since 6ab2 < 2.695b3.5 for any
Diophantine pair {a, b}.

9 Proof of Theorem 1

Let {a, b, c, d, e} be a Diophantine quintuple and a < b < c < d < e. Consider the
quadruple {a, b, c, d}. By Proposition 2, it contains a standard triple, say {A,B, C},
A < B < C.

If d ≥ 102171 then we may apply Proposition 4 on the triple {A,B, C}. We conclude
that

e = A + B + C + 2ABC + 2
√

(AB + 1)(AC + 1)(BC + 1) < 4d(bc + 1) < d3.

On the other hand, by Corollary 1, we have

e > 2.695d3.5b2.5 > d3,

a contradiction. Hence d < 102171.
Consider now the quadruple {A,B, C, e}. We have C ≤ d < 102171. Let (Vm) and (Wn)

be the sequences defined in the same manner as (vm) and (wn), using A,B, C instead of
a, b, c. Let e · C + 1 = V 2

m. By Proposition 3,
m

log(31.3(m + 1))
< 9.561 · 1019

and m < 5.109 · 1021.
From (16) we obtain

Vm < 1.7C
4
√

AC(2
√

AC + 1)m−1 < 2m · dm+0.5.

Therefore
log10 Vm < m log10 2 + (m + 0.5) · 2171 < 1.1094 · 1025

and
log10 e < 2 log10 Vm < 2.2188 · 1025.

Hence e < 101026
.
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Corollary 4 If {a, b, c, d, e} is a Diophantine quintuple and a < b < c < d < e, then
d < 102171 and e < 101026

.

Remark 1 We can use the theorem of Baker and Wüstholz [4] instead of the theorem of
Matveev [18] in the proof of Theorem 1. In that way we obtain slightly larger constants
in Corollary 4, namely, d < 102411 and e < 101028

.

10 There does not exist a Diophantine sextuple

Since the bound for the size of elements of a Diophantine quintuple from Corollary 4
is huge, it is computationally infeasible to check whether there exist any Diophantine
quintuple. However, using a theorem of Bennett [5], Theorem 3.2, on simultaneous ap-
proximations of algebraic numbers, instead of the theorem of Matveev (or Baker and
Wüstholz), we are able to prove that there is no Diophantine sextuple.

Lemma 15 ([5]) If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 < a2, aj = 0
for some 0 ≤ j ≤ 2, q nonzero and N > M9, where M = max0≤i≤2{|ai|}, then we have

max
0≤i≤2

{∣∣∣√1 +
ai

N
− pi

q

∣∣∣} > (130Nγ)−1q−λ

where
λ = 1 +

log(33Nγ)

log
(
1.7N2

∏
0≤i<j≤2(ai − aj)−2

)
and

γ =

{
(a2−a0)2(a2−a1)2

2a2−a0−a1
if a2 − a1 ≥ a1 − a0,

(a2−a0)2(a1−a0)2

a1+a2−2a0
if a2 − a1 < a1 − a0.

We will apply Lemma 15 to the numbers θ1 = s
a

√
a
c and θ2 = t

b

√
b
c . We have

θ1 =

√
(ac + 1)a

a2c
=

√
1 +

1
ac

=

√
1 +

b

abc
,

θ2 =

√
1 +

1
bc

=
√

1 +
a

abc
.

By [9], Lemma 12, it holds

max
(
|θ1 −

sbx

abz
|, |θ2 −

tay

abz
|
)

<
c

2a
· z−2 .(63)

In order to apply Lemma 15, we have to assume that there is a big gap between b
and c. In the following two lemmas we will show that, if we assume that b and c satisfy
some strong gap conditions, the upper and lower bounds obtained in Sections 7 and 8 can
be significantly improved. We will show in the proof of Theorem 2 that this strong gap
conditions are satisfied by the second and the fifth element of a Diophantine sextuple.
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Lemma 16 Let {a, b, c, d}, a < b < c < d, be a Diophantine quadruple.

1) If c > 344.9 b9.5a3.5, then d < c27.62.

2) If c > 296.4 b11.6a1.4, then d < c21.47.

Proof. Let ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. We apply Lemma 15 with a0 = 0,
a1 = a, a2 = b, N = abc, M = b, q = abz, p1 = sbx, p2 = tay. As in the proof of [9],
Corollary 1, we obtain

log z <
log (32.5a2b6c2) log (1.7c2(b− a)−2)

log( 1.7c
16.5ab4(b−a)2

)
.(64)

Assume that c > 344.9b9.5a3.5. We have

32.5a2b6c2 < c2+ 6
9.5 , 1.7c2(b− a)−2 < c2,

1.7c

16.5ab4(b− a)2
> c1− 6

9.5 .

Inserting these estimates in (64), we obtain

log z <
2 · 2.632 log2 c

0.368 log c
< 14.31 log c .

Hence,
z < c14.31(65)

and d = z2−1
c < c27.62.

Assume now that c > 296.4b11.6a1.4. Then we have

32.5a2b6c2 < 32.5a0.9b7.1c2 < c2+ 7.1
11.6 < c2.613, 1.7c2(b− a)−2 < c2,

1.7c

16.5ab6
>

1.7c

16.5a0.7b6.3
> c1− 6.3

11.6 > c0.456,

and from (64) we obtain
z < c11.47(66)

and d < c21.47.

Lemma 17 Let {a, b, c} be a Diophantine triple. Assume that vm = wn and n > 2.
1) If c > max{b11.6, 2.97 · 1016}, then n > c0.0815.

2) If b > 4a and c > max{b9.5, 1.5 · 1013}, then n > c0.11.

Proof.
1) The proof is completely analogous to the proof of Lemma 10.
2) The proof is completely analogous to the proof of Lemma 11.

Proposition 5 If {a, b, c, d} is a Diophantine quadruple such that c > max{296.4 b11.6a1.4,
2.97 · 1016} or b > 4a and c > max{334.9 b9.5a3.5, 1.5 · 1013}, and d > c, then d = d+.
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Proof. Assume that d 6= d+. Then n ≥ 3 and we may apply Lemma 17.
If c > max{296.4b11.6a1.4, 2.97 · 1016}, then n > c0.0815. On the other hand, from (17)

we have
z = wn >

c

3.132 4
√

bc
(1.999

√
bc)n−1 > c

n
2
+ 1

4 .

From (66) we conclude that n ≤ 22 and it implies that c < 12.97 · 1016, a contradiction.
If b > 4a and c > max{334.9b9.5a3.5, 1.5 · 1013}, then n > c0.11. From (65) it follows

that n ≤ 28 and c < 1.5 · 1013, a contradiction.

Proof of Theorem 2: Let {a, b, c, d, e, f}, a < b < c < d < e < f , be a Diophantine
sextuple. By Corollary 1, we have

e > 2.695d3.5b2.5 > 2.695(4abc)3.5b2.5 > 344.9b9.5a3.5 .

If b < 4a then c ≥ a + b + 2r > 9
4b, and we obtain

e > 2.695 · 2.253.5b9.5(4a)1.4b2.1 > 296.4b11.6a1.4 .

Assume now that

e > 2.97 · 1016 or
(

b < 4a and e > 1.5 · 1013
)

.(67)

Then we may apply Proposition 5. We conclude that the quadruple {a, b, e, f} is regular.
It implies that f ≤ 4e(ab+1) < e3. On the other hand, from Corollary 1 we have f > e3.5,
a contradiction.

It remains to consider the case when the conditions (67) are not satisfied. If e ≤
2.97 · 1016 then d < 4 · 104, and it is easy to find all quadruples satisfying 2.695d3.5b2.5 ≤
2.97 · 1016 or b < 4a and 2.695d3.5b2.5 ≤ 1.5 · 1013. There are exactly 10 such quadruples:
{1, 3, 8, 120}, {1, 3, 120, 1680}, {1, 8, 15, 528}, {2, 4, 12, 420}, {3, 5, 16, 1008}, {3, 8, 21,
2080}, {4, 6, 20, 1980}, {4, 12, 30, 5852}, {5, 7, 24, 3432} and {6, 8, 28, 5460}. However,
we have already mentioned that Baker and Davenport [3] proved that {1, 3, 8} cannot be
extended to a quintuple. The same result was proved for the triples {1, 8, 15}, {1, 3, 120}
in [16], and for all triples of the forms {k−1, k+1, 4k} and {F2k, F2k+2, F2k+4} (Fn denotes
the nth Fibonacci number) in [7, 8].

Therefore, it suffices to show that {4, 12, 30, 5852} cannot be extended to a Diophantine
sextuple. But it is easy to prove, using the original Baker-Davenport method, that if d is
a positive integer such that {4, 12, 30, d} is a Diophantine quadruple, then d = 5852. First
of all, in this case we have z0 = z1 = ±1. If we apply Lemma 14 on the form (60) with
(a, b, c) = (4, 12, 30), we obtain m < 2 · 1015. Now we may apply the Baker-Davenport
reduction method [3] (see also [10], Lemma 5). In the first step of the reduction we obtain
m ≤ 7. The second step gives m ≤ 1 if z0 = 1, and m ≤ 2 if z0 = −1, which proves that
d = 5852. Namely, d = 5852 corresponds to z0 = −1 and m = n = 2.
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