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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set {%, %, 1?7,
105

16} has the following property: the product of its any two distinct elements increased
by 1 is a square of a rational number (see [3]). Fermat first found a set of four positive
integers with the above property, and it was {1, 3,8,120}. In 1969, Davenport and Baker
[2] showed that if positive integers 1, 3, 8 and d have this property then d must be 120.

Let n be an integer. A set of positive integers {ai,as,...,a,} is said to have the
property of Diophantus of order n, symbolically D(n), if a;a; + n is a perfect square for
all 1 <i < j < m. The sets with the property D(I?) were particularly discussed in [4].
It was proved that for any integer [ and any set {a, b} with the property D(I?), where ab
is not a perfect square, there exist an infinite number of sets of the form {a, b, ¢, d} with
the property D(I%). This result is the generalization of well known result for [ = 1 (see
[8]). The proof of this result is based on the construction of the double sequences yy
and 2, which are defined in [4] by second order recurrences in each indices. Solving
these recurrences we obtain

(Va+ V)3 + Vab)]"(s + tvab)"

7{
yn,m 2\/5

o = g ((VaE VD[G(k+ Vab)] s+ tVab)”

+ (Va - V(= Vab)]"(s — tVab)"},

where s and ¢ are positive integers satisfying the Pellian equation s — abt?> = 1. The
desired quadruples have the form {a,b, zy m, Tn41,m}, where

Tngn = Wnm = 12)/a = (25 = 1)/b.

In [5], using the above construction, some Diophantine quadruples for the squares of
Fibonacci and Lucas numbers are obtained. In [6], similar results are obtained for some
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classes of generalized Fibonacci numbers w,, = wy,(a, b;p, q), defined as follows:
wo =a, w1 =b, Wy =pwp_1—qup-2 (n=2).
The properties of that sequence were discussed in detail in [10], [11] and [12].
In present paper we will apply the results from [6] to Pell numbers P,, = w,(0,1;2, —1)
and Pell-Lucas numbers Q/, = 2Q,, = w,(2,2;2,—1).
2 Properties of the sequence z,,,,

In this section we repeat the relevant material from [4] with some improvements.

Theorem 1 For all integers m and n the product of any two distinct elements of
the set {a,b, Ty m, Tnt1,m} increased by 1?2 is a square of a rational number. If m is an
integer and n € {—1,0,1}, then x, , is the integer.

Proof: See [4]. |

Remark 1 From Theorem 1 it follows that if 410 and x490 are positive integers
then the set {a,b, z+1,0, 2420} has the property D(I?). Note that T410 = a+bE2k and
Tyo = +dk(k +a)(k £b) /1%

Theorem 2 If n € {_1707 1} and (n?m) € {(_170)7 (_L 1)a (07 _1)7 (070)7 (17 _2)7
(1,-1)}, then xpm is the positive integer greater than b.

Proof: We have

1
Tn,m+3 — Tn,m E(yn,m+3 + yn,m)(yn,erS - yn,m)
1
= 5(28 - 1)(yn,m+2 + yn,m+1)(23 + 1)(yn,m+2 - yn,m—‘rl)
(482 — 1) @nmt2 — D). 1)

We conclude from yp1 = I(s + at) > k and yo—1 = (s — at) > [ that xo; > b and
z9,—1 > 0. We will prove by induction that for m > 1 it holds:

Tomr1 > (45* — 3)xm -

For m = 1 the assertion follows from (1). Assume the assertion holds for the positive
integer m. Then from (1) and s > 2 it follows that

Tomi2 = (452 — 1)(T0m+1 — Tom) + Tom—1

> (45 - 1)(1 - )Tom1 > (4s” = 3)z0.m1 -

452 — 3
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In the same manner we can see that for m < —1 it holds: zg,,—1 > (482 — 3)x0,m.-
Since xp,—2 = o1 + (452 — 1)(xo,—1 — x0,0) > xo,1 > b, we conclude that x,, > b for

m ¢ {—1,0}.

It is easy to prove by induction that for every integer m it holds:

1 1
Yi,m = j(kyo,m + aZO,m)v Y-1,m = Z(kyo,m - azO,m)- (2)
Therefore, if
kyo.m — alzom| > ki, (3)

then x1,, and x_;,, are integers greater than b. The condition (3) is equivalent to

Zo,m > w, where
1
w = ﬁ[aﬂ + 2K%b + 2k2V12 412 .

Since w = a+ (2 + 2)(b+ VI2 + %) < a+2b+ b(a +2) + 2ab(2b + 1) < 4ab(b + 2), it
suffices to hold
xo,m > 4ab(b + 2).

Note that zgo > (45% — 3)zo,1 and xg 3 > (45% — 3)zo,—2 > (452 — 3)zo,1. Furthermore,

12 )2 — 12
(45 = 3)wo1 > 4(s* — 1)wo1 = 4abt2%
a

> 4dab(b+ 2).

= dabt® - 1*t(2s + at + bt)

Hence, if m is an integer such that m > 2 or m < —3, then xg,, > w.

Thus, we proved that if n € {—1,1} and (n,m) & {(—1,-2),(-1,-1),(-1,0),(—=1,1),
(1,-2),(1,-1),(1,0),(1,1)} then the integer z, ,, is greater than b. But the integers
1,0 = a+ b+ 2k and z11 = (tk + s)[(at + bt + 2s)k + (as + bs + 2bt)] are obviously
greater than b. Furthermore, from y_1 1 = s(k —a) —at(k —b) = k(s —at) +a(bt —s) >
k+a > k we obtain z_1 1 > b. Since z_; _; = k(s — bt) 4+ b(at — s) < 0, the relation
Yn,m—1 = SYn,m — atZpm implies y_1 9 > y_1 1 > k and x_1 2 > b. This completes
the proof. [ |

See [4, Example 3] for the illustration of situation where z,,,, = 0 for all (n,m) €

{(—170), (_1’ 1)7 (07 _1)7 (07 0)7 (1’ _2)’ (17 _1)}‘

Theorem 3 Let | be an integer and let {a,b} be the Diophantine pair with the prop-
erty D(I?). If the integer ab is not a perfect square then there exist an infinite number of
Diophantine quadruples of the form {a,b, c,d} with the property D(1?).

Proof: We will show that the sets {a,b, 2o m,z—1,m}, m & {—1,0,1}, and {a, b, xo,m,
T1m}, m & {—2,—1,0}, are Diophantine quadruples with the property D(I?).
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By Theorems 1 and 2, it suffices to prove that xzg,, # _1,m and 2o, # Tim
respectively. Let us first observe that yo,, > 0 and (2) implies y1 ,, > 0 and y_1,, > 0.
If £0,m = @41, then yg,, = ‘12[((2:%). From yo,, > k we obtain (k —1)(2k +1) + a?l < 0,
which is impossible. This proves that the above sets are Diophantine quadruples. There
is an infinite number of distinct quadruples between them, since zg y,+1 > xo,m for m > 1.

3 Diophantine quadruples and Pell numbers

In this section we construct several Diophantine quadruples represented in terms of
Pell numbers P,, and Pell-Lucas numbers @/, = 2Q,,. These numbers are defined by

Py=0, =1, Pyya = 2P, 1+ Py, n=>0;
QO = 17 Ql = 17 Qn+2 = 2Qn+1 + QTL? n Z 0.

We will start with the analogs of the fact that the sets
{n,n+2,4n+1),4(n+1)(2n+1)(2n + 3)},

{Fons Font2, Fonya, 4Fon 1 Fon g2 Fonis}
have the property D(1) (see [13], [9], [14]).

Theorem 4 For every positive integer n, the sets

{Pon, Ponta, 2Poy, 4Q2p Pop1Q2n+1},
{Pon, Pont2, 2Popi2, 4Pop11Q2n+1Q2n+2}

have the property D(1), the sets

{Pon;, Ponta, 4Pons2, 4Pony1 Pony2Pony3},
{Pony Ponta, 8Pant2, 4Q2n+1P2n42Q2n 43}
have the property D(4) and the set
{Pon, Ponysg, 36 Ponia, Pony2PoniaPonie}
has the property D(144).
Since Py, = 2wy (0,1;6,1), we obtain from [6, (9)] the identity:
Pop—4Pon—2Pons2Ponsa + [(12 4+ 2) Py, )* = (P3, + 24)%,

and the following theorem can be proved using the construction from Remark 1 (see [6,
Theorem 5]).
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Theorem 5 For every integer n > 3, the set
{ Py 4Pon_2, Popy2Popya, 196P3 4Py, 3Py, 3(P3, +24)}
has the property D(196P3,), and the set
{Pon—4Pon—2, Pont2Ponta, 200Ps,, 4Q2n—3Qon+3(P3, — 24)}

has the property D(100P3,).

5

If we have the pair of identities of the form: ab+41? = k? and s —abt?> = 1, then we can
construct the sequence x, ., and obtain an infinite number of Diophantine quadruples
with the property D(I%). There are several pairs of identities for Pell and Pell-Lucas

numbers which have the above form. For example,

PP+ P} = Q1
(P24 P, 1Pny1)? — 4P, 1P, P? = 1

and

Qn-1Qni1+ Q2 = 4P2,
AP} — Qn-1Qn11Q% = 1.

Applying the construction of section 2 to these pairs of identities we get

Theorem 6 For every positive integer n > 2, the sets

{Pn—la Pn—i—l, 4Qn—1P3Qn7 4PSQTLQH+1}7

{Po_1, Puy1, 4P3QuQn i1, 4QnPn+1Qn+1(Pg+1 — PyPp1 — P2)}

have the property D(P2), and the sets

{Qn—h Qn—i—h 4Pn—1Pn 27 4PHQ§LPH+1}7

{anb Qn+17 4PHQ%Pn+17 4Pnpn+1Qn+1(PnPn+2 - Pnflanrl)}

have the property D(Q?).
Theorem 7 For every positive integer n > 3, the sets

{Pn—2a Pn—i—?y 4Pn—1Pn+1Q%Pn+17 4Qn—1PnQ?LQn+l}u

{Pn—27 Pn+27 4Qn—1PnQ121Qn+17 16Qn—1PnQn+1(2Pﬁ - Pn—1Pn+1)}
have the property D(4Q?).

(10)

(11)
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Proof: The proof is based of the following identities:

Py oPoia +4Q; = 9P3,
(3P2 —2P, 1Pyy1)? — Py 9Pyi2P? = 4.

6

Dividing both sides of the identity (13) by 4, we can set a = P,_2, b = P12, | = 2Qp,

k=3Py, s =5(3P; —2P,_1Pop1) and t = 3P,
We have

Y0,0 = 20,0 = 3P0, y1,0 =3P, + P2, 210=3P, + P,yy2,
Yy-10 =3P, — P2, 210 =3P, — Pyyo.

To simplify notation, we write P41 = A, P, = B. This gives
(A> —2AB — B*? =1.
We now have

Yo,1 = SYyoo+ atzoo = 2(A— B)(4B%* + AB — A?)
yi1 = 2(A* - 7A% +7AB* +11B?)
y-11 = 2(A— B)(3AB — A* - B%),

and, by (14), we get

z01 = [yo1? —13(A% — 2AB — B?)?|/a = 4B(A — B)*(A+ B)(3B — A)

= 4PQ;Qnt1Qn—1

16B(A+ B)(3B — A)(2B% 4+ 2AB — A?)
16P,Qn+1Qn—1(2P} — Po1Pot1)

x4, = 4AB(A—2B)(A— B)?
4Pnpn+1pn—1Qi 3

x1,1

which proves the theorem.

4 Diophantine quintuples

It was proved in [7] that for every Diophantine quadruple {z1, 2, x3, 24} with the prop-
erty D(I?) such that xyzox3zy # I*, there exist a positive rational number x5 with the
property that ;x5 412 is a square of a rational number for ¢ = 1,2, 3,4. This construction
generalizes that of [1]. However, on the quadruples in this paper these two constructions

coincide. We proceed with an example.
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Example 1 From (6) it follows that the set {1,Q,_1P?Q,+1} has the property
D(P2Q?). For a = 1, b = Qu-1P2Qnt1, k = 2P? and | = P,Q,, we get z19 =
Pr1Q% P11, 2,0 = 8P2Q2. The constructions from [1] and [7] on the set {a, b, z10, 720}

6P227L(Q§n_4)
(Q3,,—10)2

{(Q3, —10)%, Qn-1P2Qn11(Q3, — 10)2, P,_1Q2 P 11(Q3, — 10)?,

is the Diophantine quintuple with the property D(P2Q?2(Q3,—10)*). From (15) for n = 2
we get the Diophantine quintuple {961, 3040, 26908, 43245, 276768} with the property
D(36 - 31%).

give the rational number . Hence, for every integer n > 2 the set

(15)

One question still unanswered is whether exists a Diophantine quintuple with the
property D(1). Therefore one may ask which is the least positive integer n;, and which
is the greatest negative integer ns, for which there exists a Diophantine quintuple with
the property D(n;), i = 1,2. It holds: n; < 256 and ny > —255, since the sets
{1,33,105, 320, 18240} and {5, 21, 64,285,6720} have the property D(256), and the set
{8,32,77,203,528} has the property D(—255).
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