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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set { 1
16 , 33

16 , 17
4 ,

105
16 } has the following property: the product of its any two distinct elements increased
by 1 is a square of a rational number (see [3]). Fermat first found a set of four positive
integers with the above property, and it was {1, 3, 8, 120}. In 1969, Davenport and Baker
[2] showed that if positive integers 1, 3, 8 and d have this property then d must be 120.

Let n be an integer. A set of positive integers {a1, a2, . . . , am} is said to have the
property of Diophantus of order n, symbolically D(n), if aiaj + n is a perfect square for
all 1 ≤ i < j ≤ m. The sets with the property D(l2) were particularly discussed in [4].
It was proved that for any integer l and any set {a, b} with the property D(l2), where ab
is not a perfect square, there exist an infinite number of sets of the form {a, b, c, d} with
the property D(l2). This result is the generalization of well known result for l = 1 (see
[8]). The proof of this result is based on the construction of the double sequences yn,m

and zn,m which are defined in [4] by second order recurrences in each indices. Solving
these recurrences we obtain

yn,m =
l

2
√

b
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√
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√

a)[
1
l
(k −

√
ab)]n(s− t

√
ab)m},

zn,m =
l

2
√

a
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√

a−
√

b)[
1
l
(k −

√
ab)]n(s− t

√
ab)m} ,

where s and t are positive integers satisfying the Pellian equation s2 − abt2 = 1. The
desired quadruples have the form {a, b, xn,m, xn+1,m}, where

xn,m = (y2
n,m − l2)/a = (z2

n,m − l2)/b .

In [5], using the above construction, some Diophantine quadruples for the squares of
Fibonacci and Lucas numbers are obtained. In [6], similar results are obtained for some
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classes of generalized Fibonacci numbers wn = wn(a, b; p, q), defined as follows:

w0 = a, w1 = b, wn = pwn−1 − qwn−2 (n ≥ 2).

The properties of that sequence were discussed in detail in [10], [11] and [12].
In present paper we will apply the results from [6] to Pell numbers Pn = wn(0, 1; 2,−1)

and Pell-Lucas numbers Q′
n = 2Qn = wn(2, 2; 2,−1).

2 Properties of the sequence xn,m

In this section we repeat the relevant material from [4] with some improvements.

Theorem 1 For all integers m and n the product of any two distinct elements of
the set {a, b, xn,m, xn+1,m} increased by l2 is a square of a rational number. If m is an
integer and n ∈ {−1, 0, 1}, then xn,m is the integer.

Proof: See [4].

Remark 1 From Theorem 1 it follows that if x±1,0 and x±2,0 are positive integers
then the set {a, b, x±1,0, x±2,0} has the property D(l2). Note that x±1,0 = a + b± 2k and
x±2,0 = ±4k(k ± a)(k ± b)/l2.

Theorem 2 If n ∈ {−1, 0, 1} and (n, m) 6∈ {(−1, 0), (−1, 1), (0,−1), (0, 0), (1,−2),
(1,−1)}, then xn,m is the positive integer greater than b.

Proof: We have

xn,m+3 − xn,m =
1
a
(yn,m+3 + yn,m)(yn,m+3 − yn,m)

=
1
a
(2s− 1)(yn,m+2 + yn,m+1)(2s + 1)(yn,m+2 − yn,m+1)

= (4s2 − 1)(xn,m+2 − xn,m+1) . (1)

We conclude from y0,1 = l(s + at) > k and y0,−1 = l(s − at) ≥ l that x0,1 > b and
x0,−1 ≥ 0. We will prove by induction that for m ≥ 1 it holds:

x0,m+1 ≥ (4s2 − 3)x0,m .

For m = 1 the assertion follows from (1). Assume the assertion holds for the positive
integer m. Then from (1) and s ≥ 2 it follows that

x0,m+2 = (4s2 − 1)(x0,m+1 − x0,m) + x0,m−1

≥ (4s2 − 1)(1− 1
4s2 − 3

)x0,m+1 ≥ (4s2 − 3)x0,m+1 .
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In the same manner we can see that for m ≤ −1 it holds: x0,m−1 ≥ (4s2 − 3)x0,m.
Since x0,−2 = x0,1 + (4s2 − 1)(x0,−1 − x0,0) ≥ x0,1 > b, we conclude that x0,m > b for
m 6∈ {−1, 0}.

It is easy to prove by induction that for every integer m it holds:

y1,m =
1
l
(ky0,m + az0,m), y−1,m =

1
l
(ky0,m − az0,m). (2)

Therefore, if

ky0,m − a|z0,m| > kl , (3)

then x1,m and x−1,m are integers greater than b. The condition (3) is equivalent to
x0,m > w, where

w =
1
l2

[al2 + 2k2b + 2k2
√

l2 + b2] .

Since w = a + (2 + 2ab
l2

)(b +
√

l2 + b2) < a + 2b + b(a + 2) + 2ab(2b + 1) < 4ab(b + 2), it
suffices to hold

x0,m > 4ab(b + 2).

Note that x0,2 ≥ (4s2 − 3)x0,1 and x0,−3 ≥ (4s2 − 3)x0,−2 ≥ (4s2 − 3)x0,1. Furthermore,

(4s2 − 3)x0,1 > 4(s2 − 1)x0,1 = 4abt2
l2(s + at)2 − l2

a
= 4abt2 · l2t(2s + at + bt)

> 4ab(b + 2).

Hence, if m is an integer such that m ≥ 2 or m ≤ −3, then x0,m > w.
Thus, we proved that if n ∈ {−1, 1} and (n, m) 6∈ {(−1,−2), (−1,−1), (−1, 0), (−1, 1),

(1,−2), (1,−1), (1, 0), (1, 1)} then the integer xn,m is greater than b. But the integers
x1,0 = a + b + 2k and x1,1 = (tk + s)[(at + bt + 2s)k + (as + bs + 2bt)] are obviously
greater than b. Furthermore, from y−1,−1 = s(k− a)− at(k− b) = k(s− at)+ a(bt− s) ≥
k + a > k we obtain x−1,−1 > b. Since z−1,−1 = k(s − bt) + b(at − s) < 0, the relation
yn,m−1 = syn,m − atzn,m implies y−1,−2 > y−1,−1 > k and x−1,−2 > b. This completes
the proof.

See [4, Example 3] for the illustration of situation where xn,m = 0 for all (n, m) ∈
{(−1, 0), (−1, 1), (0,−1), (0, 0), (1,−2), (1,−1)}.

Theorem 3 Let l be an integer and let {a, b} be the Diophantine pair with the prop-
erty D(l2). If the integer ab is not a perfect square then there exist an infinite number of
Diophantine quadruples of the form {a, b, c, d} with the property D(l2).

Proof: We will show that the sets {a, b, x0,m, x−1,m}, m 6∈ {−1, 0, 1}, and {a, b, x0,m,
x1,m}, m 6∈ {−2,−1, 0}, are Diophantine quadruples with the property D(l2).
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By Theorems 1 and 2, it suffices to prove that x0,m 6= x−1,m and x0,m 6= x1,m

respectively. Let us first observe that y0,m > 0 and (2) implies y1,m > 0 and y−1,m > 0.
If x0,m = x±1,m then y2

0,m = al(b−a)
2(k−l) . From y0,m > k we obtain (k − l)2(2k + l) + a2l < 0,

which is impossible. This proves that the above sets are Diophantine quadruples. There
is an infinite number of distinct quadruples between them, since x0,m+1 > x0,m for m ≥ 1.

3 Diophantine quadruples and Pell numbers

In this section we construct several Diophantine quadruples represented in terms of
Pell numbers Pn and Pell-Lucas numbers Q′

n = 2Qn. These numbers are defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, n ≥ 0;
Q0 = 1, Q1 = 1, Qn+2 = 2Qn+1 + Qn, n ≥ 0.

We will start with the analogs of the fact that the sets

{n, n + 2, 4(n + 1), 4(n + 1)(2n + 1)(2n + 3)},

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3}

have the property D(1) (see [13], [9], [14]).

Theorem 4 For every positive integer n, the sets

{P2n, P2n+2, 2P2n, 4Q2nP2n+1Q2n+1},

{P2n, P2n+2, 2P2n+2, 4P2n+1Q2n+1Q2n+2}

have the property D(1), the sets

{P2n, P2n+4, 4P2n+2, 4P2n+1P2n+2P2n+3},

{P2n, P2n+4, 8P2n+2, 4Q2n+1P2n+2Q2n+3}

have the property D(4) and the set

{P2n, P2n+8, 36P2n+4, P2n+2P2n+4P2n+6}

has the property D(144).

Since P2n = 2wn(0, 1; 6, 1), we obtain from [6, (9)] the identity:

P2n−4P2n−2P2n+2P2n+4 + [(12± 2)P2n]2 = (P 2
2n ± 24)2,

and the following theorem can be proved using the construction from Remark 1 (see [6,
Theorem 5]).
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Theorem 5 For every integer n ≥ 3, the set

{P2n−4P2n−2, P2n+2P2n+4, 196P 2
2n, 4P2n−3P2n+3(P 2

2n + 24)}

has the property D(196P 2
2n), and the set

{P2n−4P2n−2, P2n+2P2n+4, 200P 2
2n, 4Q2n−3Q2n+3(P 2

2n − 24)}

has the property D(100P 2
2n).

If we have the pair of identities of the form: ab+l2 = k2 and s2−abt2 = 1, then we can
construct the sequence xn,m and obtain an infinite number of Diophantine quadruples
with the property D(l2). There are several pairs of identities for Pell and Pell-Lucas
numbers which have the above form. For example,

Pn−1Pn+1 + P 2
n = Q2

n, (4)
(P 2

n + Pn−1Pn+1)2 − 4Pn−1Pn+1P
2
n = 1 (5)

and

Qn−1Qn+1 + Q2
n = 4P 2

n , (6)
4P 4

n −Qn−1Qn+1Q
2
n = 1. (7)

Applying the construction of section 2 to these pairs of identities we get

Theorem 6 For every positive integer n ≥ 2, the sets

{Pn−1, Pn+1, 4Qn−1P
3
nQn, 4P 3

nQnQn+1}, (8)

{Pn−1, Pn+1, 4P 3
nQnQn+1, 4QnPn+1Qn+1(P 2

n+1 − PnPn+1 − P 2
n)} (9)

have the property D(P 2
n), and the sets

{Qn−1, Qn+1, 4Pn−1PnQ3
n, 4PnQ3

nPn+1}, (10)

{Qn−1, Qn+1, 4PnQ3
nPn+1, 4PnPn+1Qn+1(PnPn+2 − Pn−1Pn+1)} (11)

have the property D(Q2
n).

Theorem 7 For every positive integer n ≥ 3, the sets

{Pn−2, Pn+2, 4Pn−1Pn+1Q
2
nPn+1, 4Qn−1PnQ2

nQn+1},

{Pn−2, Pn+2, 4Qn−1PnQ2
nQn+1, 16Qn−1PnQn+1(2P 2

n − Pn−1Pn+1)}

have the property D(4Q2
n).
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Proof: The proof is based of the following identities:

Pn−2Pn+2 + 4Q2
n = 9P 2

n , (12)
(3P 2

n − 2Pn−1Pn+1)2 − Pn−2Pn+2P
2
n = 4. (13)

Dividing both sides of the identity (13) by 4, we can set a = Pn−2, b = Pn+2, l = 2Qn,
k = 3Pn, s = 1

2(3P 2
n − 2Pn−1Pn+1) and t = 1

2Pn.
We have

y0,0 = z0,0 = 3Pn, y1,0 = 3Pn + Pn−2, z1,0 = 3Pn + Pn+2,
y−1,0 = 3Pn − Pn−2, z−1,0 = 3Pn − Pn+2.

To simplify notation, we write Pn+1 = A, Pn = B. This gives

(A2 − 2AB −B2)2 = 1 . (14)

We now have

y0,1 = sy0,0 + atz0,0 = 2(A−B)(4B2 + AB −A2)
y1,1 = 2(A3 − 7A2b + 7AB2 + 11B3)

y−1,1 = 2(A−B)(3AB −A2 −B2) ,

and, by (14), we get

x0,1 = [y0,1
2 − l2(A2 − 2AB −B2)2]/a = 4B(A−B)2(A + B)(3B −A)

= 4PnQ2
nQn+1Qn−1

x1,1 = 16B(A + B)(3B −A)(2B2 + 2AB −A2)
= 16PnQn+1Qn−1(2P 2

n − Pn−1Pn+1)
x−1,1 = 4AB(A− 2B)(A−B)2

= 4PnPn+1Pn−1Q
2
n ,

which proves the theorem.

4 Diophantine quintuples

It was proved in [7] that for every Diophantine quadruple {x1, x2, x3, x4} with the prop-
erty D(l2) such that x1x2x3x4 6= l4, there exist a positive rational number x5 with the
property that xix5+l2 is a square of a rational number for i = 1, 2, 3, 4. This construction
generalizes that of [1]. However, on the quadruples in this paper these two constructions
coincide. We proceed with an example.



A PROBLEM OF DIOPHANTUS AND PELL NUMBERS 7

Example 1 From (6) it follows that the set {1, Qn−1P
2
nQn+1} has the property

D(P 2
nQ2

n). For a = 1, b = Qn−1P
2
nQn+1, k = 2P 2

n and l = PnQn we get x1,0 =
Pn−1Q

2
nPn+1, x2,0 = 8P 2

nQ2
n. The constructions from [1] and [7] on the set {a, b, x1,0, x2,0}

give the rational number 6P 2
2n(Q2

2n−4)

(Q2
2n−10)2

. Hence, for every integer n ≥ 2 the set

{(Q2
2n − 10)2, Qn−1P

2
nQn+1(Q2

2n − 10)2, Pn−1Q
2
nPn+1(Q2

2n − 10)2,

2P 2
2n(Q2

2n − 10)2, 6P 2
2n(Q2

2n − 4)}
(15)

is the Diophantine quintuple with the property D(P 2
nQ2

n(Q2
2n−10)4). From (15) for n = 2

we get the Diophantine quintuple {961, 3040, 26908, 43245, 276768} with the property
D(36 · 314).

One question still unanswered is whether exists a Diophantine quintuple with the
property D(1). Therefore one may ask which is the least positive integer n1, and which
is the greatest negative integer n2, for which there exists a Diophantine quintuple with
the property D(ni), i = 1, 2. It holds: n1 ≤ 256 and n2 ≥ −255, since the sets
{1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720} have the property D(256), and the set
{8, 32, 77, 203, 528} has the property D(−255).
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