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The Greek mathematician Diophantus of Alexandria noted that the numbers
x, x + 2, 4x + 4 and 9x + 6, where x = 1

16
, have the following property: the

product of any two of them increased by 1 is a square of a rational number (see
[4]). Fermat first found a set of four positive integers with the above property, and
it was {1, 3, 8, 120}. Later, Davenport and Baker [3] showed that if d is a positive
integer such that the set {1, 3, 8, d} has the property of Diophantus, then d has to
be 120.

In [2] and [5], the more general problem was considered. Let n be an integer.
A set of positive integers {a1, a2, . . . , am} is said to have the property D(n) if for
all i, j ∈ {1, 2, . . . ,m}, i 6= j, the following holds: aiaj + n = b2

ij, where bij is an
integer. Such a set is called a Diophantine m-tuple. If n is an integer of the form
4k + 2, k ∈ Z, then there does not exist Diophantine quadruple with the property
D(n) (see [2, Theorem 1], [5, Theorem 4] or [8, p. 802]). If an integer n is not
of the form 4k + 2 and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at
least one Diophantine quadruple with the property D(n), and if n 6∈ S ∪ T , where
T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then there exist at least two
distinct Diophantine quadruples with the property D(n) (see [5, Theorems 5 and 6]
and [6, p. 315]). For n ∈ S the question of the existence of Diophantine quadruples
with the property D(n) is still unanswered. This question is at present far from
being solved. Remark 3 from [5] reduces the problem to the elements of the set
S ′ = {−3,−1, 3, 5, 8, 20}. Let us mention that in [2] and [11], it was proved that
the Diophantine triples {1, 2, 5} and {1, 5, 10} with the property D(−1) cannot be
extended to the Diophantine quadruples with the same property.

Our hypothesis is that for n ∈ S there does not exist a Diophantine quadruple
with the property D(n). In this paper we consider some consequences of this
hypothesis to the problem of Diophantus for linear polynomials.
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Definition 1 Let k 6= 0 and l be integers. A set of linear polynomials with
integral coefficients {aix+bi : i = 1, 2, . . . ,m} is called a linear Diophantine m-tuple
with the property D(kx + l) if

(aix + bi)(ajx + bj) + kx + l

is a square of a polynomial with integral coefficients for all i, j ∈ {1, 2, . . . ,m},
i 6= j. We call a linear Diophantine m-tuple canonical if gcd(a1, a2, . . . , am, k) = 1.

Remark 1 If the set {aix + bi : i = 1, . . . ,m} is a linear Diophantine m-tuple
with the property D(kx + l), then the numbers a1, . . . , am are all of the same sign.
Therefore we may assume that a1, . . . , am are positive. If the above m-tuple is
canonical, then the numbers a1, . . . , am are perfect squares. If gcd(a1, . . . , am, k) =
e > 1, then replacing ex by x we get a canonical linear Diophantine quadruple with
the property D(k

e
x + l).

Some aspects of the problem of Diophantus for polynomials were considered in
[1], [5], [7], [9] and [10]. In [5], it was proved that if {aix + bi : i = 1, 2, 3, 4} is a
linear Diophantine quadruple with the property D(kx + l), then k is even, and if
the above quadruple is canonical and if gcd(k, l) = 1, then l is a quadratic residue
modulo k. It is not known whether the converse of this result is true. We will show
that this question is connected with the our hypothesis about the elements of the
exceptional set S.

The basic idea is to consider linear Diophantine quadruples which have two
elements with equal constant terms.

Lemma 1 Let {a2x−β, b2x−β} be a linear Diophantine pair with the property
D(kx + l). Then there exists an integer α such that l = α2 − β2 and k = β(a2 +
b2) + 2αab.

Proof: Since β2 + l is a perfect square, we conclude that there exists an integer
α such that l = α2 − β2. From

(a2x− β)(b2x− β) + kx + l = (abx + α)2

it follows that k = β(a2 + b2) + 2αab.

Lemma 2 Let {a2x− β, b2x− β, c(x)} be a linear Diophantine triple with the
property D(kx + l). In the notation of Lemma 1, we have:

c(x) ∈ {(a + b)2x + 2α− 2β, (a− b)2x− 2α− 2β,

[
k

β(a + b)
]2x +

2k(α− β)

β(a + b)2
, [

k

β(a− b)
]2x− 2k(α + β)

β(a− b)2
} .



PROBLEM OF DIOPHANTUS AND DAVENPORT 3

Proof: Write c(x) = c2x− γ. Then there exists an integer δ such that

βγ + α2 − β2 = δ2. (1)

We conclude from (a2x− β)(c2x− γ) + kx + l = (acx± δ)2 and Lemma 1 that

γa2 − βc2 + β(a2 + b2) + 2αab = ±2δac . (2)

Combining (2) with (1) we obtain

(αa + βb)2 = (δa± βc)2

and finally
αa + βb = ±δa± βc . (3)

In the same manner we can see that from (b2x− β)(c2x− γ) + kx + l = (bcx± δ)2

it follows that
αb + βa = ±δb± βc . (4)

Solving the systems of the equations (3) and (4) we get

(|c|, |δ|) ∈ {(|a + b|, |α− β|), (|a− b|, |α + β|),

(| k

β(a + b)
|, |(α− β)(a− b)

a + b
|), (| k

β(a− b)
|, |(α + β)(a + b)

a− b
|)} .

From (1) we see that

c(x) ∈ {(a + b)2x + 2α− 2β, (a− b)2x− 2α− 2β,

[
k

β(a + b)
]2x +

2k(α− β)

β(a + b)2
, [

k

β(a− b)
]2x− 2k(α + β)

β(a− b)2
} .

Lemma 3 Let {a2x− β, b2x− β, c(x), d(x)} be a linear Diophantine quadruple
with the property D(kx + l), where gcd(k, l) = 1. In the notation of Lemma 1, we
have:

a

b
∈ { β

±β − 2α
,
±β − 2α

β
,

β

2α± 3β
,

2α± 3β

β
,

3β

±β − 2α
,
±β − 2α

3β
} .
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Proof: Set p1(x) = (a + b)2x + 2α− 2β, p2(x) = (a− b)2x− 2α− 2β, p3(x) =

[ k
β(a+b)

]2x + 2k(α−β)
β(a+b)2

, p4(x) = [ k
β(a−b)

]2x− 2k(α+β)
β(a−b)2

. According to Lemma 2, we have

{c(x), d(x)} ⊆ {p1(x), p2(x), p3(x), p4(x)} .

Thus we need to consider six cases. We can assume that gcd(a, b) = 1, since
otherwise we put x′ = e2x, where e = gcd(a, b).

Case 1. {c(x), d(x)} = {p1(x), p2(x)}
If y is an integer such that (2α− 2β)(−2α− 2β) + l = y2, then

y2 = −3l . (5)

From p1(x) · p2(x) + kx + l = [(a2 − b2)x + y]2 it follows that

(2α− 2β)(a− b)2 − (2α + 2β)(a + b)2 + β(a2 + b2) + 2αab = 2y(a2 − b2) .

This gives
−3k = 2y(a2 − b2) . (6)

Therefore |y| = 3, by (5), (6) and gcd(k, l) = 1. We conclude that l = −3 and that
|α| = 1, |β| = 2. Combining k = ±2(a2 + b2)± 2ab with (6) we get a

b
∈ {±1

2
,±2}.

It is easily seen that in all of these four cases the intersection

{c(x), d(x)} ∩ {a2x− β, b2x− β}

is nonempty, which contradicts our assumption that {a2x− β, b2x− β, c(x), d(x)}
is a quadruple. Therefore the first case is impossible.

Case 2. {c(x), d(x)} = {p1(x), p3(x)}
We have:

a

b
∈ { β

β − 2α
,
β − 2α

β
,

β

2α− 3β
,
2α− 3β

β
} .

Case 3. {c(x), d(x)} = {p2(x), p4(x)}
We have:

a

b
∈ { β

−β − 2α
,
−β − 2α

β
,

β

2α + 3β
,
2α + 3β

β
} .

Case 4. {c(x), d(x)} = {p1(x), p4(x)}
We have:

a

b
∈ { β

−β − 2α
,

3β

β − 2α
,
−β − 2α

β
,
β − 2α

3β
} .
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Case 5. {c(x), d(x)} = {p2(x), p3(x)}
We have:

a

b
∈ { β

β − 2α
,

3β

−β − 2α
,
β − 2α

β
,
−β − 2α

3β
} .

Case 6. {c(x), d(x)} = {p3(x), p4(x)}
We have:

a

b
∈ {−β − 2α

β
,

β

β − 2α
,
β − 2α

β
,

β

−β − 2α
} .

We give the proof only for the case 6, which is the most involved; the proofs of
the other cases are similar in spirit.

Let y be an integer such that

4k2(β2 − α2)

β2(a2 − b2)2
+ l =

y2

β2(a2 − b2)2
. (7)

From p3(x) · p4(x) + kx + l = [ k2

β2(a2−b2)
x + y

β(a2−b2)
]2 it follows that

β3(a2 − b2)2 − 4βk2 = 2ky . (8)

Combining (8) with (7) we have

[4k2 − β2(a2 − b2)2] · [4k2α2 − β4(a2 − b2)2] = 0 .

Let 4k2 = β2(a2 − b2)2. We can assume that 2k = β(a2 − b2). We conclude
that 2β(a2 + b2) + 4αab = β(a2 − b2), and hence that

βa2 + 4αab + 3βb2 = 0 . (9)

From this we have a
b

= −2α±z
β

, where z2 = 4α2−3β2. Write a1

b1
= −2α+z

β
, a2

b2
= −2α−z

β
,

where gcd(a1, b1) = gcd(a2, b2) = 1, and 2ki = β(a2
i − b2

i ), i = 1, 2. We claim that
gcd(ki, l) > 1 for i = 1, 2. Suppose, contrary to our claim, that gcd(ki, l) = 1 for
some i ∈ {1, 2}. We have

4k1k2 = β2(a2
1 − b2

1)(a
2
2 − b2

2)

= β2 · b2
1b

2
2

β4
· [(−2α + z)2 − β2] · [(−2α− z)2 − β2]

=
b2
1b

2
2

β2
· [(2α + β)2 − z2] · [(2α− β)2 − z2]

=
b2
1b

2
2

β2
· 16β2(β2 − α2) = −16lb2

1b
2
2 .
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We conclude from (−2α+z)(−2α−z) = 3β2 that b1b2|β, and hence that k1k2|4β2l.
Set ci = a2

i − b2
i . Since gcd(ki, l) = 1 and the integer 2ki = βci divides 8β2, we have

8β ≡ 0 (mod ci). From (9) it follows that 8αaibi = −8βbi − 2βci ≡ 0 (mod ci).
We conclude from gcd(ai, bi) = 1 that gcd(ai, bi, ci) = 1, and hence that 8α ≡ 0
(mod ci). Thus we have 2k ≡ 0 (mod ci), 8l ≡ 0 (mod ci) and gcd(k, l) = 1,
which implies ci|8, i.e. ci ∈ {±1,±2,±4,±8}. Since ai 6= 0 and bi 6= 0, it follows
that ci = ±8. Hence α and β are odd and l is even, which contradicts the fact that
k is even and gcd(k, l) = 1.

Let 4k2α2 = β4(a2 − b2)2. We have

[2kα + β2(a2 − b2)] · [2kα− β2(a2 − b2)]

= [βa + (2α + β)b] · [(2α− β)a + βb] · [βa + (2α− β)b] · [(2α + β) + βb] = 0 .

Hence
a

b
∈ {−β − 2α

β
,

β

β − 2α
,
β − 2α

β
,

β

−β − 2α
} .

Theorem 1 Let l ∈ {−3,−1, 3, 5}. Write e(−3) = 21, e(−1) = 5, e(3) = 39
and e(5) = 55. Suppose that there does not exist a Diophantine quadruple with the
property D(l). Then there does not exist a Diophantine quadruple with the property
D(kx + l), provided gcd(k, e(l)) = 1.

Proof: Let l ∈ {−3,−1, 3, 5} and let k be an integer such that gcd(k, l) = 1.
Suppose that {aix + bi : i = 1, 2, 3, 4} is a canonical linear Diophantine quadruple
with the property D(kx + l). Then the set {b1, b2, b3, b4} has the property that
the number bibj + l is a perfect square for all i, j ∈ {1, 2, 3, 4}, i 6= j. Since,
by assumption of the theorem, this set is not a Diophantine quadruple with the
property D(l), we conclude that there exist indices i, j ∈ {1, 2, 3, 4}, i 6= j, such
that bi = bj. Without loss of generality we can assume that b1 = b2 = β.

The integers l have the unique representation as a difference of the squares of
two integers:

−3 = 12 − 22, −1 = 02 − 12, 3 = 22 − 12, 5 = 32 − 22.

From Lemma 3 by an easy computation we conclude that for l ∈ {−3,−1, 3, 5}
there is one and only one canonical linear Diophantine quadruple with the property
D(kx + l), such that gcd(k, l) = 1. These quadruples are

{4x− 2, 9x− 2, 25x− 6, 49x− 14}, (10)
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{x− 1, 9x− 1, 16x− 2, 25x− 5}, (11)

{9x + 1, 25x + 1, 64x + 6, 169x + 13}, (12)

{9x + 2, 16x + 2, 49x + 10, 121x + 22} (13)

with the properties D(14x−3), D(10x−1), D(26x+3) and D(22x+5) respectively.
This proves the theorem.

Remark 2 The sets (10) – (13) are the special cases of the following more
general formula from [7]: the set

{9m + 4(3k − 1), (3k − 2)2m + 2(k − 1)(6k2 − 4k + 1),

(3k + 1)2m + 2k(6k2 + 2k − 1), (6k − 1)2m + 4k(2k − 1)(6k − 1)}
(14)

has the property D(2m(6k− 1) + (4k− 1)2). The sets (10) – (13) can be obtained
from (14) for k = −1, m = −x + 2; k = 1, m = x − 1; k = −2, m = −x + 3 and
k = 2, m = x− 2 respectively.
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