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Abstract. A Diophantine m-tuple with the property D(n), where n is an integer,
is defined as a set of m positive integers with the property that the product of its any
two distinct elements increased by n is a perfect square. It is known that if n is of
the form 4k + 2, then there does not exist a Diophantine quadruple with the prop-
erty D(n). The author has formerly proved that if n is not of the form 4k + 2 and
n 6∈ {−15,−12,−7,−4,−3,−1, 3, 5, 7, 8, 12, 13, 15, 20, 21, 24, 28, 32, 48, 60, 84}, then there
exist at least two distinct Diophantine quadruples with the property D(n).

The main problem of this paper is to consider the set U of all integers n, not of the
form 4k + 2, such that there exist at most two distinct Diophantine quadruples with the
property D(n). One open question is whether the set U is finite or not. It can be proved
that if n ∈ U and |n| > 48, then n can be represented in one of the following forms:
4k + 3, 16k + 12, 8k + 5, 32k + 20. The main results of the this paper are:

If n ∈ U \ {−9,−1, 3, 7, 11} and n ≡ 3 (mod 4), then the integers |n− 1|/2, |n− 9|/2
and |9n− 1|/2 are primes, and either |n| is prime or n is the product of twin primes.

If n ∈ U \ {−27,−3, 5, 13, 21, 45} and n ≡ 5 (mod 8), then the integers |n|, |n− 1|/4,
|n− 9|/4 and |9n− 1|/4 are primes.
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1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational num-
bers 1

16 , 33
16 , 17

4 and 105
16 have the following property: the product of any two of

them increased by 1 is a square of a rational number (see [3]). The first set of four
integers with the above property was found by Fermat, and it was {1, 3, 8, 120}.
In 1969, Davenport and Baker [1] showed that if d is a positive integer such that
the set {1, 3, 8, d} has the property of Diophantus, then d has to be 120.

Let n be an integer. A set of positive integers {a1, a2, . . . , am} is said to have the
property D(n), if for all 1 ≤ i < j ≤ m the following holds: aiaj + n = b2

ij , where
bij is an integer. Such a set is called a Diophantine m-tuple. If n is an integer of the
form 4k+2, k ∈ Z, then there does not exist Diophantine quadruple with the prop-
erty D(n) (see [2, Theorem 1], [4, Theorem 4] or [9, p. 802]). If an integer n is not of
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the form 4k + 2 and n 6∈ {−15,−12,−7,−4,−3,−1, 3, 5, 7, 8, 12, 13, 15, 20, 21, 24,
28, 32, 48, 60, 84}, then there exist at least two distinct Diophantine quadruples
with the property D(n) (see [4, Theorems 5 and 6] and [5, p. 315]). The proof of
the former result is based on the fact that the sets

{m,m(3k + 1)2 + 2k, m(3k + 2)2 + 2k + 2, 9m(2k + 1)2 + 8k + 4},
{m,mk2 − 2k − 2, m(k + 1)2 − 2k, m(2k + 1)2 − 8k − 4}

have the property D(2(2k+1)m+1). These formulas are used in [7] and the above
results are generalized to the set of Gaussian integers. More formulas of this type
were obtained in [6].

These formulas were used in [8], where some improvements of the results of [4]
were obtained. It was proved that if n ≡ 1 (mod 8) and n 6∈ {−15,−7, 17, 33},
or n ≡ 4 (mod 32) and n 6∈ {−28, 68}, or n ≡ 0 (mod 16) and n 6∈ {−16, 32, 48,
80}, then there exist at least six, and if n ≡ 8 (mod 16) and n 6∈ {−8, 8, 24, 40},
then there exist at least four distinct Diophantine quadruples with the property
D(n). These results imply that if an integer n is not of the form 4k + 2, |n| > 48,
and there exist at most two distinct Diophantine quadruples with the property
D(n), then n can be represented in one of the following forms:

4k + 3, 16k + 12, 8k + 5, 32k + 20.

The main problem of this paper is to consider those n for which there are at
most two Diophantine quadruples with the property D(n). We will prove that for
an integer n, not of the from 4k + 2, the assumption that there exist at most two
distinct Diophantine quadruples with the property D(n) has very strong conse-
quences, which are connected with the problem of existence of primes in arith-
metical progressions.

Since multiplying all elements of quadruples with the properties D(4k + 3)
and D(8k + 5) by 2 we obtain the quadruples with the properties D(16k + 12)
and D(32k +20), respectively (by [4, Remark 3], all quadruples with the property
D(16k + 12) can be obtained on this way), we will restrict our attention to the
integers of the forms 4k + 3 and 8k + 5.

2. The case n=4k+3

Theorem 1. Let n be an integer such that n ≡ 3 (mod 4), n 6∈ {−9,−1, 3, 7, 11},
and there exist at most two distinct Diophantine quadruples with the property D(n).
Then the integers |n − 1|/2, |n − 9|/2 and |9n − 1|/2 are primes. Furthermore,
either the integer |n| is prime or n = pq, where p and q are twin primes.

To prove this theorem we need the following lemmas.

Lemma 1. Let n be an integer such that n ≡ 3 (mod 4) and let n = st, where s
and t are integers such that s ≥ 1 and s− t > 2. Let v = (s− t− 2)/4. Then the
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set

{1, (3v + 1)2 + 2vt, (3v + 2)2 + 2(v + 1)t, 9(2v + 1)2 + 4(2v + 1)t} (2.1)

is a Diophantine quadruple with the property D(n).

Proof. From st ≡ 3 (mod 4) it follows that s ≡ t + 2 (mod 4). Hence v is a
positive integer. Set

b = (3v + 1)2 + 2vt

c = (3v + 2)2 + 2(v + 1)t
d = 9(2v + 1)2 + 4(2v + 1)t.

By [6, proof of Theorem 1], the product of any two distinct elements of the set
{1, b, c, d} increased by n is a perfect square. Thus, it is sufficient to prove that 1,
b, c and d are distinct positive integers. We have:

b− 1 = v(9v + 2t + 6) = v(v + 2s + 2) > 0
c− 1 = (v + 1)(9v + 2t + 3) = (v + 1)(v + 2s− 1) > 0
d− 1 = (2v + 1)(18v + 4t + 9)− 1 = (2v + 1)(2v + 4s + 1)− 1 > 0
c− b = 6v + 2t + 3 = (3s + t)/2 6= 0
d− b = (3v + 2)(9v + 2t + 4) = (3v + 2)(v + 2s) > 0
d− c = (3v + 1)(9v + 2t + 5) = (3v + 1)(v + 2s + 1) > 0,

which proves the lemma. ut

Lemma 2. If the integer |2k + 1| is composite, then there exists a Diophantine
quadruple {a, b, c, d} ⊂ N \ {1} with the property D(4k + 3).

Proof. Let
2k + 1 = (2l + 1)m,

where l 6∈ {−1, 0} and m ≥ 3. Then 4k + 3 = 2(2l + 1)m + 1. Set

a = m

b = (3l + 1)2m + 2l

c = (3l + 2)2m + 2l + 2
d = 9(2l + 1)2m + 8l + 4.

We claim that the set {a, b, c, d} has the desired property. By [4, (13)] it suffices
to show that a, b, c and d are distinct integers and b, c, d ≥ 2. Since l 6∈ {−1, 0},
we have:

b− a = (9l2 + 6l)m + 2l ≥ 27l2 + 20l > 0
c− a = (9l2 + 12l + 3)m + 2l + 2 ≥ 27l2 + 28l + 11 > 0
d− a = (36l2 + 36l + 8)m + 8l + 4 ≥ 144l2 + 152l + 36 > 0
c− b = 3(2l + 1)m + 2 6= 0
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d− b = (3l + 2)[(9l + 4)m + 2] 6= 0
d− c = (3l + 1)[(9l + 5)m + 2] 6= 0.

Hence a, b, c and d are distinct integers and b, c, d > a ≥ 3. ut

Lemma 3. If the integer |2k − 3| is composite and k 6∈ {−3, 6}, then there exists
a Diophantine quadruple {a, b, c, d} ⊂ N \ {1} with the property D(4k + 3).

Proof. Let
2k − 3 = (2l + 1)m,

where l 6∈ {−2,−1, 0, 1} and m ≥ 3. Then 4k + 3 = 2(2l + 1)m + 9. Set

a = m

b = l2m + 2l − 2
c = (l + 1)2m + 2l + 4
d = (2l + 1)2m + 8l + 4.

To prove that the set {a, b, c, d} has the desired property, by [4, (23)], it suffices to
show that a, b, c and d are distinct integers and b, c, d ≥ 2. Since l 6∈ {−2,−1, 0, 1},
we have:

b− a = (l2 − 1)m + 2l − 2 ≥ 3l2 + 2l − 5 > 0
c− a = (l2 + 2l)m + 2l + 2 ≥ 3l2 + 8l + 2 > 0
d− a = (4l2 + 4l)m + 8l + 4 ≥ 12l2 + 20l + 4 > 0
c− b = (2l + 1)m + 6 6= 0
d− b = (l + 1)[(3l + 1)m + 6] 6= 0
d− c = l[(3l + 2)m + 6] 6= 0,

which gives the desired conclusion. ut

Lemma 4. If the integer |18k + 13| is composite, then there exist a Diophantine
quadruple {a, b, c, d} ⊂ N \ {1} with the property D(4k + 3).

Proof. Let

18k + 13 = (2l + 3)m, (2.2)

where l 6∈ {−2,−1} and m ≥ 5. Then 4k + 3 = [2m(2l + 3) + 1]/9. Set

a = m

b = (l2m− 2l − 6)/9
c = [(l + 3)2m− 2l]/9
d = [(2l + 3)2m− 8l − 12]/9.

The numbers b, c and d are integers, by (2.2). We claim that the set {a, b, c, d} has
the desired property. From [6, proof of Theorem 1] it follows that the product of
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any two distinct elements of this set is a perfect square. Thus it suffices to prove
that a, b, c and d are distinct integers and b, c, d ≥ 2. Since l 6≡ 0 (mod 3), we
have:

b− a = (l + 3)[(l − 3)m− 2]/9 6= 0
c− a = l[(l + 6)m− 2]/9 6= 0
d− a = [(4l2 + 12k)m− 8l − 12]/9 ≥ (20l2 + 52l − 12)/9 > 0
c− b = [(2l + 1)m + 2]/3 6= 0
d− b = (l + 1)[(l + 3)m− 2]/3 6= 0
d− c = (l + 2)[lm− 2]/3 6= 0.

It remains to prove that b ≥ 2 and c ≥ 2. Since k 6∈ {−3,−2} and m ≥ 5, we have:

c ≥ 1
9
(5k2 + 28k + 45) > 1.

Suppose that k 6= 1. Then b ≥ (5k2 − 2k − 6)/9 > 1. If k = 1, then from
54q + 49 = 5m if follows that m ≥ 53 and b = (m− 8)/9 > 5. ut

Proof of Theorem 1. It is clear that the assertion is valid for n = 15. If n 6= 15,
then there exist at least two distinct Diophantine quadruples with the property
D(n) which contain the number 1 (see [4, (7) and (17)]).

If either of the integers |n−1|/2, |n−9|/2 and |9n−1|/2 is not prime, then it is
composite. Note that the integer |27 · 9− 1|/2 = 121 is composite. From Lemmas
2, 3 and 4 it follows that there exists a Diophantine quadruple with the property
D(n) which does not contain the number 1. This contradicts to our assumption.

Suppose that |n| is not a prime and that n is not a product of twin primes. If
n ≡ 0 (mod 3) and n 6∈ {3, 15}, the integer |n− 9|/2 is composite.

Thus n 6≡ 0 (mod 3) and n = st, where s ≥ 5, |t| ≥ 5 and s − t > 2. Write
v = (s−t−2)/4. Then the set (2.1) is the Diophantine quadruple with the property
D(n), by Lemma 1. We claim that this quadruple is different from quadruples [4,
(7)] and [4, (17)]. Indeed, the sums of elements of quadruples (2.1), [4, (7)] and
[4, (17)] are 3(18v2 + 18v + 5 + 4vt + 2t), 3(18k2 + 22k + 7) and 3(2k2 − 2k − 1),
respectively, where n = 4k + 3. Since 18k2 + 22k + 7 ≥ 2k2 − 2k − 1 for every
integer k, it is sufficient to prove that

18v2 + 18v + 5 + 4vt + 2t < 2k2 − 2k − 1. (2.3)

The relation (2.3) is equivalent to

(2v + 1)(2v + 4s + 1) <
1
4
(n− 1)(n− 9). (2.4)

Let t > 0. Then

v ≤
n
5 − 5− 2

4
=

n− 35
20

and
(2v + 1)(2v + 4s + 1) ≤ n− 25

10
· 9n− 25

10
.
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If t < 0, then n = −m < 0, and we have

v ≤
m
5 + 5− 2

4
=

m + 15
20

and
(2v + 1)(2v + 4s + 1) ≤ m + 25

10
· 9m + 25

10
=

n− 25
10

· 9n− 25
10

.

If |n| > 5, then (n−25)(9n−25) < 25(n−1)(n−9), which establishes the formula
(2.4) and completes the proof. ut

3. The case n=8k+5

Theorem 2. Let n be an integer such that n ≡ 5 (mod 8), n 6∈ {−27,−3, 5, 13, 21,
45}, and there exist at most two distinct Diophantine quadruples with the property
D(n). Then the integers |n|, |n− 1|/4, |n− 9|/4 and |9n− 1|/4 are primes.

To prove this theorem we need the following lemmas.

Lemma 5. Let n be an integer such that n ≡ 5 (mod 8) and let n = st, where s
and t are integers such that s ≥ 1, s − t > 4 and t 6= −3s. If v = (s − t − 4)/8,
then the set

{2, 2(3v + 1)2 + 2vt, 2(3v + 2)2 + 2(v + 1)t, 18(2v + 1)2 + 4(2v + 1)t} (3.5)

is the Diophantine quadruple with the property D(n).

Proof. From st ≡ 5 (mod 8) it follows that s ≡ t + 4 (mod 8). Hence v is a
positive integer. Set

b = 2(3v + 1)2 + 2vt

c = 2(3v + 2)2 + 2(v + 1)t
d = 18(2v + 1)2 + 4(2v + 1)t.

By [6, proof of Theorem 1], it is sufficient to prove that 2, b, c and d are distinct
positive integers. We have:

b− 2 = 2v(9v + t + 6) = 2v(v + s + 2) > 0
c− 2 = 2(v + 1)(9v + t + 3) = 2(v + 1)(v + s− 1) > 0
d− 2 = 2(2v + 1)(18v + 2t + 9)− 2 = 2[(2v + 1)(2v + 2s + 1)− 1] > 0
c− b = 2(6v + t + 3) = (3s + t)/2 6= 0
d− b = 2(3v + 2)(9v + t + 4) = 2(3v + 2)(v + s) > 0
d− c = 2(3v + 1)(9v + t + 5) = 2(3v + 1)(v + s + 1) > 0,

which proves the lemma. ut
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Lemma 6. If the integer |2k + 1| is composite, then there exists a Diophantine
quadruple {a, b, c, d} ⊂ N \ {2} with the property D(8k + 5).

Proof. Let
2k + 1 = (2l + 1)m,

where l 6∈ {−1, 0} and m ≥ 3. Then 8k + 5 = 4(2l + 1)m + 1. Set

a = 2m

b = 2m(3l + 1)2 + 2l

c = 2m(3l + 2)2 + 2l + 2
d = 18m(2l + 1)2 + 8l + 4.

An analysis similar to the one in the proof of Lemma 2 shows that the set {a, b, c, d}
has the desired property. ut

Lemma 7. If the integer |2k − 1| is composite and k 6∈ {−4, 5}, then there exists
a Diophantine quadruple {a, b, c, d} ⊂ N \ {2} with the property D(8k + 5).

Proof. The proof of Lemma 7 is completely analogous to the proof of Lemma 3.
ut

Lemma 8. If the integer |18k +11| is composite and k 6∈ {−2, 3}, then there exist
a Diophantine quadruple {a, b, c, d} ⊂ N \ {2} with the property D(8k + 5).

Proof. Let

18k + 11 = (2l + 3)m, (3.6)

where l 6∈ {−2,−1} and m ≥ 5. Then 8k + 5 = [4m(2l + 3) + 1]/9. Set

a = 2m

b = (2ml2 − 2l − 6)/9
c = [2m(l + 3)2 − 2l]/9
d = [2m(2l + 3)2 − 8l − 12]/9.

We claim that the set {a, b, c, d} has the desired property. Let us first observe that
(3.6) implies that b, c and d are integers. Similarly, as in the proof of Lemma 4
we obtain that a, b, c and d are distinct integers and d > a.

If l 6= 1, then b ≥ (10l2 − 2l − 6)/9 > 2, and if l = 1, then from 18l + 11 = 5m
and k 6= 3 it follows that m ≥ 31 and b = (2m− 8)/9 ≥ 6.

If l 6= −4, then c ≥ (10l2 +58l+90)/9 > 2, and if l = −4 then from 18k +11 =
−5m and k 6= −2 it follows that m ≥ 23 and c = (2m + 8)/9 ≥ 6. ut
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Proof of Theorem 2. If n satisfies the assumptions of Theorem 2 then there
exist at least two distinct Diophantine quadruples with the property D(n) which
contain the number 2 (see [4, (9) and (19)]).

If either of the integers |n − 1|/4, |n − 9|/4 and |9n − 1|/4 is not prime, then
it is composite. Assume that n 6∈ {−11, 29}. Then from Lemmas 6, 7 and 8 it
follows that there exists a Diophantine quadruple with the property D(n) which
does not contain the number 2.

For n = −11 the construction of Lemma 8 gives the quadruple {2, 10, 18, 30},
while [4, (9) and (19)] gives the quadruples {2, 30, 46, 150} and {2, 6, 10, 30} with
the property D(−11).

For n = 29 the construction of Lemma 8 gives the quadruple {2, 26, 46, 70},
while [4, (9) and (19)] gives the quadruples {2, 206, 250, 910} and {2, 10, 26,
70} with the property D(29). This completes the proof that the integers |n−1|/4,
|n− 9|/4 and |9n− 1|/4 are primes.

It remains to prove that |n| is prime. Suppose that the integer |n| is composite.
We need to consider three cases.

First, let n ≡ 0 (mod 3). Since n 6∈ {−3, 21}, the integer |n−9|/4 is composite,
a contradiction.

Next, let n = st, where s ≥ 5, |t| ≥ 5 and s− t > 4. Let v = (s− t−4)/8. Then
the set (3.5) is the Diophantine quadruple with the property D(n), by Lemma
5. We will show that this quadruple is different from quadruples [4, (9)] and [4,
(19)]. Indeed, the sums of elements of quadruples (3.5), [4, (9)] and [4, (19)]
are 6(18v2 + 18v + 5 + 2vt + t), 6(18k2 + 20k + 6) and 12k2, respectively, where
n = 8k + 5. Thus, it is sufficient to prove that

18v2 + 18v + 5 + 2vt + t < 2k2, (3.7)

or, equivalently, that

(2v + 1)(2v + 2s + 1) <
1
16

(n− 1)(n− 9). (3.8)

The proof of (3.8) is completely analogous to the proof of (2.4).

Finally, let n = pq, where p and q are primes and p− q = 4. Since n 6= 21, we
conclude that n is of the form n = (6x + 1)(6x + 5), x ≥ 1. An easy computation
shows that the set

{2, 32x2 + 32x + 10, 288x4 + 672x3 + 542x2 + 178x + 22,

288x4 + 480x3 + 254x2 + 42x + 2}
is the Diophantine quadruple with the property D((6x+1)(6x+5)). From 32x2 +
32x + 10 < n it follows easily that this quadruple is different from quadruples [4,
(9)] and [4, (19)]. This completes the proof of the theorem. ut
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4. Connection with Dickson’s conjecture

Let U denote the set of all integers n, not of the form 4k +2, such that there exist
at most two distinct Diophantine quadruples with the property D(n). It is not yet
known, whether the set U is finite or not. From the results of [8] and Theorems 1
and 2 it follows that if U is infinite then at least one of the sets

A = {k ∈ Z : |2k − 3|, |2k + 1|, |4k + 3|, |18k + 13| are primes},
B = {l ∈ N : 2l − 1, 2l + 1, 2l2 − 5, 2l2 − 1, 18l2 − 5 are primes},
C = {k ∈ Z : |2k − 1|, |2k + 1|, |8k + 5|, |18k + 11| are primes}

is infinite. The question whether the sets A, B and C are infinite or not is still
unanswered. Let us observe that the linear polynomials appearing in the sets A
and C satisfy the conditions of following Dickson’s conjecture ([10, p. 292]):

Let s ≥ 1, fi(x) = bix + ai, with ai, bi integers, bi ≥ 1 (for i = 1, . . . , s).
Assume that the following condition is satisfied:

There does not exist any integer n > 1 dividing all the products
f1(k)f2(k) · · · fs(k) for every integer k.

Then there exist infinitely many natural numbers m such that all numbers
f1(m), f2(m), . . . , fs(m) are primes.

Indeed, if f1(x) = 2x− 3, f2(x) = 2x+1, f3(x) = 4x+3 and f4(x) = 18x+13,
then the integers f1(0)f2(0)f3(0)f4(0) = −117 and f1(2)f2(2)f3(2)f4(2) = 2695
are relatively prime, and if g1(x) = 2x − 1, g2(x) = 2x + 1, g3(x) = 8x +
5 and g4(x) = 18x + 11, then the integers g1(0)g2(0)g3(0)g4(0) = −55 and
g1(1)g2(1)g3(1)g4(1) = 1131 are relatively prime. Furthermore, the polynomials
from the set B satisfy the conditions of the Schinzel-Sierpiński conjecture ([11],
[10, p. 312]), which is an analogue of Dickson’s conjecture for irreducible poly-
nomials. Therefore, the validity of the Schinzel-Sierpiński conjecture would imply
that the sets A, B and C are infinite.
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