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Abstract

Let B be a nonzero integer. Let define the sequence of polynomials
Gn(x) by

G0(x) = 0, G1(x) = 1, Gn+1(x) = xGn(x) + BGn−1(x), n ∈ N.

We prove that the diophantine equation Gm(x) = Gn(y) for m,n ≥ 3,
m 6= n has only finitely many solutions.

1 Introduction

The study of polynomial diophantine equations f(x) = g(y) is a classical
topic in number theory. The essential question is whether this equation
has finitely or infinitely many solutions in rational integers x and y. Due
to the classical theorem of Siegel the finiteness problem can be solved by
decomposition of F (x, y) = f(x) − g(y) in irreducible factors and showing
that no factor defines a curve of genus 0 and with at most 2 points at
infinity. Of course this method is ineffective in the sense that it does not give
bounds for the size of the solutions (x, y). However, for special equations
F (x, y) = 0 effective results are known, for instance in the hyperelliptic
case A. Baker [1] has shown that the equation F (x, y) = yn − f(x) = 0
has only finitely many effectively computable solutions (x, y) in rational
integers. Various further effective versions of this result were obtained by
Sprindžuk, Trelina, Brindza, Poulakis, Voutier and Bugeaud; see
[13, 5] for references.

The general polynomial equation F (x, y) = f(x) − g(y) = 0 has been
studied by several authors. Davenport, Lewis and Schinzel [6] ob-
tained a finiteness condition which is too restrictive for several applications.
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Schinzel [12, Theorem 8] obtained a completely explicit finiteness criterion
under the assumption (deg f,deg g) = 1. Recently, particular types of equa-
tions have been studied by Beukers, Shorey and Tijdeman [2] and by
Kirschenhofer, Pethő and Tichy [10].

M. Fried investigated the finiteness problem for polynomial equations
F (x, y) = 0 from various points of views in a series of fundamental papers
[7, 8, 9]. He gave in [9, Corollary after Theorem 3] a new and very general
finiteness condition.

Recently, Bilu and Tichy [4] obtained a finiteness criterion for polyno-
mial diophantine equations f(x) = g(y), which is much more explicit than
the previous ones. It turns out to be more convenient to study a slightly
more general problem. We say that the equation F (x, y) = 0 has infinitely
many rational solutions with a bounded denominator if there exists a positive
integer ∆ such that F (x, y) = 0 has infinitely many solutions (x, y) ∈ Q×Q
with integral ∆x and ∆y.

To formulate the finiteness criterion, we have to define five types of
standard pairs (f(x), g(x)).

In what follows a and b ∈ Q\{0},m and n are positive integers, and p(x)
is a non-zero polynomial (which may be constant).

A standard pair of the first kind is

(xm, axrp(x)m)

or switched, (axrp(x)m, xm) where 0 ≤ r < m, (r, m) = 1 and r+deg p(x) >
0.

A standard pair of the second kind is

(x2, (ax2 + b)p(x)2)

(or switched).
Denote by Dm(x, a) the m-th Dickson polynomial, defined by

Dm(z + a/z, a) = zm + (a/z)m .

A standard pair of the third kind is

(Dm(x, an), Dn(x, am)) ,

where gcd(m,n) = 1.
A standard pair of the fourth kind is(

a−m/2Dm(x, a),−b−n/2Dn(x, b)
)

,
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where gcd(m,n) = 2.
A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3)

(or switched).

Theorem 1 (Bilu-Tichy [4].) Let f(x), g(x) ∈ Q[x] be non-constant poly-
nomials. Then the following two assertions are equivalent.

(a) The equation f(x) = g(y) has infinitely many rational solutions with
a bounded denominator.

(b) We have f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ, where λ(x), µ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x)) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator.

It is the aim of the present paper to show how this criterion can be applied
to a special family of polynomials defined by a second order linear recurring
relation.

Let B be a nonzero integer. Then we define a sequence of polynomials
Gn(x) of degree n− 1 by

G0(x) = 0, G1(x) = 1, Gn+1(x) = xGn(x) + BGn−1(x), n ∈ N. (1.1)

For B = 1 this gives the well-known family of Fibonacci polynomials.

Theorem 2 For m,n ≥ 3, m 6= n the diophantine equation

Gn(x) = Gm(y) (1.2)

has only finitely many solutions.

In Section 2 we will collect some useful facts on polynomials defined by
second order linear recurrences. In Section 3 we will completely describe all
decompositions of polynomials Gn. Section 4 is devoted to standard pairs of
the first, second and fifth kind and Section 5 to standard pairs of the third
and fourth kind. We will show that polynomials given by (1.1) cannot yield
standard pairs, and so by Theorem 1 we immediately obtain Theorem 2. In
the concluding Section 6 we will establish some effective results for special
equations Gn(x) = Gm(y).
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2 Second order recursive sequences of polynomials

In this section we will collect some useful facts on the polynomials Gn(x)
defined in (1.1). Let us recall that the Fibonacci polynomials Fn(x) are
the special case of Gn(x) for B = 1, and the Chebyshev polynomials of the
second kind Un(x) are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x) (n ∈ N).

Lemma 1 We have for all n ∈ N:

Gn(x) = Fn

(
x√
B

)
B

n−1
2 = Un−1

(
ix

2
√

B

)
(−i

√
B)n−1 (2.1)

Gn(x) =
bn−1

2
c∑

j=0

(
n− j − 1

j

)
Bjxn−2j−1 (2.2)

Proof. Relation (2.1) follows directly from the definition of the sequences
(Gn), (Fn) and (Un), while (2.2) follows from (2.1) and the well-known ex-
pansion of Fibonacci polynomials (see e.g. [3]).

For m = 1, 2, . . . put Hm(x) = G2m+1(
√

x). Then by (2.2) we have

Hm(x) =
m∑

j=0

(
2m− j

j

)
Bjxm−j .

3 Indecomposability of polynomials Gn

A polynomial P ∈ C[x] is called indecomposable (over C) if P = P1 ◦ P2,
P1, P2 ∈ C[x] implies deg P1 = 1 or deg P2 = 1.

Two decompositions of P , say P = P1◦P2 and P = Q1◦Q2 are equivalent
if there exist a linear function L such that Q1 = P1 ◦ L, Q2 = L−1 ◦ P2 (see
[12, pp. 14–15]).

Motivated by Theorem 1, in this section we consider the question of
decomposability of polynomials Gn. The complete answer will be given in
Proposition 1 below.

For a polynomial f ∈ C[x] and a complex number γ, put

δ(f, γ) := deg gcd(f − γ, f ′).
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Lemma 2 Let B be a nonzero complex number. If n is even, then δ(Gn, γ) ≤
1 for any γ ∈ C. If n is odd, then δ(Gn, γ) ≤ 2 for any γ ∈ C.

Proof. By relation (2.1) it is clear that it suffices to prove the statement
of the lemma for Un−1 instead of Gn.

The functional equation

Un−1(cos x) =
sinnx

sinx
(3.1)

shows that Un−1 has n− 1 distinct real roots

αk := cos(πk/n) (k = 1, . . . , n− 1).

By Rolle’s theorem, the derivative U ′
n−1 has n − 2 real roots β1, . . . , βn−2,

satisfying αk > βk > αk+1.
Put γk := Un−1(βk). We claim that

γk = γl ⇐⇒ k = l if n is even, (3.2)
γk = γl ⇐⇒ (k = l or k + l = n− 1) if n is odd. (3.3)

The polynomial U ′
n−1 is even for even n and odd for odd n. Hence its

roots are symmetrical with respect to the origin:

βk = −βn−1−k (k = 1, . . . , n− 2). (3.4)

Further, the functional equation (3.1) implies that γk is the maximum
of the function |(sinnx)/ sinx| on the interval [kπ/n, (k +1)π/n]. Hence for
1 ≤ k ≤ (n − 2)/2 we have 1/(sin(k + 1)π/n) < |γk| < 1/(sin kπ/n). This
implies that

|γk| > |γk+1| > 1 (1 ≤ k ≤ (n− 4)/2). (3.5)

Assume that n is even. Then

|γ1| > |γ2| > · · · > |γ(n−2)/2| . (3.6)

Also, the polynomial Un−1 is odd, which yields

γk = −γn−1−k (1 ≤ k ≤ n− 2). (3.7)

Together, (3.6) and (3.7) imply (3.2).
Now assume that n is odd. In this case

|γ1| > |γ2| > · · · > |γ(n−3)/2| > 1 = |γ(n−1)/2|,
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γk = γn−1−k (1 ≤ k ≤ n− 2),

which proves (3.3).
If δ(Un−1, γ) > 0, then γ is equal to one of the numbers γk. Hence, when

n is even, (3.2) implies that δ(Un−1, γ) ≤ 1 for any γ ∈ C.
If n is odd, then (3.3) implies that δ(Un−1), γ) ≤ 2 for any γ ∈ C.

Lemma 3 Let f ∈ C[x] and let f = p ◦ q, where p and q are polynomials.
Then there exists γ ∈ C with δ(f, γ) ≥ deg q.

Proof. Let α be a root of p′ and put γ = p(α). Then both the polyno-
mials f − γ and f ′ are divisible by q − α. This proves the lemma.

Proposition 1 The polynomial Gn is indecomposable for even n. If n
is odd then (up to equivalence) the only decomposition of Gn is Gn(x) =
H(n−1)/2(x2). In particular, Hm is indecomposable for any m.

Proof. If n is even, then Lemmas 2 and 3 imply that Gn is indecompos-
able.

If n is odd, then Lemmas 2 and 3 imply that in any decomposition
Gn = p ◦ q we have deg q = 2. Further, p(q(−x)) = Un−1(−x) = Un−1(x) =
p(q(x)) implies q(−x) = q(x). Hence q(x) = ax2 + b for some a, b ∈ C.
Therefore the decomposition Gn = p ◦ q is equivalent to the decomposition
Gn(x) = H(n−1)/2(x2).

Corollary 1 Let m,n ≥ 3 and m 6= n. Then there does not exist a
polynomial P (x) ∈ C[x] such that

Gn(x) = Gm(P (x)).

Proof. Assume that Gn(x) = Gm(P (x)). Then, by Proposition 1, n is
odd and the decomposition Gm(P (x)) is equivalent to H(n−1)/2(x2). Hence
n = 2m− 1 and

Hm−1(x) = Gm(ax + b), (3.8)

for some a, b ∈ C. From (3.8) we have

G2m−1(
√

x) = Gm(ax + b)
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and therefore
G2m−1(x) = Gm(ax2 + b). (3.9)

Relations (3.9) and (2.2) imply

x2m−2 + (2m− 3)Bx2m−4 + · · ·Bm−1 (3.10)
= (ax2 + b)m−1 + (m− 2)B(ax2 + b)m−3 + · · · . (3.11)

We have am−1 = 1, and we may assume that a = 1. The comparison of
[x2m−4] in (3.10) gives

(m− 1)b = (2m− 3)B, (3.12)

while the comparison of [x2m−6] gives(
m− 1

2

)
b2 + (m− 2)B =

(
2m− 4

2

)
B2. (3.13)

Combining (3.12) and (3.13) we obtain (for m 6= 2)

2(m− 1)B = (1− 2m)B2,

which implies B = 0 or B = −1 + 1
2m−1 , a contradiction.

4 Standard pairs of the first, second and fifth kind

4.1 Standard pair of the first kind: (xq, uxrp(x)q)

We have Gn(ax + b) = ϕ(xq). If q ≥ 3 then Proposition 1 implies that ϕ is
linear, say ϕ(x) = e1x + e0. The comparison of the coefficients of xn−2 and
xn−3 in

(ax + b)n−1 + (n− 2)B(ax + b)n−3 + · · · = e1x
q + e0

gives b = 0 and (n− 2)Ban−3 = 0, a contradiction.
Assume now that q = 2. Then Gn(ax + b) = ϕ(x2) and Gm(cx + d) =

ϕ(uxrp2(x)), where r = 0 or 1. If ϕ is not linear, then ε = deg(xrp2(x)) = 1
or 2. If ε = 2 then m = n, a contradiction, and if ε = 1 then Gn(x) =
Gn(P (x)), where P (x) ∈ Q[x] and deg P = 2, contradicting Corollary 1.

Hence ϕ is linear and n = 3. From G3(ax+b) = (ax+b)2+B = e1x
2+e0,

it follows b = 0, e1 = a2 and e0 = B. Therefore we have Gm(cx + d) =
a2uxrp2(x) + B and

Gm(x) = (ex + f)P 2(x) + B, (4.1)
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where e, f ∈ Q, P (x) ∈ Q[x]. By Corollary 1 we have e 6= 0, and therefore
m is even. Relation (4.1) implies that P (x) divides G(x) − B and G′(x).
From Lemma 2 we have deg P = 1 and therefore m = 4. However, it is easy
to check that the polynomial G4(x) − B = x3 + 2Bx − B has no multiple
roots for B 6= 0,−27

32 .
Let finally q = 1. In this case, Gn(ax + b) = ϕ(x) and Gm(cx + d) =

ϕ(up(x)). Hence, Gm(x) = Gn(P (x)), where P (x) ∈ Q[x] and deg P ≥ 2
(since m 6= n). But this is impossible by Corollary 1.

4.2 Standard pair of the second kind: (x2, (ux2 + v)p(x)2)

We have Gn(ax + b) = ϕ(x2) and Gm(cx + d) = ϕ((ux2 + v)p2(x)). Let
δ = deg p. Since m 6= n, we see that δ ≥ 1. Therefore, by Proposition
1, the polynomial ϕ is linear and n = 3. As in section 4.1, we obtain
ϕ(x) = a2x + B. It implies

Gm(x) = (ex2 + fx + g)P 2(x) + B, (4.2)

for e, f, g ∈ Q and P (x) ∈ Q[x].
From section 4.1 it follows that we may assume e 6= 0. Relation (4.2)

implies that P (x) divides gcd(Gm(x)−B,G′
m(x)). From Lemma 2 we have

deg P = 1 or 2, and therefore m = 5 or 7.

Assume that m = 7. It is easy to check that for B 6= 0, ±
√

±
√

28−1
7 , the

polynomial G7(x)−B has not two distinct multiple roots.
Assume now that m = 5. The polynomial G5(x)−B has a multiple root

iff B = 0, 1 or −4
5 . We are interested only in the case B = 1. We have

F5(x) = x4 + 3x2 + 1 = F3(x
√

x2 + 3) = (x2 + 3)x2 + 1,

so this is indeed a standard pair of the second kind. However, we can check
directly that the equation

y2 + 1 = x4 + 3x2 + 1

has only finitely many integer solutions (namely, (x, y) = (±1,±2), (0, 0)).

4.3 Standard pair of the fifth kind: ((ux2 − 1)3, (3x4 − 4x3))

From Gn(ax + b) = ϕ((ux2 − 1)3) and Proposition 1 it follows that ϕ is
linear. Hence m = 7 and n = 5. From

G7(ax + b) = e1(ux2 − 1)3 + e0
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it follows that Gn(ax + b)− e0 has a triple root 1√
u
. However, this is impos-

sible since we have shown in the proof of Lemma 2 that all roots of U ′
n−1

(and thus of G′
n) are simple.

5 Standard pairs of the third and fourth kind

5.1 Standard pair of the third kind: (Ds(x, αt), Dt(x, αs))

From Gn(ax + b) = ϕ(Ds(x, αt)) and Proposition 1 we conclude that s = 1
or s = 2 or ϕ is linear. The same conclusion for t follows from Gm(cx+d) =
ϕ(Dt(x, αs)) and Proposition 1. Since gcd(s, t) = 1, and s = 1 or t = 1
contradicts Corollary 1, we must have that ϕ is linear, say ϕ(x) = e1x + e0.

Assume that s ≥ 5. Let δ = αt. We have Ds(x, δ) = dsx
s+ds−2x

s−2+· · ·,
where

ds−2i =
s
(s−i

i

)
s− i

(−δ)i ,

(see [11]).
If Gn(ax+b) = ϕ(Ds(x, δ)), then the comparison of [xn−2] implies b = 0.

Comparison of degrees gives n−1 = s. From [xn−1] we see that e1ds = an−1.
But ds = 1 and thus e1 = an−1. From [xn−3] it follows that e1ds−2 =
(n− 2)Ban−3. Hence, ds−2 = n−2

a2 B, while from the definition ds−2 = −δs.
Since s > 4, from [xn−5] we obtain

e1ds−4 =

(
n− 3

2

)
B2an−5.

Since ds−4 = δ2s(s−3)
2 , we have

a4δ2s(s− 3) = B2(n− 3)(n− 4),

(n− 2)2(s− 3) = s(n− 3)(n− 4)

and finally
(n− 2)2(n− 4) = (n− 1)(n− 3)(n− 4),

a contradiction.
It follows that s ≤ 4 and analogously t ≤ 4. Since gcd(s, t) = 1, the only

remaining cases are (s, t) = (4, 3) or (3, 2), i.e. (m,n) = (5, 4) or (4, 3).
Assume (m,n) = (5, 4). We have

G5(ax + b) = e1(x4 − 4α3x2 + 2α6) + e0, (5.1)
G4(cx + d) = e1(x3 − 3α4x) + e0. (5.2)
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It clear that (5.1) and (5.2) imply b = d = 0 and hence e0 = 0. Now from
(5.1) we obtain e1 = a4 and B2 = 2a4α6, a contradiction.

Assume now that (m,n) = (4, 3). It follows that

G4(ax + b) = e1(x3 − 3α2x) + e0, (5.3)
G3(cx + d) = e1(x2 − 2α3)k + e0. (5.4)

We have again b = d = e0 = 0. Now (5.3) and (5.4) imply B = −3
2α2a2 =

−2α3c2 = −2α3a3 and B = −27
32 , contradicting our assumption that B is a

nonzero integer.

5.2 Standard pair of the fourth kind:
(
α− s

2 Ds(x, α), −β− t
2 Dt(x, β)

)
From Proposition 1 we conclude that s = t = 2 or ϕ is linear. Since m 6= n,
we see that ϕ is linear. We have

Gn(ax + b) = e1α
−s/2(dsx

s + ds−2x
s−2 + · · ·) + e0.

If s ≥ 6, then we may repeat the discussion for s ≥ 5 in section 5.1. After
doing that, we may assume that s ≤ 4 and t ≤ 4.

Since gcd(s, t) = 2, the only remaining case is (s, t) = (4, 2), i.e. (m,n) =
(5, 3). Thus

G5(ax + b) = e1

(x4

α2
− 4x2

α
+ 2

)
+ e0, (5.5)

G3(cx + d) = e1

(
− x2

β
+ 2

)
+ e0. (5.6)

It is clear that b = d = 0. Since Gn(0) = Gm(0) = 2e1 +e0, we have B2 = B
and B = 1. Hence, G5(x) = F5(x) and G3(x) = F3(x). As in section 4.2,
this is a special pair of the fourth kind, but the equation F3(y) = F5(x) has
only finitely many solutions.

6 Effective theorems for n = 3 and n = 5

Theorem 3 For m ≥ 4 the equation G3(y) = Gm(x) has only finitely many
solutions which are effectively computable.

Proof. Our equation becomes y2 + B = Gm(x). By Lemma 2, the
polynomial Gm(x) − B has at most one double root if m is even, and at
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most two double roots if m is odd. Hence, if m 6∈ {4, 5, 7}, then Gm(x)−B
has at least three simple roots and the assertion of the theorem follows from
Baker’s theorem [1].

Furthermore, in section 4.1 we proved that G4(x) − B has no double
roots for a nonzero integer B, and in section 4.2 we proved that the same is
true for G5(x) − B if B 6= 1. But for (m,B) = (5, 1) we have the equation
y2 = x2(x2 + 3) with the only solutions (x, y) = (±1,±2), (0, 0). In section
4.2 we also proved that for a nonzero integer B the polynomial G7(x) − B
has at most one double root. Therefore it has at least four simple roots, so
that Baker’s theorem can be applied again.

Theorem 4 For m ≥ 3, m 6= 5, the equation G5(y) = Gm(x) has only
finitely many solutions which are effectively computable.

Proof. We have the equation y4 + 3By2 + B2 = Gm(x). By Theorem 3
we may assume that m ≥ 4. By the substitution z = 2y2 + 3B we obtain
the equation

z2 = 4Gm(x) + 5B2. (6.1)

Consider the polynomial

gm(x) = 4Gm(x) + 5B2.

As in the proof of Theorem 3, applying Lemma 2, we conclude that if m 6∈
{4, 7}, then gm has at least three simple roots.

However, it is easy to check that for a nonzero integer B the polynomials
g4(x) and g7(x) have no double roots. It follows that in all cases we may
apply Baker’s theorem.

Acknowledgement: The authors wish to express their gratitude to
the referee for suggestions on improvement of the original manuscript. In
particular, they are pleased to thank the referee for the much simpler proof
of Corollary 1. Section 3 is heavily due to his suggestions.
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