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Abstract. Let D be a positive integer which is not a perfect
square. We consider Diophantine quintuples in the ring Z[

√
D] of

the form
{e, a± b

√
D, c± d

√
D}

where a, b, c, d, e are integers. In this paper, we show that there
exists a Diophantine quintuple of that form for certain values of
D, including D = 1 + n2(n + 1)2 and some other polynomials of
degree 4, and we represent its elements also as polynomials in n.

1. Introduction

Let R be a commutative ring with the unity. A Diophantine m-
tuple in R is a set of m elements in R\{0} with the property that the
product of any two of its distinct elements increased by the unity is a
square in R. Diophantine m-tuples have been most studied for R = Z
and R = Q where the major focus has been on finding an upper bound
on m, i.e. on the size of such a set. Let us mention two important
historical examples of such sets, { 1

16
, 33
16
, 17

4
, 105

16
} - the first Diophantine

quadruple in Q (found by Diophantus himself) and {1, 3, 8, 120} - the
first Diophantine quadruple in Z (found by Fermat). There does not
exist an integer Diophantine quintuple (see [11]) and, on the other
hand, there are infinitely many rational Diophantine sextuples (see
[7]). A brief overview of the results on Diophantine m-tuples, including
various generalizations, can be found in [5, 6].

Any Diophantine triple {a1, a2, a3} can be extended to a Diophantine
quadruple by adding one of the following two elements (if they are not
equal to 0):

(1) d± = a1 + a2 + a3 + 2a1a2a3 ± 2rst,

2020 Mathematics Subject Classification. 11D09, 11R11.
Key words and phrases. Diophantine quintuples, regular Diophantine quadru-

ples, quadratic fields.
1



2 A. DUJELLA, Z. FRANUŠIĆ, V. PETRIČEVIĆ

where a1a2+1 = r2, a1a3+1 = s2, a2a3+1 = t2. Sets {a1, a2, a3, d−} and
{a1, a2, a3, d+} (if d± 6= 0) are called regular Diophantine quadruples.
It is not difficult to show that the relation

(2) (a1 + a2 − a3 − a4)2 = 4(a1a2 + 1)(a3a4 + 1)

characterizes the property of being regular, i.e. {a1, a2, a3, a4} is a
regular Diophantine quadruple if and only if (2) holds. There is a
conjecture saying that all Diophantine quadruples in Z are regular. If
d−d+ + 1 = � and d± 6= 0, then {a1, a2, a3, d+, d−} represents a Dio-
phantine quintuple and such a set will be called a biregular Diophantine
quintuple. Simply said, a biregular Diophantine quintuple includes two
regular quadruples. Biregular quadruples in Q were studied in [4] and
[8], and applied to construction of high-rank elliptic curves and rational
Diophantine sextuples.

In this paper, we deal with biregular Diophantine quintuples contain-
ing two pairs of conjugates in the ring Z[

√
D], where D is a positive

integer and not a perfect square, i.e. with quintuples of the form

(3) {e, a+ b
√
D, a− b

√
D, c+ d

√
D, c− d

√
D},

such that a, b, c, d, e ∈ Z and c±d
√
D correspond to the regular exten-

sions d± generated by the triple {e, a+ b
√
D, a− b

√
D}.

Our work has been motivated by examples found by Gibbs in [10]
and some of them are listed below. (Occasionally we denote an element

a+ b
√
D ∈ Q(

√
D) by (a, b).)

D Diophantine quintuple in Z[
√
D]

2 (3, 0), (7, 4), (7,−4), (119, 84), (119,−84)
5 (4, 0), (7, 3), (7,−3), (50, 22), (50,−22)
13 (6, 0), (8, 2), (8,−2), (166, 46), (166,−46)
17 (12, 0), (21, 5), (21,−5), (438, 106), (438,−106)
29 (4, 0), (41, 7), (41,−7), (2166, 402), (2166,−402)
34 (5, 0), (81, 12), (81,−12), (16817, 2884), (16817,−2884)
37 (4, 0), (43, 5), (43,−5), (7482, 1230), (7482,−1230)

Table 1

Gibbs conducted a search for Diophantine quintuples in Z[
√
D] for

square free D with |D| < 50 and found 160 examples. All examples
are found for positive D and all of them are biregular, i.e. include two
regular quadruples. No example was found for D ∈ {23, 35, 42, 43, 47}.
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We managed to find a Diophantine quintuple in Z[
√

43]:

{(−7512908, 1145708), (−195, 30), (0, 848), (195, 30), (7512908, 1145708)}.
For other exceptions, we found many examples of “almost quintuples”,
meaning that only one condition out of ten is missing. Also, no Dio-
phantine quintuples were found for negative D. In [1] Adžaga showed
that there is no Diophantine m-tuple in imaginary quadratic number
ring (i.e. with D < 0) with m > 43. It is also known that for D = −1
some particular Diophantine quadruples cannot be extended to Dio-
phantine quintuples (see [2, 3, 9]).

We are interested in constructing Diophantine quintuples in Z[
√
D]

for infinite families of positive integers D. It is easy to obtain certain
results of that type. Namely, if {a1, a2, a3} is a Diophantine triple in Z
and d± 6= 0, then {a1, a2, a3, d+, d−} is a Diophantine triple in Z[

√
D]

for D = d+d−+1. By taking a1 = n−1, a2 = n+1, a3 = 16n3−4n, we
obtain d− = 4n, d+ = 64n5−48n3+8n andD = 256n6−192n4+32n2+1.
Note that D is a perfect square only for n = 0.Therefore, we are espe-
cially interested in families of D’s which are asymptotically larger than
this simply obtained family, i.e. in parametric families of D’s where
involved polynomials have degree smaller than 6.

One of our results of that shape in the following theorem.

Theorem 1. Let n be a positive integer and D = 1+n2(n+1)2. There

exists a biregular Diophantine quintuple of the form (3) in Z[
√
D].

2. Equations

If {z1, z2, z3, z4, z5} is a Diophantine quintuple in R, then the follow-
ing ten equations should be satisfied:

zizj + 1 = ξ2ij, 1 ≤ i < j ≤ 5,

where ξij ∈ R. If a Diophantine quintuple in Z[
√
D] is of the form (3),

then it suffices to fulfill only these equations:

(4) e(a+ b
√
D) + 1 = (u+ v

√
D)2,

(5) a2 −Db2 + 1 = x2,

or

(6) a2 −Db2 + 1 = x2D,

and

(7) c2 −Dd2 + 1 = y2,
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or

(8) c2 −Dd2 + 1 = y2D,

for u, v, x, y ∈ Z. Since we assume that c ± d
√
D are regular exten-

sions of the triple {e, a ± b
√
D}, the conditions e(c ± d

√
D) + 1 = �,

(a± b
√
D)(c± d

√
D) + 1 = � are “automatically” fulfilled. Also, the

condition e(a − b
√
D) + 1 = � can be omitted because (4) implies

e(a− b
√
D) + 1 = (u− v

√
D)2.

Since we have assumed that our quintuple should contain two pairs
of conjugates in Z[

√
D], the possibility of (5) is rejected (because it

would yield a rational integer value of c± d
√
D). So, according to (1)

and putting r = u+ v
√
D, s = u− v

√
D, t = x

√
D we have

(9) c± d
√
D = e+ 2a+ 2e(a2 −Db2)± 2(u2 −Dv2)x

√
D.

We further assume that equation (7) should hold and we get

(10) (2a+ 2eDx2 − e)2 − 4D(u2 −Dv2)2x2 + 1 = y2,

where we substituted a2 − b2D = Dx2 − 1. Equation (4) splits into

(11) ea+ 1 = u2 +Dv2, eb = 2uv

and imply (u2−Dv2)2 = (ea+1)2− (eb)2D = (ea+1)2−e2(a2−Dx2 +
1) = 1 + 2ae− e2 +De2x2. Therefore (10) transforms into

(12) (2a− e)2 − 4Dx2 + 1 = y2.

So, if equations (6), (11), (12) (or equivalently (4), (6), (7)) are solvable
in e, a, b, u, v, x, y ∈ Z, then (3) represents a biregular Diophantine
quintuple.

3. Solving the equations

From (11) we get

a =
u2 +Dv2 − 1

e
, b =

2uv

e

and substituting into (6) yields

(13) (u2 +Dv2 − 1)2 −D(2uv)2 + e2 = Dx2e2,

1 + e2 − 2u2 + u4 − 2Dv2 − 2Du2v2 +D2v4 = Dx2e2.

Obviously, D | 1 + e2 − 2u2 + u4. Hence, assume that

1 + e2 − 2u2 + u4 = kD, k ∈ Z.
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First, dividing (13) by D and then putting D = (1 + e2 − 2u2 + u4)/k,
we get

1

k
(k2 − 2kv2 − 2ku2v2 + v4 + e2v4 − 2u2v4 + u4v4) = x2e2.

The expression on the left side of the previous equality can be viewed
as a quartic polynomial in u, p(u) = 1

k
(k2−2kv2 +v4 +e2v4−2kv2u2−

2v4u2 + v4u4). It can be shown that if

k =
e2v2

4
,

the discriminant of p equals zero and p(u) =
v2(e2−4u2+4)

2

4e2
= �. So far,

we have

D =
4(1 + e2 − 2u2 + u4)

e2v2
,

a =
e2 (u2 + 3) + 4 (u2 − 1)

2

e3
, b =

2uv

e
.

An analogous procedure have to be carried out to fulfill (12). Taking
into account the above, we get

−16e2 (u4 − 6u2 + 1) + e4 (e2 − 4u2 − 15) + 64u2 (u2 − 1)
2

e4
= q(u) = y2.

For e = 4 the discriminant of the polynomial q equals zero and

q(u) =
1

4
u2(−3 + u2)2 = �.

The only thing left is to find the parameters of u and v such that a, b,D
given by

D =
17− 2u2 + u4

4v2
, a =

13 + 2u2 + u4

16
, b =

uv

2
are integers. Obviously, u should be odd, u = 2n + 1, and with v = 2
we obtain

D = 1 + n2(1 + n)2, a = 1 + n+ 2n2 + 2n3 + n4, b = 1 + 2n.

So, the set

(14)

{4, 1 + n+ 2n2 + 2n3 + n4 ± (1 + 2n)
√
D,

6− 14n+ 4n2 + 20n3 − 22n4 − 16n5 + 32n6 + 32n7 + 8n8

± (−6 + 14n− 2n2 − 24n3 + 8n4 + 24n5 + 8n6)
√
D}

represents a biregular Diophantine quintuple in Z[
√
D], where D =

1+n2(1+n)2, because equations (4), (6), (7) are solvable in Z. Indeed,

e(a+ b
√
D) + 1 = (1 + 2n+ 2

√
D)2,
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(a+ b
√
D)(a− b

√
D) + 1 = ((−1 + n+ n2)

√
D)2,

(c+ d
√
D)(c− d

√
D) + 1 = (−1 + 6n2 + 4n3)2.

This finishes the proof of Theorem 1.

For D < 1000 we list the examples of Diophantine quintuples (14):

D e (a, b) (c, d)

5 4 (7, 3) (50, 22)
37 4 (43, 5) (7482, 1230)
145 4 (157, 7) (140670, 11682)
401 4 (421, 9) (1158926, 57874)
901 4 (931, 11) (6063786, 202014)

Table 2

Note that the first two rows in Table 2 correspond to examples from
Table 1.

4. More examples

Here we try to find more solutions assuming that D is a polynomial
of degree 4, as we obtained in the previous sections. Thus, let us take

D = D(n) = d4n
4 + d3n

3 + d2n
2 + d1n+ d0,

where d0, d1, d2, d3, d4 ∈ Z. Also, we assume that

u = u(n) = u1n+ u0.

So, (11) gives

a =
1

e
(−1+u20+d0v

2+(2u0u1+d1v
2)n+(u21+d2v

2)n2+d3v
2n3+d4v

2n4),

b =
2v

e
(u0 + u1n).

According to (6) D(n) divides (a2 + 1)(n) and therefore the remainder
of their polynomial division is zero. By equating its coefficients to zero,
we get

d0 =
1− 2u20 + u40 + e2

u41
d4, d1 =

4(−1 + u20)u0
u31

d4,

d2 =
2(−1 + 3u20)

u21
d4, d3 =

4u0
u1

d4.

Also, equation (6) yields that (a2 + 1 −Db2)/D = �. Hence, if (a2 +
1 − Db2)/D = q(n) is considered as a quartic polynomial in n, then
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two or more roots of q are equal if and only if the discriminant is zero.
Since one of the factors of the discriminant of q is d4e

2v2 − 4u41, for

d4 =
4u41
e2v2

we get

1

D
(a2 + 1−Db2) =

(−4− e2 + 4u20 + 8nu0u1 + 4n2u21)
2v2

4e4
= �.

As argued in the previous sections, for e = 4 we have c2−Dd2 +1 = �.
By all obtained, we have

D =
1

4v2
(17− 2u20 + u40 + (−4u0u1 + 4u30u1)n

+ (−2u21 + 6u20u
2
1)n

2 + 4u0u
3
1n

3 + u41n
4),

a =
1

16
(13 + 2u20 + u40 + (4u0u1 + 4u30u1)n

+ (2u21 + 6u20u
2
1)n

2 + 4u0u
3
1n

3 + u41n
4),

b =
(u0 + u1n)v

2
.

We still have to choose u0, u1, v which would give integer values of
D, a, b. For v = 2, odd u0 = 2k + 1 and even u1 = 2l, we obtain that
D, a, b ∈ Z. However, by taking n0 = k+ ln, we get D = 1+n2

0(n0+1)2

and quintuple (14). Nevertheless, for another choice of the parameter
v, for instance v = 10 and u0 = 23 + 50k, u1 = 50l we get a new
solution. If we put again n0 = k + ln, we obtain

D = 697 + 6072n0 + 19825n2
0 + 28750n3

0 + 15625n4
0,

a = 17557 + 152375n0 + 496250n2
0 + 718750n3

0 + 390625n4
0,

b = 115 + 250n0,

c = 2392278510 + 41841233150n0 + 319909592500n2
0 + 1396567187500n3

0

+ 3807366406250n4
0 + 6637656250000n5

0 + 7226562500000n6
0

+ 4492187500000n7
0 + 1220703125000n8

0

d = 90614010 + 1190152250n0 + 6504293750n2
0 + 18931875000n3

0

+ 30953125000n4
0 + 26953125000n5

0 + 9765625000n6
0.

We conclude with a table of examples obtained by extending the
range of search from [10] (we omit examples from Table 1).
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D e (a, b) (c, d)

2 6 (31,15) (6200,4384)
2 10 (13,9) (176,124)
2 3 (39,20) (4407,3116)
2 21 (17,12) (97,68)
2 6 (403,279) (81536,57652)
2 21 (97,68) (6977,4932)
2 3 (7655,3828) (175766455,124285652)
2 182 (107,75) (72832,51500)
2 3 (44615,22308) (5971316215,4222358188)
2 1974 (1379,975) (1548400,1094884)
2 4074 (1297,831) (2453263544,1734719288)
2 3 (8833479,4416740) (234091018396407,165527346522964)
2 7665 (639,320) (3119985873,2206163168)
5 28 (148,30) (974948,436010)
5 416 (718,287) (86262780,38577888)
5 104 (2467,493) (1013140590,453090246)
5 3344 (3097,1379) (556477890,248864478)
13 6 (268,22) (786926,218254)
13 6 (86,20) (26530,7358)
13 10 (148,34) (137826,38226)
13 234 (44,10) (297970,82642)
13 114 (122,32) (358774,99506)
13 696 (278,77) (289396,80264)
13 7794 (10652,2618) (379787495194,105334099054)
17 12 (1211,285) (2059138,499414)
17 12 (29635,6973) (1239583250,300643098)
17 3192 (2240,527) (1890993160,458633208)
17 12 (1955293,460069) (5397399308486,1309061614854)
29 112 (17,1) (58386,10842)
29 20 (17,3) (1174,218)
29 44 (331,23) (8292066,1539798)
34 5 (125745,18492) (41853919985,7177888060)
37 390 (1708,238) (640723886,105334358)
37 1146 (5026,700) (16343520590,2686858234)
41 4032 (2082,325) (33062532,5163500)
53 4 (33307,675) (8681731610,1192527550)
58 90 (17,1) (41704,5476)
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D e (a, b) (c, d)

61 1482 (782,100) (4520182,578750)
73 4 (27,3) (634,74)
73 8 (27,3) (1214,142)
73 8 (162452,17803) (52056888864,6092797992)
82 306 (173,19) (200776,22172)
85 14 (132,6) (402470,43654)
85 4 (3277,113) (77233470,8377146)
97 3792 (1239,115) (1913419134,194278278)
109 20 (33,3) (4406,422)
113 1680 (1228,113) (218696456,20573232)
130 6 (203,11) (306160,26852)
145 4 (157,7) (140670,11682)
229 1992 (15007,719) (425594736326,28124091802)
401 4 (421,9) (1158926,57874)
401 232 (782,25) (167458932,8362500)
409 20 (143,7) (16626,822)
493 15924 (11037,497) (1271792334,57278646)
586 590 (3671,71) (12416221632,512909388)
697 4 (17557,115) (2392278510,90614010)
769 1400 (5321,187) (3981276042,143568486)
901 4 (931,11) (6063786,202014)
901 3540 (1832,61) (25516444,850076)
1093 1056 (563,17) (2308486,69826)
1765 4 (1807,13) (23739330,565062)
1961 2 (1030,10) (3461262,78162)

Table 3

Here is a brief description of our algorithm. For all square free D,
1 < D < 1000, 1 ≤ u, v ≤ 10000 and for all positive integers e such
that e | gcd(u2 + Dv2 − 1, 2uv), we put z = ((u + v

√
D)2 − 1)/e and

test if (N(z) + 1)/D equals a perfect square. If “yes”, then {e, z, z̄}
is a Diophantine triple where z̄ means a conjugate of z in Z(

√
D). If

(2a − e)2 − 4Dx2 + 1 = � or D · �, where a = (z + z̄)/2, then the
Diophantine triple {e, z, z̄} can be exteded to a biregular Diophantine
quintuple containing two pairs of conjugates {e, z, z̄, z′, z̄′} (where z′, z̄′

are given by (9) and z′ 6= 0).

Note that entries for d = 145, 401, 697, 901, 1765 are special cases
of our polynomials formulas for Diophantine quintuples.
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[11] B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans.

Amer. Math. Soc. 371 (2019), 6665–6709.

Department of Mathematics, Faculty of Science, University of Za-
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