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Abstract

We construct an elliptic curve over Q(¢) with torsion group Z/47Z x
Z/47Z and rank equal to 7 and a family of elliptic curves with the same
torsion group and rank > 2.

1 Introduction

By the Mordell-Weil theorem, the group E(K) of K-rational points of an
elliptic curve E over a number field K is a finitely generated abelian group.
Hence, F(K) is isomorphic to the product of the torsion group and r > 0
copies of an infinite cyclic group:

B(K) =~ B(K)ors X Z'

In the case K = Q, by Mazur’s theorem [8], we know that F(Q)iors is one of
the following 15 groups: Z/nZ with 1 <n <10 or n = 12, Z/2Z x Z/2mZ
with 1 <m < 4. If K is a quadratic field, by the results of Kamienny [4] and
Kenku and Momose [5], there are 26 possible torsion groups: Z/nZ with 1 <
n <16 orn =18, Z/2Z x Z/2mZ with 1 <n < 6, Z/37Z x Z/3mZ with n =
1,2 and Z/AZ x Z/AZ. In the case of the Gaussian quadratic field K = Q(q),
by the recent results of Najman [10, 11], there are exactly 16 possible torsion
groups, namely, the 15 groups from Mazur’s theorem and the group Z/47Z x
Z/4Z. On the other hand, it is not known which values of rank r are possible.
The folklore conjecture is that a rank can be arbitrarily large, maybe even if
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the torsion group is fixed, but it seems to be very hard to find elliptic curves
with very large rank (especially if the curve also has a large torsion group).
In the case K = Q, current records for each of the 15 possible torsion groups
can be found at http://web.math.hr/~duje/tors/tors.html.

In this paper, we will consider elliptic curves over Q(i) with torsion group
ZJAZ x ZJAZ, the only torsion group which is possible over Q(i) but not
possible over Q. Recently, Rabarison [13] found an infinite family of such
curves (parametrized by an elliptic curve with positive rank) with rank > 2
and a curve with rank equal to 3. We will improve these results by finding
a parametric family of curves over Q(¢)(7") with rank > 2 and a curve over
Q(7) with rank equal to 7 (and several examples with rank equal to 6).

2 The searching methods
General form of elliptic curves over Q(i) with torsion group Z/47Z x Z/AZ is
Y2 + dxy + (=640t + )y = 2 + (—160* + 1)22. (1)
Note that the points T7 = [0, 0] and
Ty = [—2(2v + 1)(40* + 1), 2i(20 + 1)%(20 — 9)*(2v + 1)]

are generators of the torsion group (see [13] for details).
It is well-known (see e.g. [14]) that if an elliptic curve E is defined over
Q, then the rank of E over Q(7) is given by

rank(E(Q())) = rank(E(Q)) + rank(E_1(Q)), (2)

where E_; is the (—1)-twist of E over Q.
In our case, the curve E is given by (1) for v € Q, and E_; is given by

Y2 + dxy + (—640* + 4)y = 2 + (160* — 9)2? + (—20480° + 2560* — 8).

There are several known techniques for finding elliptic curves over Q with
relatively high rank within a given family of curves. The main idea is that a
curve is more likely to have high rank if #FE(F),) is relatively large for many
primes p. Mestre [6] and Nagao [9] proposed several realizations of this idea
involving the computation of various sums (see also [3]). It might be an
interesting question to discover which variant (with suitable modifications)
is the most appropriate for finding curves (defined over Q) with high rank
over Q(i). For a prime p, we put ap, = ap(E) = p+ 1 — #E(F,) and



ap = a,(E) =p+1—F#E _1(Fy) = (=1)P=D/2q,,. Our experiments suggest

that one reasonable possibility is to maximize the sum S(N, E)+S(N, E_1),
where

—a, + 2
S(n,E) = Z ﬁ log(p),
p<n, p prime p P
—a’ +2
S(n, E_ = — P2 ]
(n7 1) Z p_l_l_a;) Og(p)7

p<n, p prime

and n is a fixed positive integer of moderate size (say n = 1979). We have
implemented this algorithm in PARI/GP [12]. By testing the curves with
parameters v = r/s with |r|, |s| < 3000, we find several curves with rank
6 and 7. The details on these curves will be given in the next Section
To speed up the testing, it is useful to note that the parameters +v, -
+2v-1 2 +2v41 give isomorphic curves over Q(i).

For curves with a large value of S(n, E) + S(n, E_1), we try to compute
the rank. Our main tool is Cremona’s program MWRANK [2], which usually
works well since our curves have rational 2-torsion points. However, in
several cases we need to increase significantly the default height bound for
quartic point search, e.g. we used the option -b 15. In several undecided
cases where MWRANK gives only upper and lower bounds for the rank (usually
of the form r < rank < r + 2), we use the parity conjecture and Mestre’s
conditional upper bound [7]

2
rank<§<logl\7—2 Z b(p FA(mlogp)lp—M)\)

pm<er

4qu?

where N is the conductor, b(p™) = a if p| N and b(p™) = oy + /)" if
pt N where a, 041’0 are the roots of 22 — apT + p,

M, = 2(log27r + /O+OO(F,\(x)/(ex —-1)— e_x/;r)dx>,

F\(z) = F(xz/)) and the function F can be taken as F(x) = (1—|z|) cos(rz)+
sin(r|z|) /7 for z € [—1, 1] and F'(z) = 0 elsewhere (which give upper bounds
for the rank assuming the Birch and Swinnerton-Dyer conjecture and GRH)
to determine the rank conditionally.

3 Examples of curves with the rank 6 and 7

For v = 1460/357 we have rank(E(Q)) = 3 (indeed, mwrank gives 3 <
rank < 5, but Mestre bound (for A = 15) shows that rank < 3.897506, so



that, conditionally, rank is equal to 3), rank(E_;1(Q)) = 4; while for v =
1480/2409 we have rank(E(Q)) = 3, rank(EF_1(Q)) = 4 (unconditionally).

We give the details (minimal equations for £ and E_j, torsion points
and independent points of infinite order) only for the first curve:

E: % =2 — 2% — 1767249795031464614697898400z
— 28251774377872555808145193864734736800000),

E_1: y*+ay =2® — 110453112189466538418618650
+ 441433974654258684502268654136480262500.

Torsion points:

0, [48477160138401, 0], [-22065217762000, 0], [—26411942376400, 0],
[121160413850800, 1239452988906797667200], [121160413850800, —1239452988906797667200],
[—24206093573998, 18526816004 783080302], [—24206093573998, —18526816004783080302],
[—8369705673280, 118518893593457483280 1], [-8369705673280, —118518893593457483280 1],
[—44454179079520, 193750690508659134480 ¢, [—44454179079520, —193750690508659134480 7],
[—22065217762000 + 17510804960880 ¢, 147072392836988036880 — 36507927046839494400 ],
[—22065217762000 + 17510804960880 i, —147072392836988036880 + 36507927046839494400 4],
[—22065217762000 — 17510804960880 ¢, 147072392836988036880 + 36507927046839494400 1],
[—22065217762000 — 17510804960880 ¢, —147072392836988036880 — 36507927046839494400 1.

Independent points of infinite order:

[7640146789219125454816944 20381190232493893534455417298148662272

A= I 45473430025 ’ 9696981585681125 ’
p, _ [ 3039226723088080 22695919043355349868160}

I 121 ’ 1331 ’
p, _ [121705279763533930 42384437564661574388967130]

I 169 ’ 2197 ’
P, = [—37767514808128, 124008728664726403344 i),
Ps = [25986466817360,237965929380339246240 ],
Ps = [—130147271940280, 14151763791144267397201],
p, _ [ 042568152906573040 178990706110796181145330080i}.

20449 ’ 2924207

Furthermore, we obtain that the rank is equal to 6 for the following val-
ues of the parameter v: 1003/455, 72/535, 886,/1073, 297/2503, 51/305,
175/1201, 924/613, 973/825 (unconditionally, by MWRANK), and 232/159,
380/831, 420/1073 (conditionally, using MWRANK, Mestre’s bounds and the
parity conjecture; unconditionally we have that 6 < rank < 8).



4 A family with the rank > 2

We write the curve E and its twist £_1 in the form
y? =13+ Az? + Bx, 4? =2° — A2’ + Bz

where A = —(16v* + 24v2 + 1), B = 16(4v? + 1)%02.

Let us consider the twist y? = 2% — A2 + Bx. We want to find a factor
By of B such that By — A+ B/Bj is a square (say N?2), which will produce
a new point [By, B1N] on the twist. We take B; = —(4v? + 1), which yields

N?% = 40%(1 — 120%). (3)
Forcing the right hand side of (3) to be a square, leads to the genus 0 curve

1 — 120% = 22, Using a rational solution v = 0, z = 1, we obtain the

parametric solution
2t

2412
Moreover, we obtained a point of infinite order
t2+4)(t2 +36) 4t(t* +40t? + 144)(t? — 12)
(t2+12)2 (12 +12)4

P =[By, B|N] = !

Hence, we have a family with rank > 1, y? = 23 — A’z? + Bz, where A’ =
—(t84+1441°+3424t* 42073612 +20736), B’ = 64t (12 +4)%(t>+12)?(t>+36)2.
Now we consider the equation
N? = B\M* — A'M?e? + B'/Bjet.
By taking M =2, e = 1, B} = 32(t? + 36)?, we get
N? = 2(2 + 18) (% — 4t 4 12)%(¢* + 4t + 12)%.
Thus, the condition again leads to a genus 0 curve 2(t? + 18) = 22. Using
the rational solution ¢ = 0, z = 6, we obtain the parametric solution:
12w

2 —w?’

and the additional point with infinite order
Q = [4B},2B)N] =

165888(w*+4)?  71663616(w+4)? (w2 +2) (w+4w3+8w? —8w+4) (w* —4w3+8w? +8w-+4)
(w2,2)4 9 (w2,2)9 .

It remains to check that the points P and () are independent. It is sufficient
to find a specialization for which the specialized points are independent, and
we have checked that it is the case e.g. for w = 2. Hence, we obtained a
family of curves with rank > 2.
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