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Abstract

We describe decomposition of polynomials fn := fn,B,a defined by

f0 := B, f1(x) := x, fn+1(x) = xfn(x)− afn−1(x)

where B and a are rational numbers. We also present an application
to related Diophantine equations.

1 Introduction

It is an essential question on the polynomial Diophantine equation f(x) =
g(y) to ask whether this equation has finitely or infinitely many integer so-
lutions. In 2000, Bilu and Tichy [3] obtained a completely explicit finiteness
criterion. Their result generalizes a previous one due to Schinzel [14, Theo-
rem 8], who gave a finiteness criterion under the assumption gcd(deg f,deg g)
= 1. These criteria are closely connected with decomposability properties
of the polynomials f and g. A polynomial f ∈ C[x] is called indecomposable
(over C) if f = g ◦ h, g, h ∈ C[x] implies deg g = 1 or deg h = 1. Two
decompositions of f , say f = g1 ◦ h1 and f = g2 ◦ h2 are equivalent if there
exists a linear function L such that g2 = g1 ◦ L, h2 = L−1 ◦ h1 (see [14, pp.
14–15]).

To formulate the criterion of Bilu and Tichy, we have to define five types
of standard pairs (f(x), g(x)). In what follows, a and b ∈ Q\{0}, m and n
are positive integers, and p(x) is a non-zero polynomial.

A standard pair of the first kind is a pair of the form (xm, axrp(x)m), or
switched, (axrp(x)m, xm) where 0 ≤ r < m, gcd(r, m) = 1 and r+deg p(x) >
0. A standard pair of the second kind is (x2, (ax2 + b)p(x)2) (or switched).
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Denote by Dm,a(x) the m-th Dickson polynomial, defined by

Dm,a(z + a/z) = zm + (a/z)m.

A standard pair of the third kind is (Dm,an(x), Dn,am(x)), where gcd(m,n)
= 1. A standard pair of the fourth kind is

(
a−m/2Dm,a(x),−b−n/2Dn,b(x)

)
,

where gcd(m,n) = 2.
A standard pair of the fifth kind is ((ax2− 1)3, 3x4− 4x3) (or switched).
Please note that the a, b appearing in the definitions of standard pairs

are different from those used in the recurrences of fn,B,a, resp. fm,C,b.

Theorem 1 ([3]) Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then
the following two assertions are equivalent.

(a) The equation f(x) = g(y) has infinitely many rational solutions with
a bounded denominator.

(b) We have f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ, where λ(x), µ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x)) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator.

The criterion of Bilu and Tichy has been already applied to several Dio-
phantine equations of the form fn(x) = gm(y), where (fn) and (gn) are
sequences of classical polynomials (see [1, 2, 7, 10, 11, 12, 13, 18, 19, 20]). In
particular, in [7], the equation Gm(x) = Gn(y) was considered, where (Gn)
is the sequence of generalized Fibonacci polynomials defined by G0(x) = 0,
G1(x) = 1, Gn+1 = xGn(x)− aGn−1 for n ≥ 1. In [5] (see also [6]), we ob-
tained the following general criteria for indecomposability of polynomials,
in terms of the degree and two leading coefficients.

Theorem 2

i) [5, Theorem 2.2] Let f(x) = xn +uxn−1 + · · · ∈ Z[x]. If gcd(u, n) = 1,
then f is indecomposable.

ii) [5, Corollary 3.1] Let f(x) = dxn + uxn−2 + · · · ∈ Z[x] be an odd
polynomial. If gcd(du, n) = 1, then f is indecomposable.

iii) [5, Theorem 3.1] Let f(x) = dx2n + ux2n−2 + · · · ∈ Z[x] be an even
polynomial and define g(x) = f(

√
x). Assume that gcd(u, n) = 1.

Then every decomposition of f is equivalent to one of the following
decompositions:
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(a) f(x) = g(x2),

(b) f(x) =
(
xP (x2)

)2.

The case (b) appears if and only if g(x) = xP (x)2 for some polynomial
P (x) ∈ Z[x].

In this paper, we will generalize the results from [7], by applying Theo-
rems 1 and 2 to a more general family of polynomials fn := fn,B,a defined
by

f0 := B, f1(x) := x, fn+1(x) = xfn(x)− afn−1(x) (1.1)

where B and a are rational numbers. We prove that, under certain mild
technical conditions, the polynomials fn are (almost) indecomposable (The-
orem 3) and have only simple roots (Theorem 4). These results allow us to
apply the criterion of Bilu and Tichy in order to prove that, under the same
technical conditions, the equation fn,B,a(x) = fm,C,b(y) has only finitely
many rational solutions with a bounded denominator (Theorem 5).

2 The polynomials fn,B,a

Recall that Dickson polynomials Dn,a satisfy the recurrence D0,a = 2, D1,a =
x, Dn+1,a(x) = xDn,a(x)− aDn−1,a(x).

The following properties of Dickson polynomials are well-known:

Dn,a(x) =
∑
k≤n

2

n

n− k

(
n− k

k

)
(−a)kxn−2k (2.1)

= xn − naxn−2 +
n(n− 3)

2!
a2xn−4 − n(n− 4)(n− 5)

3!
a3xn−6 + · · ·

Dn,b2a(bx) = bnDn,a(x). (2.2)

Now we will consider the polynomials fn := fn,B,a defined by (1.1). We
first recall some special cases:

(a) fn,B,0(x) = xn, for n ≥ 1.

(b) fn,2,a = Dn,a - the Dickson polynomials.

(c) fn,1,a = Gn+1 (from [7]), especially fn,1,1 = Fn+1 - the Fibonacci
polynomials.
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Lemma 1 We have:

i) fn,B,a(x) = B
2

(
qn + (a

q )n
)

+ 2−B
2

x√
x2−4a

(
qn − (a

q )n
)
,

where q := x+
√

x2−4a
2 .

ii) fn,B,a(x) =
∑

k≤n
2

(
B
2

n
n−k

(
n−k

k

)
− B−2

2

(
n−k−1

k

))
(−a)kxn−2k

iii) fn,B,b2a(bx) = bnfn,B,a(x),
for each complex number b 6= 0. Especially, if a 6= 0 and

√
a is a fixed

square root of a, then fn,B,a(x) = (
√

a)nfn,B,1( x√
a
).

Proof. Solving the recurrence (1.1), we obtain i). It is easy to see, using
[9, formulas (5.74) and (5.75)], that i) implies ii). It is clear that iii) follows
from ii).

Note that the coefficient of xn−2k may be written as

n + (B − 2)k
n− k

(
n− k

k

)
(−a)k,

i.e. as ((
n− k

k

)
+ (B − 1)

(
n− k − 1

k − 1

))
(−a)k. (2.3)

Note also that ii) is a generalization of the corresponding formula for
Dn,a. Especially,

fn,B,a(x) = xn−(B+n−2)axn−2+
(n + 2(B − 2))(n− 3)

2!
a2xn−4+... (2.4)

Note that the polynomials fn,B,a are odd (for n odd), resp. even (for n even).
In the sequel, we set B := µ

d , where µ, d are co-prime integers and d > 0.
If B = 0, then we set µ = 0 and d = 1.

Theorem 3 Put fn = fn,B,a and Hn(x) := f2n(
√

x). Assume that a 6= 0,
gcd(d, n) = 1 and gcd(µ− 2d, n) = 1. Then:

i) If n is odd, then fn is indecomposable.

ii) f2n(x) = Hn(x2) is the unique (up to the equivalence) decomposition
of f2n.

Proof.
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i) By Lemma 1 iii), fn,B,a is indecomposable if and only if fn,B,1 is in-
decomposable (provided a 6= 0). However fn,B,1 is indecomposable if
and only if dfn,B,1 is indecomposable. By (2.3), dfn,B,1 is a polynomial
over integers, and so, by Theorem 2 ii) and (2.4), it is indecomposable
provided n is odd, gcd(d, n) = 1 and gcd(µ− 2d, n) = 1.

ii) Using a similar argument as in i), we see that the decompositions
of f2n,B,a correspond to the decompositions of df2n,B,1 (for a 6= 0).
Also, if a 6= 0, then Hn,B,a is decomposable if and only if Hn,B,1 is
decomposable. By Theorem 2 iii), the uniqueness of the decomposition
may fail only if dHn(x) = xP (x)2 for a polynomial P . Then n is odd
and Hn(0) = 0. Since Hn(0) = 2n+(B−2)n

2n−n

(
2n−n

n

)
(−a)n and a 6= 0, we

see that B = 0.

However, if f2n,0,a = x2P (x2)2, then the relation fk,0,a = xfk−1,1,a

implies that the polynomial f2n−1,1,a has a double root, which is im-
possible by Theorem 4 below.

Remark 1 As a consequence of Theorem 3 we see that if a 6= 0, and B =
1 or B = 3, then fn,B,a is indecomposable (for n odd), and fn,B,a(x) =
Hn

2
,B,a(x2) is the unique decomposition up to the equivalence (for n even).

For B = 1 it was proved in [7] by other methods.
Also, we see that for a 6= 0 the following is valid: if n is odd then

fn,±2r+2,a is indecomposable for all r ∈ N ∪ {0}.
If B = 2 then gcd(n + B − 2, n) = n, which is compatible with fact that

Dickson polynomials are decomposable.

Example 1 A polynomial Hn,B,a may be decomposable even if B 6= 2. For
example,

f8,−2,−1(x) = x8 + 4x6 − 8x2 − 2

hence

H4,−2,−1(x) = x4 + 4x3 − 8x− 2 = (x2 + 2x)2 − 4(x2 + 2x)− 2

so H4,−2,−1 is decomposable.

Question. It is easy to see that f9,B,a is decomposable if and only if
B = 2 (provided a 6= 0). Does there exist decomposable fn,B,a for odd n,
a 6= 0 and B 6= 2?

We say that polynomials f, g are associated if there exist linear polyno-
mials L,M such that g = L◦f ◦M . From (2.2) it follows that every Dickson
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polynomial Dn,a with a 6= 0 is associated with some Dickson polynomial of
the form Dn,1.

Lemma 2 Assume that f, g are associated polynomials. Then:

i) If f, g are odd then
g(x) = αf(γx)

ii) If f, g are even then
g(x) = αf(γx) + β

(for some constants α, β, γ).

Proof. Let us prove i). By g(x) = αf(γx + δ) + β and the fact that f, g
are odd, we get the identity

f(γx− δ) = f(γx + δ) +
2β

α
.

If deg f = 1, then the result is trivially true. Thus we may assume that f is
not linear. Using the Taylor expansion around γx and nonlinearity of f we
get δ = 0, which infers β = 0. One may prove ii) similarly.

Lemma 3 Assume that fn,B,a is associated with Dn,b with n ≥ 5. Then
a = b = 0 or B = 2.

Proof. Using the results and notation from Lemma 2, we get:

αγn = 1,

αγn−2(B + n− 2)b = na,

αγn−4b2 (n + (B − 2)2)(n− 3)
2!

=
n(n− 3)

2!
a2.

We see that a 6= 0 if and only if b 6= 0. If a 6= 0 we get

γ2 =
(B + n− 2)b

na
and γ4 =

(n + (B − 2)2)b2

na2
,

hence (B + n− 2)2 = n(n + (B − 2)2), i.e. B = 2.

We will need the information when our polynomials fn = fn,B,a have
only simple roots. Very precise information about the roots of polynomials
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fn may be obtained using known results on (quasi) orthogonal polynomials.
Note that the polynomials fn satisfy a three term recurrence relation:

xpn(x) = βnpn+1(x) + γnpn(x) + δnpn−1(x), p0(x) = 1, p−1(x) = 0,

with βn = 1, γn = 0, δ1 = aB, δn = a for n ≥ 2. Namely, it is clear that
for n ≥ 1 we have fn = pn. By Favard’s Theorem, the polynomials fn are
quasi-definite orthogonal polynomials, and if B > 0, a > 0 they are positive
definite (see [4, 21]).

Theorem 4 Polynomials fn,B,a with a,B ∈ R and a 6= 0 have simple roots,
except if B = 0 and n = 2k (then x = 0 is a double root), or if B = −1/k
and n = 2k + 1 (then x = 0 is a triple root).

Furthermore, let ε = 0 if n is even, while ε = −1/k if n = 2k + 1. If
B ≥ ε, a > 0, then all roots are real, if B ≥ ε, a < 0, then all roots are
imaginary, if B < ε, a > 0, then n − 2 roots are real and two roots are
imaginary conjugates, and if B < ε, a < 0, then n − 2 roots are imaginary
and two roots are real.

Proof. According to Lemma 1 iii), it suffices to prove the statement for
the case a = 1.

If B > 0, then fn is a positive definite orthogonal polynomial, and
therefore all roots of fn are real and simple (see e.g. [21, Theorem 3.1.1]).

If B < 0, then fn is a quasi-definite orthogonal polynomial. By a theo-
rem of Gilbert [8] (see also [4, Theorem 2.4.6]), the roots of fn are all real
or purely imaginary. Furthermore, the roots are simple, with the possible
exception of a triple zero at x = 0. However, the triple zero at x = 0 is
possible only when n is odd, say n = 2k + 1, and the coefficient with x1,
which is (Bk + 1)(−a)k, is equal to zero, i.e. when B = −1/k.

From a theorem of Veselić [22] (see also [4, Theorem 2.4.1]), it follows
that fn has at least n − 2 real roots. Since the coefficients with x0 and x1

are B(−1)k (for n = 2k) and (Bk + 1)(−1)k (for n = 2k + 1), resp., we see
that the product of all zeros of polynomials f2k(

√
x), resp. f2k+1(

√
x)/

√
x,

is negative for n even, while has the same sign as Bk + 1 for n odd. Thus,
if n is even, or n is odd and B < −1/k, then at least one of these zeros is
negative, which implies that the two remaining roots of fn are imaginary
conjugates.

The case B = 0 follows from fn,0,a = xfn−1,1,a and the results already
proved for B = 1.
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Lemma 4 Let C be an algebraic curve of genus g, defined over the field of
complex numbers with affine equation

ym = f(x)

where f is a polynomial of degree n and with simple roots. Then

2g− 2 = mn−m− n− gcd(m, n).

Proof. See, for example, [16, Proposition VI.3.1].

In the following theorem we illustrate an application of previous results
on Diophantine equations of form f(x) = g(y).

We continue to use notation B = µ
d , introduced in Section 2. Similarly,

for a rational number C, we set C := ν
D , where ν, D are co-prime integers

and D > 0, and if C = 0 then we set ν = 0 and D = 1.

Theorem 5 Let us put f = fn,B,a and g = fm,C,b. Assume that gcd(d, n) =
gcd(µ − 2d, n) = gcd(D,m) = gcd(ν − 2D,m) = 1 and that m,n are odd
and different from 1.

Then the equation f(x) = g(y) has only finitely many rational solutions
with a bounded denominator, except if f = g or a = b = 0.

Proof. In this settings f, g are indecomposable, by Theorem 3, and so,
by Theorem 1, if the equation f(x) = g(y) has infinitely many rational
solutions with a bounded denominator, then f and g are associated with
the polynomials from a standard pair, or f and g are associated to each
other. By Lemma 2 and Lemma 3, this is impossible provided m,n ≥ 5 and
m 6= n, and a 6= 0 and b 6= 0.

However, if m = n, then we have g(x) = f(γx + δ). By Lemma 2, it
follows that δ = 0 and γ = 1, and hence f = g.

Furthermore, if b = 0, then for a 6= 0 we have g(x) = xm, and so, by
Lemma 4, the genus of f(x) = ym is greater than 1 (note that, by Theorem 4,
f is without multiple roots). Hence the equation has finitely many rational
solutions.

Assume now that m = 3 and n ≥ 5, and that the equation f(x) = g(y)
has infinitely many rational solutions with a bounded denominator. We have
to look at standard pairs of the first kind, hence g should be associated with
x3. By Lemma 2, we see that g(x) = α(γx)3 = x3, and by Theorem 4 and
Lemma 4 the equation y3 = f(x) has genus greater than 1, and therefore it
has only finitely many rational solutions.



Decomposition of a recursive family of polynomials 9

The remaining case is m = n = 3. We look at the equation

y3 − b(C + 1)y = x3 − a(B + 1)x

such that f 6= g, i.e. b(C + 1) 6= a(B + 1). It is easily seen that no standard
pair is possible in this situation, except the trivial pair (x, p(x)) with p linear.
Hence, we must have g(x) = f(γx + δ) (provided the equation has infinitely
many rational solutions), and by Lemma 2 we obtain δ = 0 and γ = 1, a
contradiction.

Remark 2 One may prove a similar result if n is odd and m even, as well
as if m,n are both even. The equation has finitely many rational solutions
with a bounded denominator, except in few exceptional (trivial) cases.

In particular, for B = C = 1 we obtain the result, already proved in [7]
and [5], that the equation Gn(x) = Gm(y), where Gn := fn−1,1,a (a 6= 0) are
generalized Fibonacci polynomials, has only finitely many integer solutions
for m,n ≥ 4, m 6= n.

A similar result can be proved for B = C = 3. Let Vn := fn,3,a (a 6= 0).
According to Remark 1, Vn is indecomposable for n odd and has the unique
decomposition Vn(x) = Hn/2(x2) (up to equivalence) for n even. As in
[5, Theorem 5.1 and Corollary 5.1], it follows that the equation Vn(x) =
Vm(y) has only finitely many integer solutions for m,n ≥ 3, m 6= n, unless
n = 2m and Hn(x) = Vn(γx + δ). But the last possibility can be excluded
by considering the coefficients of xn, xn−1, xn−2 and xn−3 in the equality
Hn(x) = Vn(γx + δ) (as in [5, Theorem 4.1]).

Acknowledgement: The authors would like to thank the referee for
several very useful suggestions.
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