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Bijenička cesta 30, 10000 Zagreb, CROATIA

E-mail: duje@math.hr
URL : http://web.math.hr/~duje/

Abstract

The problem of the construction of Diophantine m-tuples, i.e. sets
with the property that the product of any two of its distinct elements is
one less then a square, has a very long history. In this survey, we describe
several conjectures and recent results concerning Diophantine m-tuples
and their generalizations.

1 Diophantine quintuple conjecture

A set of m positive integers is called a Diophantine m-tuple if the product of its
any two distinct elements increased by 1 is a perfect square. Diophantus himself
found a set of four positive rationals with this property:

{
1
16

,
33
16

,
17
4

,
105
16

}
.

However, the first Diophantine quadruple, the set {1, 3, 8, 120}, was found by
Fermat. Euler found an infinite family of such sets:

{a, b, a + b + 2r, 4r(r + a)(r + b)} ,

where ab+1 = r2. He was also able to add the fifth positive rational, 777480/8288641,
to the Fermat’s set (see [5, 6, 26]). Recently, Gibbs [24] found several examples
of sets of six positive rationals with the property of Diophantus. The first one
was {

11
192

,
35
192

,
155
27

,
512
27

,
1235
48

,
180873

16

}
.

A folklore conjecture is that there does not exist a Diophantine quintuple.
The first important result concerning this conjecture was proved in 1969 by
Baker and Davenport [2]. They proved that if d is a positive integer such that
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{1, 3, 8, d} forms a Diophantine quadruple, then d = 120. This problem was
stated in 1967 by Gardner [23] (see also [27]). Furthemore, in 1998, in the joint
work with Attila Pethő [17] we proved that the pair {1, 3} cannot be extended
to a Diophantine quintuple.

In 1979, Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple
can be extended to a Diophantine quadruple. More precisely, let {a, b, c} be a
Diophantine triple and ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, where r, s, t are
positive integers. Define

d+ = a + b + c + 2abc + 2rst.

Then {a, b, c, d+} is a Diophantine quadruple. A stronger version of the Dio-
phantine quintuple conjecture states that if {a, b, c, d} is a Diophantine quadru-
ple and d > max{a, b, c}, then d = d+. Diophantine quadruples of this form are
called regular.

In 2004, we proved that there does not exist a Diophantine sextuple and
there are only finitely many Diophantine quintuples (see [10]). However, the
bounds for the size of the elements of a (hypothetical) Diophantine quintuple
are huge (largest element is less than 101026

), so the remaining cases cannot be
checked on a computer.

Recently, Fujita [22] proved that if {a, b, c, d, e} (a < b < c < d < e) is
a Diophantine quintuple, then {a, b, c, d} is a regular Diophantine quadruple.
Thus, in order to prove the Diophantine quintuple conjecture, it remains to prove
that a regular Diophantine quadruple cannot be extended to a quintuple. Such
result is known to be true for several parametric families of regular Diophantine
quadruples, e.g. {k− 1, k + 1, 4k, 16k3 − 4k}. Moreover, Fujita [21] proved that
the pair {k−1, k+1} (for k ≥ 2) cannot be extended to a Diophantine quintuple,
and his results, together with our joint work with Yann Bugeaud and Maurice
Mignotte [4], show that all Diophantine quadruples of the form {k−1, k+1, c, d}
are regular.

2 The existence of Diophantine quadruples with
the property D(n)

A natural generalization of the original problem of Diophantus and Fermat is
to replace number 1, in the definition of Diophantine m-tuples, by an arbitrary
integer n. A set of m positive integers {a1, a2, . . . , am} is said to have the
property D(n) if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Such a set
is called a Diophantine m-tuple with the property D(n) (or D(n)-m-tuple, or
Pn-set of size m).

Several authors considered the problem of the existence of Diophantine
quadruples with the property D(n). This problem is now almost completely
solved. In 1985, Brown [3] (see also [25, 28]) gave the first part of the answer by
showing that if n is an integer of the form n = 4k+2, then there does not exist a
Diophantine quadruple with the property D(n). In 1993, we were able to prove
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that if n 6≡ 2 (mod 4) and n /∈ S = {−4,−3,−1, 3, 5, 12, 20}, then there exists
at least one Diophantine quadruple with the property D(n) (see [7]). The con-
jecture is that for n ∈ S there does not exist a Diophantine quadruple with the
property D(n). It is interesting to observe that the integers 4k + 2 are exactly
those integers which are not representable as differences of the squares of two
integers. It seems that this is not just a coincidence. Namely, analogous results,
which show strong connection between the existence of D(n)-quadruples and
the representability as a difference of two squares, also hold for integers in some
quadratic fields (see [8, 15, 19, 20]).

It is clear that if n = m2 is a perfect square, than there exist infinitely
many D(m2)-quadruples. Namely, Euler’s result mentioned above shows that
there are infinitely many D(1)-quadruples, and multiplying their elements by
m we obtain D(m2)-quadruples. We state the following conjecture: if n is not
a perfect square, then there exist only finitely many D(n)-quadruples. As we
already mentioned, it is easy to verify the conjecture in case n ≡ 2 (mod 4) (then
there does not exist a D(n)-quadruple). In the recent joint work with Clemens
Fuchs and Alan Filipin, we have proved this conjecture in cases n = −1 and
n = −4 (see [14, 16]). Perhaps some support to this conjecture may come from
considering the number of D(n)-triples in given range. Let

Dm(n; N) = | {D ⊆ {1, 2, . . . , N} : D is a D(n)-m-tuple } |.

In [12], we considered the case n = 1 and proved that D3(1; N) = 3
π2 N log N +

O(N). In our forthcoming paper [18], we will show that D3(n;N) ∼ C(n)N log(N)
if n is a perfect square, while D3(n;N) ∼ C(n)N otherwise.

Concerning rational Diophantine m-tuples, it is expected that there exist an
absolute upper bound for their size. Such a result will follow from the Lang
conjecture on varieties of general type. Related problem is to find an upper
bound Mn for the size of D(n)-tuples (for given non-zero integer n). Again,
the Lang conjecture implies that there exist an absolute upper bound for Mn

(independent on n). However, at present, the best known upper bounds are of
the shape Mn < c log |n| (see [9, 11]). Recently, in our joint paper with Florian
Luca [13], we were able to obtain an absolute upper bound for Mp, where p is
a prime.
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