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Abstract

A D(4)-m-tuple is a set of m integers such that the product of
any two of them increased by 4 is a perfect square. A problem of
extendibility of D(4)-m-tuples is closely connected with the properties
of elliptic curves associated with them. In this paper we prove that
the torsion group of an elliptic curve associated with a D(4)-triple can
be either Z/2Z × Z/2Z or Z/2Z × Z/6Z, except for the D(4)-triple
{−1, 3, 4} when the torsion group is Z/2Z× Z/4Z.
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1 Introduction

Let n be a given nonzero integer. A set ofm nonzero integers {a1, a2, . . . , am}
is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n))
if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Diophantus found the
D(256)-quadruple {1, 33, 68, 105}, while the first D(1)-quadruple, the set
{1, 3, 8, 120}, was found by Fermat (see [1], [2]).

One of the most interesting questions in the study of D(n)-m-tuples is
how large these sets can be. In this paper we will examine sets with the prop-
erty D(4). Mohanty and Ramasamy [17] were first to achieve a significant
result on the nonextendibility of D(4)-m-tuples. They proved that a D(4)-
quadruple {1, 5, 12, 96} cannot be extended to a D(4)-quintuple. Kedlaya
[14] later proved that if {1, 5, 12, d} is a D(4)-quadruple, then d has to be 96.
Dujella and Ramasamy [9] generalized this result to the parametric family
of D(4)-quadruples {F2k, 5F2k, 4F2k+2, 4L2kF4k+2} involving Fibonacci and
Lucas numbers. Other generalization to a two-parametric family of D(4)-
triples can be found in [13]. Dujella [6] proved that there does not exist a
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D(1)-sextuple and that there are only finitely many D(1)-quintuples. By
observing congruences modulo 8, it is not hard to conclude that a D(4)-m-
tuple can contain at most two odd numbers (see [9, Lemma 1]). Thus, the
results from [6] imply that there does not exist a D(4)-8-tuple and that there
are only finitely many D(4)-7-tuples. Filipin [10, 11] significantly improved
these results by proving that there does not exist a D(4)-sextuple and that
there are only finitely many D(4)-quintuples.

Let {a, b, c} be a D(4)-triple. Then there exist nonnegative integers r, s, t
such that

ab+ 4 = r2, ac+ 4 = s2, bc+ 4 = t2. (1)

In order to extend this triple to a quadruple, we have to solve the system

ax+ 4 = �, bx+ 4 = �, cx+ 4 = �. (2)

We assign to the system (2) the elliptic curve

E : y2 = (ax+ 4)(bx+ 4)(cx+ 4). (3)

The purpose of this paper is to examine possible forms of torsion groups
of elliptic curves obtained in this manner. Additional motivation for this
paper is a gap found in the proof of [4, Lemma 1] concerning torsion groups
of elliptic curves induced by D(1)-triples. Namely, if {a′, b′, c′} is a D(1)-
triple, then {2a′, 2b′, 2c′} is a D(4)-triple. Thus, the proof of Lemma 2 in
present paper also provides a valid proof of [4, Lemma 1].

2 Torsion group of E

The coordinate transformation

x 7→ x

abc
, y 7→ y

abc

applied on the curve E leads to the elliptic curve

E′ : y2 = (x+ 4bc)(x+ 4ac)(x+ 4ab).

There are three rational points on E′ of order 2:

A′ = (−4bc, 0), B′ = (−4ac, 0), C ′ = (−4ab, 0),

and also other obvious rational points

P ′ = (0, 8abc), S′ = (16, 8rst).
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It is not so obvious, but it is easy to verify that S′ ∈ 2E′(Q). Namely,
S′ = 2R′, where

R′ = (4rs+ 4rt+ 4st+ 16, 8(r + s)(r + t)(s+ t)).

In this section we will first examine one special case and after that we
may assume without the loss of generality that a, b, c are positive integers
such that a < b < c. Since {−a,−b,−c} induces the same curve as {a, b, c},
a problem may arise only when there are mixed signs. It is easily seen
that the only such possible D(4)-triple is {−1, 3, 4} (and the equivalent one
{−4,−3, 1}). The elliptic curve associated with this D(4)-triple has rank
0 and the torsion group isomorphic to Z/2Z × Z/4Z. In this special case
B′ ∈ 2E′(Q), more precisely B′ = 2P ′, so the point P ′ is of order 4. Note
that in this case the point R′ is also of order 4 since R′ = P ′ +A′ and thus
2R′ = 2P ′.

Thus, we assume from now on that a, b, c are positive integers such that
a < b < c.

Lemma 1. If {a, b, c} is D(4)-triple, then c = a+b+2r or c > ab+a+b+1 >
ab.

Proof. By [5, Lemma 3], there exists an integer

e = 4(a+ b+ c) + 2(abc− rst) (4)

and nonnegative integers x, y, z such that

ae+ 16 = x2, (5)

be+ 16 = y2, (6)

ce+ 16 = z2 (7)

and c = a + b + e
4 + 1

8(abe + rxy). From (7), it follows that e ≥ 0 (the
case e = −1 implies c ≤ 16, but the only such D(4)-triple {1, 5, 12} does
not satisfy (5) and (6)). For e = 0 we get c = a + b + 2r, while for e ≥ 1
we have c > 1

4abe+ a+ b+ e
4 . By observing congruences modulo 8, we can

easily prove that at most two of the integers a, b, c are odd, which implies
that abc− rst is even. Hence, from (4) we conclude that e ≡ 0 (mod 4). It
follows e ≥ 4 and thus c > ab+ a+ b+ 1.

Remark 1. Filipin (see [12, Lemma 4]) proved that c = a+b+2r or c > 1
4abe.

Lemma 1 may be considered as a slight improvement of that result.
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Remark 2. Lemma 1 implies c ≥ a+ b+2r. Indeed, the inequality ab+ a+
b+1 ≥ a+ b+2r is equivalent to (r− 3)(r+1) ≥ 0, and this is satisfied for
all D(4)-triples with positive elements.

Remark 3. The statement of Lemma 1 is sharp the in sense that the inequal-
ity c > ab cannot be replaced by c > (1+ε)ab for any fixed ε > 0. Indeed, for
an integer k ≥ 3, if we put a = k2−4, b = k2+2k−3, c = k4+2k3−3k2−4k,
then {a, b, c} is a D(4)-triple and limk→∞

c
ab = 1.

In the next lemma we show that E′ cannot have a point of order 4. We
follow the strategy of the proof of an analogous result for D(1)-triples [4,
Lemma 1]. However, we have noted a serious gap in the proof of [4, Lemma
1]. Namely, [4, formula (7)] should be (β2−1)2 = b(4cβ2−a2b−2a(1+β2)),
instead of (β2 − 1)2 = b(4c− a2b− 2a(1 + β2)), so later arguments are not
accurate in the case β ̸= 1. Here we will prove more general result, but by
taking a, b, c to be even, in the same time we fill the mentioned gap in the
proof of [4, Lemma 1].

Lemma 2. A′, B′, C ′ ̸∈ 2E′(Q)

Proof. If A′ ∈ 2E′(Q), then the 2-descent Proposition [15, 4.2, p.85] implies
that c(a − b) is a square. But c(a − b) < 0, a contradiction. Similarly,
B′ /∈ 2E′(Q). If C ′ ∈ 2E′(Q), then

a(c− b) = X2, (8)

b(c− a) = Y 2, (9)

for integers X and Y .
If {a, b, c} is a D(4)-triple where a < b < c, then c = a + b + 2r or

c > ab+ a+ b+ 1 by Lemma 1.
Assume first that c = a+ b+2r . From (8) and (9), we get that a = kx2,

c − b = ky2, b = lz2, c − a = lu2, where k, l, x, y, z, u are positive integers.
We have c = kx2 + lu2 = ky2 + lz2, and from c = a+ b+ 2r we get

2r = k(y2 − x2) = l(u2 − z2). (10)

By squaring (10), we obtain

4r2 = 16 + 4ab = 16 + 4klx2z2 = k2(y2 − x2)2 = l2(u2 − z2)2,

which implies that k ∈ {1, 2, 4} and l ∈ {1, 2, 4}. Since kl is not a perfect
square (otherwise (2r)2 = 16 + (2xz

√
kl)2 which implies 2r = 5), we may
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take without loss of generality k = 1, l = 2 or k = 2, l = 4. For k = 1, l = 2,
we have 4r2 = 16+ 8x2z2, which implies r2 = 4+ 2x2z2, which leads to the
conclusion that r is even and xz is even. Therefore, r2 ≡ 4 (mod 8) and
r ≡ 2 (mod 4). But from 2r = 2(u2− z2) we conclude u2− z2 ≡ 2 (mod 4),
and that is impossible. If k = 2, l = 4, then 4r2 = 16 + 32x2z2, which
implies r2 = 4 + 8x2z2, thus r2 ≡ 4 (mod 8) and r ≡ 2 (mod 4). But from
2r = 2(y2 − x2) we conclude y2 − x2 ≡ 2 (mod 4), and that is impossible.

Assume now that c > ab+ a+ b+ 1 > ab.
Let us write the conditions (8) and (9) in the form

ac− ab = s2 − r2 = (s− α)2, (11)

bc− ab = t2 − r2 = (t− β)2, (12)

where 0 < α < s, 0 < β < t. Then we have

r2 = 2sα− α2 = 2tβ − β2. (13)

From (13) we get
4(bc+ 4)β2 = (ab+ 4 + β2)2

and
(β2 − 4)2 = b(4cβ2 − a2b− 2a(4 + β2)). (14)

From (14) we conclude that either β = 1 or β = 2 or β2 ≥
√
b+ 4.

If β = 1, then
b(4c− a2b− 10a) = 9 (15)

which implies b | 9, but that is possible only for b = 9 (there are no D(4)-
triples with b < 4). This implies a = 5, but (15) then gives c = 69 and
{5, 9, 69} is not a D(4)-triple.

If β = 2, then from (14) we find that

c =
a2b+ 16a

16
. (16)

Now we have

s2 = ac+ 4 =
1

16
(a3b+ 16a2 + 64) =

1

16
(a2r2 + 12a2 + 64).

Hence s2 >
(
ar
4

)2
and s2 <

(
ar+8
4

)2
. Therefore we have to consider several

cases:
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1. s2 =
(
ar+n

4

)2
, where n is odd. That is equivalent to

2a(rn− 6a) = 64− n2. (17)

The left hand side of (17) is even and the right hand side is odd, a
contradiction.

2. s2 =
(
ar+2
4

)2
, or equivalently a(r − 3a) = 15. The cases a ≤ 3 and

(16) imply that c < b. The case a = 5 gives the triple {5, 64, 105}
that does not satisfy c > ab (c equals a+ b+ 2r), and a = 15 leads to
15b+ 4 = 462 which has no integer solutions.

3. s2 =
(
ar+4
4

)2
, or equivalently a(2r − 3a) = 12. We conclude that a

must be even and we get triples: {2, 16, 6} (with c < b) and {6, 16, 42}
(with c = a+ b+ 2r), so we can eliminate this case.

4. s2 =
(
ar+6
4

)2
is equivalent to 3a(r−a) = 7, which is clearly impossible.

Thus, we may assume that β2 ≥
√
b+ 4, which implies

β > max{ 4
√
b, 2} (18)

The function f(β) = t2 − (t− β)2 is increasing for 0 < β < t. Thus we have

ab = t2 − (t− β)2 − 4 > 2t
4
√
b−

√
b− 4 > 2

√
bc

4
√
b−

√
b− 4,

which implies ab >
√
bc 4
√
b, because

√
b(
√
c 4
√
b − 1) > 4 (since b ≥ 4 and

c ≥ 12, which follows from the fact that {3, 4, 15} and {1, 5, 12} are D(4)-
triples with smallest b and c respectively). This further gives

c < a2
√
b. (19)

We will use (4) to define the integer d− as

d− =
e

4
= a+ b+ c+

abc− rst

2

Then d− ̸= 0 (since c ̸= a+ b+2r) and {a, b, c, d−} is a D(4)-quadruple. In
particular,

ad− + 4 =

(
rs− at

2

)2

. (20)

Moreover,

c = a+ b+ d− +
1

2
(abd− +

√
(ab+ 4)(ad− + 4)(bd− + 4)) > abd− (21)
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(see the proof of Lemma 1). By comparing this with (19), we get

d− <
a√
b
. (22)

Therefore, we have d− < a < b which implies that b is the largest element
in the D(4)-triple {a, b, d−}. Thus, by Remark 2, b ≥ a+ d− + 2

√
ad− + 4

or equivalently d− ≤ a+ b− 2r. Let us define also

c′ = a+ b+ d− +
1

2
(abd− −

√
(ab+ 4)(ad− + 4)(bd− + 4)).

We have

cc′ = (a+ b+ d− +
1

2
abd−)

2 − 1

4
(ab+ 4)(ad− + 4)(bd− + 4)

= (a+ b+ d−)
2 − 4ab− 4ad− − 4bd− − 16

= (a+ b− d−)
2 − 4r2 = (a+ b+ 2r − d−)(a+ b− 2r − d−) ≥ 0.

This implies

c < 2(a+ b+ d− +
1

2
abd−) < 4b+ abd− < 2abd−. (23)

(we use here ad− > 4 which is true because {a, d−} is a D(4)-pair). Let us
denote p = rs−at

2 . Then p > 0 and, by (20), we have ad− + 4 = p2. In order
to estimate the size of p, we also define p′ = rs+at

2 . Then

pp′ =
1

4
(a2bc+ 4ac+ 4ab+ 16− a2bc− 4a2) = a(b+ c− a) + 4,

and

p <
2a(c+ b)

2at
<

c+ b√
bc

=

√
c√
b
+

√
b√
c
,

p >
2(ac+ 4)

2rs
=

s

r
.

Furthermore, we have

√
c√
b
− s

r
=

r
√
c− s

√
b

r
√
b

=
4c− 4b

r
√
b(r

√
c+ s

√
b)

<
4c

2rsb
<

2
√
c

ab
√
b
,

and thus

p >

√
c√
b
− 2

√
c

ab
√
b
. (24)
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The inequality (19) implies that c < ab2

2 , and this is equivalent to

√
b√
c
>

2
√
c

ab
√
b

which gives

p >

√
c√
b
−

√
b√
c
. (25)

By comparing both estimates for p, we get∣∣∣∣p− √
c√
b

∣∣∣∣ <
√
b√
c
. (26)

Let us now define an integer α by

2d−β = p+ α.

Assume that α = 0. Then (20) implies that d−(4β
2d− − a) = 4, thus

d− ∈ {1, 2, 4}. We have three cases:

1. d− = 1, which implies 2β = p. With this assumption, (12) gives

r2 +
p2

4
= tp, (27)

while c satisfies the inequalities

ab < ab+ a+ b+ 1 < c < ab+ 2a+ 2b+ 2 < ab+ 4b < 2ab

(see Lemma 1 and (23) with d− = 1). The left hand side of (27) is

< ab+ 4 +
c2 + 2bc+ b2

4bc
< ab+ 4 +

a

4
+ 1 +

1

2
+

1

4a
< ab+

a

4
+ 6.

On the other hand, by (24), the right hand side of (27) is

>
√
bc

(√
c√
b
− 2

√
c

ab
√
b

)
= c− 2c

ab
> ab+ a+ b+ 1− 4 = ab+ a+ b− 3.

By comparing these two estimates for (27), we get

b+
3

4
a < 9,

but this is in contradiction with b ≥ 12 (b is the largest element in the
D(4)-triple {d−, a, b}).
We treat similarly the other two cases.
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2. d− = 2, which implies 4β = p, and this leads to

b

2
+

3

8
a < 8,

which is in contradiction with b ≥ 16 (D(4)-triple of the form {2, a, b}
with the smallest b is {2, 6, 16}).

3. d− = 4 is equivalent to 8β = p, which leads to

b

4
+

3

16
a < 8,

but the only D(4)-triple of the form {4, a, b} with b < 35 is {4, 8, 24},
which does not satisfy (22), so we have a contradiction here as well.

Therefore, we may now assume that α ̸= 0. We will estimate 2d−tβ and
compare it with c. First we will prove

β2 <
a2b

c
. (28)

Since β < t, and the case β = t−1 gives b(c−a) = 1, which is impossible, we
conclude that t ≥ β+2. This implies tβ ≥ β2+2β, and ab− tβ ≥ 2β−4 > 0
because of (18). Hence, we get tβ < ab, and this clearly implies (28).

Therefore,

0 < d−β
2 <

d−a
2b

c
< a.

From 2tβ = r2 + β2 > ab + 4, we get 2d−tβ > abd− + 4d−. On the other
hand,

d−β
2 <

d−a
2b

c
⇔ 2d−tβ < abd− + 4d− +

d−a
2b

c
< abd− + 4d− + a.

By combining these two estimates, we get

abd− + 4d− < 2d−tβ < abd− + 4d− + a. (29)

By comparing (29) with (21) and (23), we conclude that

|2d−tβ − c| < 4b. (30)

By combining the estimate (26) for p with the trivial estimate for α, namely
|α| ≥ 1, we get ∣∣∣∣2d−β −

√
c√
b

∣∣∣∣ = ∣∣∣∣p+ α−
√
c√
b

∣∣∣∣ ≥ 1−
√
b√
c
.
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Note that ad− > 26. Namely, only D(4)-pairs such that ad− ≤ 26 are
{1, 5}, {1, 12}, {1, 21}, {2, 6}, {3, 4} and {3, 7}. From first three pairs, re-
specting (21) and (22), we find triples

{5, 12, 96}, {12, 21, 320}, {12, 96, 1365}, {21, 32, 780}, {21, 320, 7392}

that do not satisfy (8) nor (9). From the last three pairs we cannot obtain
a D(4)-triple because of (22).
Finally, we obtain

|2d−tβ − c| = |2d−tβ − t
√
c√
b
+ t

√
c√
b
− c| ≥ t

∣∣∣2d−β −
√
c√
b

∣∣∣− ∣∣∣t√c√
b
− c

∣∣∣
= t

∣∣∣2d−β −
√
c√
b

∣∣∣− (
t
√
c√
b
− c

)
≥ t

(
1−

√
b√
c

)
−

(
t
√
c√
b
− c

)
= t

(
1−

√
b√
c

)
− c

(√
1 + 4

bc − 1
)
>

√
bc− b− c

(√
1 + 4

bc − 1
)

>
√

ab2d− − b− 2
b ≥ b(

√
ad− − 1− 1

72) > 4b

which contradicts (30).

Theorem 3. E′(Q)tors ≃ Z/2Z× Z/2Z or Z/2Z× Z/6Z.

Proof. By Mazur’s theorem [16] which characterizes all possible torsion
groups for elliptic curves over Q, since E′ has three points of order 2, the
only possibilities for E′(Q)tors are Z/2Z × Z/2kZ with k = 1, 2, 3, 4. But
Lemma 2 shows that the cases k = 2, 4 are not possible for an elliptic curve
induced by a D(4)-triple with positive elements.

Corolary 4. Let {a, b, c} be a D(1)-triple. Then the torsion group of the
elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) is either ≃ Z/2Z × Z/2Z or
Z/2Z× Z/6Z.

Remark 4. We note that an analogue of Theorem 3 and Corollary 4 is not
valid for general D(n2)-triples and their induced elliptic curves

y2 = (ax+ n2)(bx+ n2)(cx+ n2).

For example, for the D(9)-triple {8, 54, 104} the torsion group of the induced
elliptic curve is Z/2Z× Z/4Z. Also, there are examples with torsion group
Z/2Z× Z/8Z, e.g. for the D(522084054044352064192019402)-triple

{3871249317729019929807383, 101862056999203416732147408,
217448139952121636379025175}
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(there are much simpler examples with triples with mixed signs, see e.g. [7]).
We should also mention that we do not know any example of D(1) or

D(4)-triples inducing elliptic curves with torsion group Z/2Z × Z/6Z. In-
deed, it is known that this torsion group cannot appear for certain families
of D(1)-triples (see [3, 4, 8, 18]). Again, there are examples of such curves
for general D(n2)-triples. For example, the D(2942)-triple {32, 539, 1215}
induces an elliptic curve with torsion group Z/2Z× Z/6Z.
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