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Abstract

A D(4)-m-tuple is a set of m integers such that the product of
any two of them increased by 4 is a perfect square. A problem of
extendibility of D(4)-m-tuples is closely connected with the properties
of elliptic curves associated with them. In this paper we prove that
the torsion group of an elliptic curve associated with a D(4)-triple can
be either Z/27 x Z/27 or Z/2Z x Z/6Z, except for the D(4)-triple
{-1,3,4} when the torsion group is Z/2Z x Z/4Z.
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1 Introduction

Let n be a given nonzero integer. A set of m nonzero integers {a1, as, ..., an}
is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n))
if a;a; +n is a perfect square for all 1 <4 < j < m. Diophantus found the
D(256)-quadruple {1,33,68,105}, while the first D(1)-quadruple, the set
{1,3,8,120}, was found by Fermat (see [1], [2]).

One of the most interesting questions in the study of D(n)-m-tuples is
how large these sets can be. In this paper we will examine sets with the prop-
erty D(4). Mohanty and Ramasamy [17] were first to achieve a significant
result on the nonextendibility of D(4)-m-tuples. They proved that a D(4)-
quadruple {1,5,12,96} cannot be extended to a D(4)-quintuple. Kedlaya
[14] later proved that if {1,5,12,d} is a D(4)-quadruple, then d has to be 96.
Dujella and Ramasamy [9] generalized this result to the parametric family
of D(4)-quadruples {Foy, 5Fok, 4Fop 12,4 Lok Fix12} involving Fibonacci and
Lucas numbers. Other generalization to a two-parametric family of D(4)-
triples can be found in [13]. Dujella [6] proved that there does not exist a



D(1)-sextuple and that there are only finitely many D(1)-quintuples. By
observing congruences modulo 8, it is not hard to conclude that a D(4)-m-
tuple can contain at most two odd numbers (see [9, Lemma 1]). Thus, the
results from [6] imply that there does not exist a D(4)-8-tuple and that there
are only finitely many D(4)-7-tuples. Filipin [10, 11] significantly improved
these results by proving that there does not exist a D(4)-sextuple and that
there are only finitely many D(4)-quintuples.

Let {a,b,c} be a D(4)-triple. Then there exist nonnegative integers r, s, ¢
such that
ab+4=1% ac+4=s% be+4=1> (1)

In order to extend this triple to a quadruple, we have to solve the system
ar+4=0, ba+4=0, cx+4=0. (2)
We assign to the system (2) the elliptic curve
E:y? = (ax +4)(bx +4)(cx + 4). (3)

The purpose of this paper is to examine possible forms of torsion groups
of elliptic curves obtained in this manner. Additional motivation for this
paper is a gap found in the proof of [4, Lemma 1] concerning torsion groups
of elliptic curves induced by D(1)-triples. Namely, if {a’,b',c'} is a D(1)-
triple, then {2a’,2,2¢'} is a D(4)-triple. Thus, the proof of Lemma 2 in
present paper also provides a valid proof of [4, Lemma 1].

2 Torsion group of £

The coordinate transformation
Ty
applied on the curve E leads to the elliptic curve
E':y? = (z + 4be) (x + 4ac) (x + 4ab).
There are three rational points on E’ of order 2:
A" = (=4bc,0), B' = (—4ac,0), C" = (—4ab,0),
and also other obvious rational points

P’ = (0,8abc), S" = (16, 8rst).



It is not so obvious, but it is easy to verify that S’ € 2F’(Q). Namely,
S’ = 2R/, where

R' = (4rs +4rt + 4st +16,8(r + s)(r + t)(s + 1)).

In this section we will first examine one special case and after that we
may assume without the loss of generality that a,b,c are positive integers
such that a < b < ¢. Since {—a, —b, —c} induces the same curve as {a, b, c},
a problem may arise only when there are mixed signs. It is easily seen
that the only such possible D(4)-triple is {—1, 3,4} (and the equivalent one
{—4,-3,1}). The elliptic curve associated with this D(4)-triple has rank
0 and the torsion group isomorphic to Z/27Z x Z/4Z. In this special case
B’ € 2F’(Q), more precisely B’ = 2P’, so the point P’ is of order 4. Note
that in this case the point R’ is also of order 4 since R’ = P’ + A’ and thus
2R = 2P

Thus, we assume from now on that a, b, ¢ are positive integers such that
a<b<ec

Lemma 1. If{a,b, c} is D(4)-triple, then ¢ = a+b+2r or c > ab+a+b+1 >
ab.

Proof. By [5, Lemma 3|, there exists an integer
e=4(a+b+c)+ 2(abc — rst) (4)

and nonnegative integers x, ¥y, z such that

ae+16 = 27 (5)
be +16 = ¢ (6)
ce+16 = 2° (7)

and ¢ = a + b+ ¢ + L(abe + rzy). From (7), it follows that e > 0 (the
case e = —1 implies ¢ < 16, but the only such D(4)-triple {1,5,12} does
not satisfy (5) and (6)). For e = 0 we get ¢ = a + b+ 2r, while for e > 1
we have ¢ > %abe +a+ b+ §. By observing congruences modulo 8, we can
easily prove that at most two of the integers a, b, ¢ are odd, which implies
that abc — rst is even. Hence, from (4) we conclude that e =0 (mod 4). It
follows e > 4 and thus ¢ > ab+a + b+ 1. O

Remark 1. Filipin (see [12, Lemma 4]) proved that ¢ = a+b+2r or ¢ > jabe.
Lemma 1 may be considered as a slight improvement of that result.



Remark 2. Lemma 1 implies ¢ > a + b+ 2r. Indeed, the inequality ab+ a +
b+1>a+b+2ris equivalent to (r —3)(r+1) > 0, and this is satisfied for
all D(4)-triples with positive elements.

Remark 3. The statement of Lemma 1 is sharp the in sense that the inequal-
ity ¢ > ab cannot be replaced by ¢ > (14¢)ab for any fixed ¢ > 0. Indeed, for
an integer k > 3, if we put a = k> —4, b = k> 4+2k—3, ¢ = k*+2k3 — 3k% — 4k,
then {a,b, c} is a D(4)-triple and limy_, o = 1.

In the next lemma we show that E’ cannot have a point of order 4. We
follow the strategy of the proof of an analogous result for D(1)-triples [4,
Lemma 1]. However, we have noted a serious gap in the proof of [4, Lemma
1]. Namely, [4, formula (7)] should be (82 —1)? = b(4cB? — a?b—2a(1+3?)),
instead of (5% — 1)? = b(4c — a®b — 2a(1 + B?)), so later arguments are not
accurate in the case § # 1. Here we will prove more general result, but by
taking a, b, c to be even, in the same time we fill the mentioned gap in the
proof of [4, Lemma 1].

Lemma 2. A’ B',C' ¢ 2E'(Q)

Proof. If A’ € 2E'(Q), then the 2-descent Proposition [15, 4.2, p.85] implies
that c¢(a — b) is a square. But c(a — b) < 0, a contradiction. Similarly,
B' ¢ 2F'(Q). If C' € 2F'(Q), then

alc—b) = X2, (8)
blc—a) = Y2, (9)
for integers X and Y.
If {a,b,c} is a D(4)-triple where a < b < ¢, then ¢ = a + b+ 2r or
c>ab+a+b+1 by Lemma 1.
Assume first that ¢ = a+b+2r . From (8) and (9), we get that a = kz?,

c—b=ky? b=12% c—a=Iu? where k,l,z,y, 2z, u are positive integers.
We have ¢ = kx? + lu? = ky? + 122, and from ¢ = a + b + 2r we get

2r = k(y? — 2?) = l(u® — 2?). (10)
By squaring (10), we obtain
4r% = 16 + 4ab = 16 + 4klz?2? = E*(y* — 2°)% = I(u® — 2°)?%,

which implies that & € {1,2,4} and [ € {1,2,4}. Since kl is not a perfect
square (otherwise (2r)2 = 16 + (222v/kl)? which implies 2r = 5), we may



take without loss of generality k =1,l=2o0ork=2,l=4. Fork=1,1 =2,
we have 472 = 16 + 82222, which implies 72 = 4 + 22222, which leads to the
conclusion that r is even and zz is even. Therefore, 72 = 4 (mod 8) and
r =2 (mod 4). But from 2r = 2(u? — 22) we conclude u? — 22 = 2 (mod 4),
and that is impossible. If ¥ = 2, | = 4, then 472 = 16 + 322222, which
implies 72 = 4 + 82222, thus 2 = 4 (mod 8) and r = 2 (mod 4). But from
2r = 2(y? — 2%) we conclude y? — 22 = 2 (mod 4), and that is impossible.
Assume now that ¢ > ab+a+b+1 > ab.

Let us write the conditions (8) and (9) in the form

ac—ab = s —r? = (s — a)? (11)

be—ab = t* —r? = (t — B)?, (12)
where 0 < aw < s, 0 < 8 < t. Then we have
r? = 2sa —a® = 2t — B2 (13)
From (13) we get
4(be +4)8% = (ab+ 4 + 52)?

and
(8% — 4)* = b(4cB? — a®b — 2a(4 + B%)). (14)

From (14) we conclude that either 8 =1 or 8 =2 or 82 > Vb + 4.

If 5 =1, then
b(4c — a*b —10a) = 9 (15)

which implies b | 9, but that is possible only for b = 9 (there are no D(4)-
triples with b < 4). This implies a = 5, but (15) then gives ¢ = 69 and
{5,9,69} is not a D(4)-triple.

If 8 = 2, then from (14) we find that

a%b + 16a
_ a0 ha 16
¢ 16 (16)

Now we have

1
2 =ac+4=—(a®b+ 160> + 64) =

1
=1 —(a®r? +12a% + 64).

16

2 2 .
Hence s% > (%) and s2 < (%*8) . Therefore we have to consider several
cases:



1. 82 = (%)2, where n is odd. That is equivalent to

2a(rn — 6a) = 64 — n’. (17)

The left hand side of (17) is even and the right hand side is odd, a
contradiction.

2. 52 = (%*2)2, or equivalently a(r — 3a) = 15. The cases a < 3 and

(16) imply that ¢ < b. The case a = 5 gives the triple {5, 64,105}
that does not satisfy ¢ > ab (¢ equals a + b+ 2r), and a = 15 leads to
15b + 4 = 462 which has no integer solutions.

3. 8% = (%*4)2, or equivalently a(2r — 3a) = 12. We conclude that a
must be even and we get triples: {2,16,6} (with ¢ < b) and {6, 16,42}
(with ¢ = a + b+ 2r), so we can eliminate this case.

4. 5% = (%*6)2 is equivalent to 3a(r —a) = 7, which is clearly impossible.

Thus, we may assume that 32 > v/b + 4, which implies
B > max{Vb, 2} (18)
The function f(8) = t* — (t — 8)? is increasing for 0 < 3 < t. Thus we have
ab=1>—(t — 8)> =4 > 2tVb — Vb — 4> 2VbeVb — Vb — 4,

which implies ab > vbev/b, because \/5(\@\4/5 — 1) > 4 (since b > 4 and
¢ > 12, which follows from the fact that {3,4,15} and {1,5,12} are D(4)-
triples with smallest b and ¢ respectively). This further gives

¢ < a*Vb. (19)

We will use (4) to define the integer d_ as

bc — rst
d_ :Z:a—kb—kc—i-%
Then d_ # 0 (since ¢ # a+ b+ 2r) and {a,b,c,d_} is a D(4)-quadruple. In
particular,
2
—at
ad_+4:<T82a) . (20)
Moreover,

c=a+b+d_+ %(abd_ +/(ab + 4)(ad_ + 4)(bd_ + 4)) > abd_  (21)
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(see the proof of Lemma 1). By comparing this with (19), we get

a
d_ < —. 22
7 (22)
Therefore, we have d_ < a < b which implies that b is the largest element
in the D(4)-triple {a,b,d_}. Thus, by Remark 2, b > a + d_ + 2 /ad_ + 4
or equivalently d_ < a + b — 2r. Let us define also

1
d=a+b+d_+ 5 (abd — V(ab+4)(ad_ + 4)(bd_ + 4)).
We have

1
- Z(ab +4)(ad— + 4)(bd_ + 4)
(a4 b+ d_)* — 4ab — dad_ — 4bd_ — 16
= (a+b—d ) —4?=(a+b+2r—d ) a+b—2r—d_)>0.

1
e— (a+b+d,+§abd,)2

This implies
1
c<2(a+b+d_+ iabd_) < 4b+ abd_ < 2abd_. (23)

(we use here ad_ > 4 which is true because {a,d_} is a D(4)-pair). Let us

denote p = 5%, Then p > 0 and, by (20), we have ad_ + 4 = p?. In order

to estimate the size of p, we also define p’ = TST*‘“ Then

1
pp = Z(a2bc + dac + 4ab + 16 — a’bc — 4a®) = a(b + ¢ — a) + 4,

and
p<2a(c+b)<c+b:£+@7
2at Vbhe Vb Ve
2
- (ac+4):§'
2rs r

Furthermore, we have

Ve _rye—svb de — 4b 4c 2,/c

Vb T b rVb(ry/c + sv/b) < 2rsh © abV'b’

and thus

ve | 2ve (24)

Vb abVb




The inequality (19) implies that ¢ < %, and this is equivalent to

VY
Ve abvb
which gives
b
p > ve i (25)
Vb Ve
By comparing both estimates for p, we get
b
'p _ve < i (26)
Vbl Ve
Let us now define an integer a by
2d_B=p+a.

Assume that « = 0. Then (20) implies that d_(48%d_ — a) = 4, thus
d_ € {1,2,4}. We have three cases:

1. d— =1, which implies 23 = p. With this assumption, (12) gives

1"2—|—

2
p
—_— = 2

1= (27)

while ¢ satisfies the inequalities
ab<ab+a+b+l<c<ab+2a+2b+2<ab+4b<2ad

(see Lemma 1 and (23) with d_ = 1). The left hand side of (27) is

? + 2bc + b? a 11 a

gy 2T RIS 216

<abtdt g <abt A+t g <abt 746
On the other hand, by (24), the right hand side of (27) is

Ve 2ﬁ) 2¢c
> Vbe | —= — =c——>ab+a+b+1—4=ab+a+b-—3.
(ﬂ abv/b ab

By comparing these two estimates for (27), we get

b—i—%a<97

but this is in contradiction with b > 12 (b is the largest element in the
D(4)-triple {d_, a,b}).

We treat similarly the other two cases.



2. d_ = 2, which implies 43 = p, and this leads to

b 3
5 + ga < 8,
which is in contradiction with b > 16 (D(4)-triple of the form {2, a, b}

with the smallest b is {2,6,16}).

3. d_ =4 is equivalent to 83 = p, which leads to

by 2a<s
17167
but the only D(4)-triple of the form {4, a,b} with b < 35 is {4, 8,24},

which does not satisfy (22), so we have a contradiction here as well.

Therefore, we may now assume that « # 0. We will estimate 2d_t8 and
compare it with c. First we will prove
&)
g2 <22 (28)
c
Since 8 < t, and the case § = t—1 gives b(c—a) = 1, which is impossible, we
conclude that t > 8+2. This implies t3 > 52+23, and ab—tf > 25 -4 >0
because of (18). Hence, we get t3 < ab, and this clearly implies (28).

Therefore,

d_a®b
0<d pg?<

<a

From 2t3 = 72 + 32 > ab + 4, we get 2d_t3 > abd_ + 4d_. On the other
hand,

2 2
0.5 < =0 L og g < abd. +ad + =0 < abd_ 4+ 4d_ +al

By combining these two estimates, we get
abd_ +4d_ < 2d_tf3 < abd_ +4d_ + a. (29)
By comparing (29) with (21) and (23), we conclude that
|2d_tB — ¢| < 4b. (30)

By combining the estimate (26) for p with the trivial estimate for a, namely
la| > 1, we get
Vb

NG
=lpta——%>1-—.
Vb

‘2‘”3 - % Ve

Vb
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Note that ad_ > 26. Namely, only D(4)-pairs such that ad_ < 26 are
{1,5},{1,12},{1,21},{2,6},{3,4} and {3,7}. From first three pairs, re-
specting (21) and (22), we find triples

{5,12,96}, {12,21, 320}, {12,96, 1365}, {21, 32,780}, {21, 320, 7392}

that do not satisfy (8) nor (9). From the last three pairs we cannot obtain
a D(4)-triple because of (22).
Finally, we obtain

[2dt8 — o = [2d_tB — t + 1Y —¢| > ¢ ‘Zd_,B -~ ‘t% _ c)
= o] (1) 21 ()~ (o
:t( —%)—c( 1+4-1 >\/17—b—c(m_1>
> ab2d_ —b—2 > b(\/ad- —1— 2)
which contradicts (30). O
Theorem 3. E'(Q)yors = Z,/27 x 7,)27 or 7,)27, x Z./6L.

Proof. By Mazur’s theorem [16] which characterizes all possible torsion
groups for elliptic curves over Q, since E’ has three points of order 2, the
only possibilities for E'(Q)ors are Z/27 x Z/2k7Z with k = 1,2,3,4. But
Lemma 2 shows that the cases k = 2,4 are not possible for an elliptic curve
induced by a D(4)-triple with positive elements. O

Corolary 4. Let {a,b,c} be a D(1)-triple. Then the torsion group of the
elliptic curve y> = (ax + 1)(bx + 1)(cz + 1) is either ~ 7Z/27 x 7./27 or
Z)27 x L]6Z.

Remark 4. We note that an analogue of Theorem 3 and Corollary 4 is not
valid for general D(n?)-triples and their induced elliptic curves

y? = (az 4 n?)(bx + n?)(cz + n?).

For example, for the D(9)-triple {8, 54,104} the torsion group of the induced
elliptic curve is Z/27 x Z/4Z. Also, there are examples with torsion group
7,)27 x TJ8Z, e.g. for the D(522084054044352064192019402)-triple

{3871249317729019929807383, 101862056999203416732147408,
217448139952121636379025175}
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(there are much simpler examples with triples with mixed signs, see e.g. [7]).

We should also mention that we do not know any example of D(1) or

D(4)-triples inducing elliptic curves with torsion group Z/27Z x Z/6Z. In-
deed, it is known that this torsion group cannot appear for certain families
of D(1)-triples (see [3, 4, 8, 18]). Again, there are examples of such curves
for general D(n?)-triples. For example, the D(294%)-triple {32,539,1215}
induces an elliptic curve with torsion group Z/27 x 7 /6Z.
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