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Abstract. Let k ≥ 3 be an integer. We study the possible existence of
finite sets of positive integers such that the product of any two of them
increased by 1 is a k-th power.

1. Introduction

The Greek mathematician Diophantus observed that the rational numbers 1
16 , 33

16 , 17
4

and 105
16 have the following property: the product of any two of them increased by 1 is a

square of a rational number. Later, Fermat found a set of four positive integers with the
above property, namely the set {1, 3, 8, 120}. We call a Diophantine m-tuple any set of m
positive integers a1, . . . , am such that aiaj +1 is a perfect square whenever 1 ≤ i < j ≤ m.
It was known already to Euler that there are infinitely many Diophantine quadruples (see
for instance [5, pp. 513–520]). Among the broad literature on that topic, let us mention
that Baker & Davenport [3] proved that {1, 3, 8} cannot be extended to a Diophantine
quintuple, a result improved by Dujella & Pethő [10], who showed that even {1, 3} cannot
be extended to a Diophantine quintuple. The first absolute upper bound for the size of
Diophantine m-tuples was given by the second author in [7], where it was proved that
Diophantine 9-tuples do not exist. Very recently, he was able to considerably improve
upon his result, by showing [9] that there exist no Diophantine sextuple and only finitely
many Diophantine quintuples. However, the question of the existence of a Diophantine
quintuple remains a challenging open problem. We refer to [6] for further references on
this topic.

In the present work, we are interested in an analogous problem, namely the existence
of sets {a, b, c} of positive integers such that the three numbers ab+1, ac+1 and bc+1 are
perfect k-th powers, for an integer k ≥ 3. Examples of such triples for k=3 and k = 4 are
given, respectively, by {2, 171, 25326} and {1352, 9539880, 9768370}. To our knowledge, no
example of such triple is known for k ≥ 5. In order to investigate this question, we study
a slightly more general problem, recently considered by Gyarmati [12]. Let N ≥ 1 and
k ≥ 3 be integers. Let A and B be subsets of {1, . . . , N} such that ab + 1 is a perfect k-th
power whenever a ∈ A and b ∈ B. What can be said about the cardinalities of the sets
A and B ? Let |S| denote the cardinality of a finite set S. Using elementary arguments,
Gyarmati [12] proved that min{|A|, |B|} ≤ 1+(log log N)/ log(k−1). As a corollary of our
main result, we show that, except for small values of k, we have the considerably better
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estimate min{|A|, |B|} ≤ 2. We also provide an absolute (i.e. independent of N) upper
bound for min{|A|, |B|} for the other values of k.

Our proofs rest on classical tools of Diophantine approximation, namely the theory
of linear forms in logarithms and sharp irrationality measures for certain k-th roots of
rational numbers.

2. Statement of the results

Theorem 1. Let k ≥ 3 and 0 < a < b < c < d be integers such that the four numbers

ac + 1, ad + 1, bc + 1 and bd + 1

are perfect k-th powers. Then we have k ≤ 176.

Remark : The proof of Theorem 1 rests on the theory of linear forms in two logarithms
of algebraic numbers, and heavily depends on a refinement obtained by Shorey [17], who
was first to notice that one gets the best possible estimates when the algebraic numbers
involved are close to 1. Shorey’s trick has numerous applications (see [19] for a survey),
for instance to the exponential Diophantine equations axn − byn = c, xn−1

x−1 = yq and
xm−1
x−1 = yn−1

y−1 , considered, respectively, in [15], [13] and [4]. The numerical value we get in
Theorem 1 is remarkably small. This is due to the use of the sharp estimate of Mignotte
[16] (see Lemma 2 below), and to the fact that our problem allows us to take a very large
ray ρ in the application of Lemma 2.

As an immediate corollary, we derive from Theorem 1 new results on the generalization
of the problem of Diophantus mentioned in the Introduction.

Corollary 1. For any integer k ≥ 177, there exist no set of four positive integers such
that the product of any two of them increased by 1 is a perfect k-th power.

Corollary 2 below considerably improved Theorem 1 of Gyarmati [12] when the integer
k is not too small.

Corollary 2. Let k ≥ 177 be an integer and A and B be sets of positive integers such
that ab + 1 is a perfect k-th power for any a ∈ A and b ∈ B. Then we have

min{|A|, |B|} ≤ 2.

Corollary 2 follows easily from Theorem 1. Indeed, if a1 < a2 < a3 (resp. b1 < b2 < b3)
belong to A (resp. to B), then we have either a1 < a2 < b2 < b3 or b1 < b2 < a2 < a3, and
we may apply Theorem 1.

Theorem 2. Let 4 ≤ k ≤ 176 be an integer. Assume that the integers 0 < a < b < c1 <
. . . < cm are such that aci + 1 and bci + 1 are perfect k-th powers for any 1 ≤ i ≤ m.
Then there exists an effectively computable constant C1(k), depending only on k, such
that m ≤ C1(k). More precisely, we may take C1(4) = 3 and C1(k) = 2 for k ≥ 5.

Remark : The proof of Theorem 2 depends on a result of Evertse [11] on Thue equations
aXn +bY n = c, whose proof uses hypergeometric methods. For k ≥ 6, we could also derive
Theorem 2 from Theorem 1 of Baker [1].
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Unfortunately, the proof of Theorem 2 gives nothing for k = 3. In that case, we need
a stronger assumption.

Theorem 3. Assume that the integers 0 < a < b < c < d1 < . . . < dm are such that
adi + 1, bdi + 1 and cdi + 1 are perfect cubes for any 1 ≤ i ≤ m. Then m ≤ 6.

New results on the problem considered by Gyarmati and on the generalization of the
problem of Diophantus follow from Theorems 2 and 3.

Corollary 3. Let 3 ≤ k ≤ 176 be an integer and A and B be sets of positive integers
such that ab + 1 is a perfect k-th power for any a ∈ A and b ∈ B. Then there exists an
effectively computable constant C2(k), depending only on k, such that

min{|A|, |B|} ≤ C2(k).

More precisely, we may take C2(3) = 8, C2(4) = 4 and C2(k) = 3 for k ≥ 5.

The statement of Corollary 3 follows directly from Theorems 2 and 3, as Corollary 1
follows from Theorem 1.

Corollary 4. Let k ≥ 2 be an integer. Assume that the integers 0 < a1 < a2 < . . . < am

are such that aiaj + 1 are perfect k-th powers whenever 1 ≤ i < j ≤ m. Then there exists
an effectively computable constant C3(k), depending only on k, such that m ≤ C3(k).
More precisely, we may take C3(2) = 5, C3(3) = 7, C3(4) = 5, C3(k) = 4 for 5 ≤ k ≤ 176
and C3(k) = 3 for k ≥ 177.

The statement of Corollary 4 for k ≥ 4 follows directly from Corollaries 2 and 3. The
statement for k = 2 is just the main result from [9], while the statement for k = 3 will be
proved in Section 4 using a special gap principle.

One can obtain weeker results than in Theorem 1 by using a result of Shorey &
Nesterenko [20] on irrationality measures of k-th roots of certain rational numbers, derived
from a theorem of Baker [2]. Already in a few papers (see for instance [18], [13], [4] and
the survey [19]), the authors have successfully combined this method with the theory of
linear forms in logarithms. Here, we are able to complement Theorem 2 in the range
11 ≤ k ≤ 176.

Theorem 4. Let 11 ≤ k ≤ 176. Then there are only finitely many quadruples of integers
0 < a < b < c < d such that the four numbers

ac + 1, ad + 1, bc + 1 and bd + 1

are perfect k-th powers.

Remark : Let us mention that for k = 3, 4 and 6, there are triples a < b < c of positive
integers such that ac + 1 and bc + 1 are perfect k-powers. E.g. for k = 6 the triple
(a, b, c) = (8, 45, 91) has the above property. Moreover, for k = 3 and k = 4 there exist
infinite families of such triples.

For k = 3, let (xn, yn) denote the sequence of the positive integer solutions of Pell
equation x2 − 7y2 = 1 and let n ≡ 2 mod 7. Then we may take a = (xn + 5yn − 3)/14,
b = (5xn + 7yn − 3)/2 and c = ((5xn + 7yn)2 + 3)/4.
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For k = 4, we may take a = (F 2
n − 1)/5, b = L2

n − 1 and c = L2
n + 1, where n ≡ 2 or 8

mod 10, while Fn, Ln denote, respectively, n-th Fibonacci and Lucas number.

Remark : The methods used to prove Theorems 1 and 2 can also be applied to investigate
similar questions, like the existence of quadruples of positive integers 0 < a < b < c < d
such that the product of any two of them increased by N is a k-th power, where N is a fixed
non-zero integer. For instance, we can explicitely compute an integer k0(N), depending
only on N , such that such quadruples do not exist whenever k > k0(N). The case k = 2
has been studied by the second author [8].

3. Auxiliary lemmas

Lemma 1. Let k ≥ 3 be an integer. Let a < b < c1 < c2 be positive integers such that
aci + 1 and bci + 1 are k-th powers for i ∈ {1, 2}. Then we have bc2 > kkck−1

1 ak−1 and
c2 > kkck−2

1 ak−1. Further, if a1 < a2 < · · · < a7 are positive integers such that aiaj + 1 is
a perfect cube for all 1 ≤ i < j ≤ 7, then a7 > 345a9

3a
22
1 . Finally, if a < b < c < d1 < d2

are positive integers such that adi + 1, bdi + 1 and cdi + 1 are perfect cubes for i ∈ {1, 2},
then d2 > 27d3−

√
2

1 .

Proof : The first statement follows from the proof of [12, Theorem 1] applied to the sets
{a, b} and {c1, c2}.

Assume now that k = 3. Then, by the same result of Gyarmati, we have a4a2 > 33a2
3a

2
1

and a2
5a

2
3 > 36a4

4a
4
2. Multiplying these two inequalities we obtain

a2
5 > 39a3

4a
3
2a

2
1 > 39(33a2

3a
2
1)

3a2
1 = 318a6

3a
8
1.

Therefore, we get
a5 > 39a3

3a
4
1.

Now we have
a6 > 33a2

5a
2
2/a3 > 321a6

3a
8
1a

2
2/a3 > 321a5

3a
10
1

and
a7 > 33a2

6a
2
2/a3 > 345a9

3a
22
1 .

For the last statement of the lemma, first note that the Gyarmati’s gap principle gives

bd2 > 27a2d2
1 (1)

and
cd2 > 27b2d2

1. (2)

Set ϕ = 1 +
√

2. If b < aϕ or c > bϕ, the result follows from (1), resp. (2). Otherwise, we
have c > bϕ > aϕ2

, which, combined with (1), yields the result.

We need the following refinement, due to Mignotte [16], of a theorem of Laurent,
Mignotte & Nesterenko [14] on linear forms in two logarithms. For any non-zero algebraic
number α, we denote by h(α) its logarithmic absolute height. For instance, for any non-zero
rational number p/q, written under its irreducible form, we have h(p/q) = log max{|p|, |q|}.
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Lemma 2. Consider the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. Suppose that α1 and α2 are multiplicatively inde-
pendent. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R].

Let a1, a2, h, k be real positive numbers, and ρ a real number > 1. Put λ = log ρ, χ = h/λ
and suppose that χ ≥ χ0 for some number χ0 ≥ 0 and that

h ≥ D

(
log
(

b1

a2
+

b2

a1

)
+ log λ + f(dK0e)

)
+ 0.023,

ai ≥ max
{
1, ρ | log αi| − log |αi|+ 2Dh(αi)

}
, (i = 1, 2),

a1a2 ≥ λ2

where

f(x) = log

(
1 +

√
x− 1

)√
x

x− 1
+

log x

6x(x− 1)
+

3
2

+ log
3
4

+
log x

x−1

x− 1
,

and

K0 =
1
λ

(√
2 + 2χ0

3
+

√
2(1 + χ0)

9
+

2λ

3

( 1
a1

+
1
a2

)
+

4λ
√

2 + χ0

3
√

a1a2

)2

a1a2.

Put

v = 4χ + 4 + 1/χ and m = max
{
25/2(1 + χ)3/2, (1 + 2χ)5/2/χ

}
.

Then we have the lower bound

log |Λ| ≥ − 1
λ

(
v

6
+

1
2

√
v2

9
+

4λv

3

( 1
a1

+
1
a2

)
+

8λm

3
√

a1a2

)2

a1a2

−max
{

λ(1.5 + 2χ) + log
((

(2 + 2χ)3/2 + (2 + 2χ)2
√

k∗
)
A + (2 + 2χ)

)
, D log 2

}
where

A = max{a1, a2} and k∗ =
1
λ2

(
1 + 2χ

3χ

)2

+
1
λ

(
2
3χ

+
2
3

(1 + 2χ)1/2

χ

)
.

Proof : This is Theorem 2 of [16].

The proof of Theorems 2 and 3 depends on the following result of Evertse [11].
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Lemma 3. If a, b and n are positive integers with n ≥ 3 and c is a positive real number,
then there is at most one positive integral solution (x, y) to the inequality

|axn − byn| ≤ c

with
max{|axn|, |byn|} > βncαn ,

where αn and βn are effectively computable positive constants satisfying

α3 = 9, αn = max
{

3n− 2
2(n− 3)

,
2(n− 1)
n− 2

}
for n ≥ 4

and
β3 = 1152.2, β4 = 98.53, βn < n2 for n ≥ 5.

Proof : This is Theorem 2.1 of [11].

The proof of Theorem 4 uses an irrationality measure [20] of certain algebraic numbers
derived from a Theorem of Baker [1], using some improvements from [2].

Lemma 4. Let A,B,K and n be positive integers such that A > B,K < n, n ≥ 3 and
ω = (B/A)1/n is not a rational number. For 0 < φ < 1, put

δ = 1 +
2− φ

K
, s =

δ

1− φ

and
u1 = 40n(K+1)(s+1)/(Ks−1), u−1

2 = K2K+s+140n(K+1).

Assume that
A(A−B)−δu−1

1 > 1. (3)

Then ∣∣∣∣ω − p

q

∣∣∣∣ > u2

AqK(s+1)

for all integers p and q with q > 0.

Proof : This is Lemma 1 of Shorey & Nesterenko [20]. We notice that this has been
refined by Hirata-Kohno in [13] but the statement of [20] is sufficient for our purpose.

4. Proofs

Proof of Theorem 1 :
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Let 0 < a < b < c < d be integers such that there exist positive integers r, s, t, u and
k ≥ 2 with

ac + 1 = rk, ad + 1 = sk, bc + 1 = tk and bd + 1 = uk.

Our aim is to prove that k is bounded by an absolute constant. Hence, we may assume
that k ≥ 160 and that, since

c2 > bc + 1 ≥ 3k, (4)

we have
d > c > 380. (5)

We also observe that, by Lemma 1, we have

log d > (k − 2) log c. (6)

We set
α1 =

ur

st
, α2 =

b

a
· ac + 1

bc + 1

and we consider the linear form in logarithms

Λ = | log α2 − k log α1| =
∣∣∣∣log

(
b

a
· ac + 1

bc + 1

)
− k log

(
ur

st

)∣∣∣∣.
Before applying Lemma 2 with b2 = 1 and b1 = k in order to bound Λ, we need some
estimates.

Firstly, we have

|α2 − 1| = α2 − 1 =
b− a

abc + a
<

1
c
. (7)

Secondly, from (5) and the upper bound∣∣∣∣( b

a
· ac + 1

bc + 1

)
−
(

ur

st

)k∣∣∣∣ = (r

t

)k
b− a

a(ad + 1)
≤ (b− a)(ac + 1)

a(ad + 1)(bc + 1)
≤ 1

ad
,

we deduce that
Λ ≤ 2

ad
. (8)

Let now define the quantities a1, a2, h, k, ρ appearing in Lemma 2.
We set

ρ = c (thus λ = log c),

and, by (5) and (7), we may take

a1 = 3 +
2(k + 1)
k(k − 2)

log d and a2 = 3 + 6 log c.

Indeed, we easily see that kh(α1) = h((bd + 1)(ac + 1)) ≤ log(c3d), whence by (6) we get
kh(α1) ≤ (1 + 3/(k − 2)) log d.
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Further, we see that one can take h = λ/2, since c ≥ 3k/2 by (4). We should also
check that α1 and α2 are multiplicatively independent. However, a look at the proof of
Theorem 1.5 of [16] shows that this is not needed. Indeed, we apply it with the choice
L = 3, hence it is sufficient to check that the three numbers 1, α1 and α2 are distinct,
which is clearly the case.

It follows from our choice of h that χ0 = 1/2, whence v = 8 and m = 8
√

2. Using (5)
and (6), we get the lower bound

log Λ ≥ − 1
log c

(
4
3

+
1
2

√
64
9

+
64
9

+
32
√

2
3
√

3

)2

a1a2 − 2.5 log c− log(20.8a1).

Combined with (8), after a few calculations, we obtain

log d ≤ 167
k + 1

k(k − 2)
log d + 254.9 + 2.5 log c + log

(
(log d)/k

)
. (9)

Using (4), (5) and (6), we infer from (9) that

1 ≤ 167
k + 1

k(k − 2)
+

254.9
log d

+
2.5

k − 2
+

1
k

(
k

log d

)
log
(

log d

k

)
. (10)

Since we have assumed k ≥ 160, it follows from (4), (5), (6) and (10) that the integer k
satisfies

k ≤ 176,

as claimed.

Proof of Theorem 2 :
Let k ≥ 5 and assume that m ≥ 3. Let acm−1 + 1 = xk and bcm−1 + 1 = yk. Then

bxk − ayk = b− a

and Lemma 3 implies
abcm−1 < k2b3.25.

Hence, cm−1 < k2b2.25. On the other hand, Lemma 1 implies that

cm−1 ≥ c2 > kkck−2
1 > k5b3,

a contradiction.

Let k = 4. Then, as above, we obtain cm−1 < 99b4. By Lemma 1, we have c2 > 256b2

and c3 > 256c2
2 > 2563b4. Therefore m− 1 ≤ 2 and m ≤ 3.

Proof of Theorem 3 :
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Let adm−1 +1 = x3 and bdm−1 +1 = y3. As in the proof of Theorem 2, an application
of Lemma 3 gives abdm−1 < 1153b9 and

dm−1 < 1153 b8.

On the other hand, successive applications of Lemma 1 give

d2 > 27d3−
√

2
1 > 27 b3−

√
2,

d3 > 27d3−
√

2
2 > 4930 b2.51,

d4 > 27d2
3b
−1 > 6 · 108 b4.02,

d5 > 27d2
4b
−1 > 9 · 1018 b7.04,

d6 > 27d2
5b
−1 > 2 · 1039 b13.08.

Therefore, m− 1 ≤ 5 and m ≤ 6.

Proof of Corollary 4 :
It suffices to prove the corollary for k = 3. Let a1 < a2 < · · · < a8 be positive integers

such that the product of any two of them increased by 1 is a perfect cube. As in the proof
of Theorem 3, Lemma 3 implies a7 < 1153a8

2. From Lemma 1, we have a7 > 345a9
2, a

contradiction.

Proof of Theorem 4 :
Let 11 ≤ k ≤ 176 be an integer. We denote by κ1(k), . . . , κ6(k) effectively computable

positive constants which depend only on k. Assume that the integers 0 < a < b < c < d
are such that there exist integers r, s, t and u with

ac + 1 = rk, ad + 1 = sk, bc + 1 = tk and bd + 1 = uk.

We will apply Lemma 4 with K = 2 to the algebraic number

ω =
(

a(bc + 1)
b(ac + 1)

)1/k

,

i.e. with A = b(ac + 1) and A−B = b− a. Firstly, we observe that∣∣∣∣ω − st

ru

∣∣∣∣ ≤ 3
ad

. (11)

Let φ < 1/4 be a (very) small positive number, and, with the notation of Lemma 4,
set δ = 2− φ/2 and s = δ/(1− φ).
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The assumption (3) in the statement of Lemma 4 is fulfilled if

b(ac + 1) > 403k(s+1)(2s−1) (b− a)2−φ/2,

thus, since c > b, it is fulfilled as soon as c > κ1(k). Under this assumption, we infer from
Lemma 4 and (11) that

3
ad

≥
∣∣∣∣ω − st

ru

∣∣∣∣ > κ2(k)
bac(ur)6+7φ

. (12)

Recalling that ur = (ac + 1)1/k(bd + 1)1/k, it follows from (12) that

ad < κ3(k)abc(ac)(6+7φ)/k(bd)(6+7φ)/k. (13)

By Lemma 1, we have
bd > kkck−1ak−1. (14)

Using b < c and combining (13) and (14), we get

dk−6−7φ < κ4(k)(bc)k+6+7φa6+7φ < κ4(k)(ac)2k+12+14φ < κ5(k)d(2k+12+14φ)/(k−2),

whence we deduce that d < κ6(k), since k ≥ 11, as claimed.
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