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Abstract:

The most popular public key cryptosystems are
based on the problem of factorization of large
integers and discrete logarithm problem in fi-
nite groups, in particular in the multiplicative
group of finite field and the group of points on
elliptic curve over finite field. Elliptic curves
are of special interest since they at present
alow much shorter keys, for the same level of
security, compared with cryptosystems based
on factorization or discrete logarithm problem
in finite fields.

In this course we will briefly mentioned basic
properties of elliptic curves over the rationals,
and then concentrate on important algorithms
for elliptic curves over finite fields. We will
discuss efficient implementation of point ad-
dition and multiplication (in different coordi-
nates). Algorithms for point counting and el-
liptic curve discrete logarithm problem will be
described.

1



Factorization and primality testing and proving

are very important topics for security of pub-

lic key cryptosystems. Namely, the starting

point in the construction of almost all public

key cryptosystems is the choice of one or more

large (secret or public) prime numbers. We

will describe algorithms for factorization and

primality proving which use elliptic curves.
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1. Public Key Cryptography

The classical situation in cryptography is that

two persons - ALICE and BOB - wish to per-

form some form of communication while an

eavesdropper - EVE - wishes to spy the com-

munication between Alice and Bob. Of course,

there is no assumption that Alice and Bob (or

Eve) are actually human. They may be com-

puters on some network.

In classical model of cryptography, Alice and

Bob secretly choose the key K, which then

gives an encryption rule eK and a decryption

rule dK, and dK is either the same as eK, or

easily derived from it. Cryptosystems of this

type are called private-key systems or symmet-

ric systems. One drawback of this system is

that it requires prior communication of the key

K between Alice and Bob, using a secure chan-

nel. This may be very difficult to achieve.
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The idea of a public-key cryptography is that it

might be possible to find a cryptosystem where

it is computationally infeasible to determine dK
from eK. If so, then the encryption rule eK
could be made public by publishing it in a di-

rectory. Now Alice (or anyone else) can send

an encrypted message to Bob (without prior

communication of a secret key) by using pub-

lic encryption rule eK. But Bob will be the only

person that can decrypt the ciphertext, using

his secret decryption rule dK.

The idea of a public-key system was introduced

in 1976 by Diffie and Hellman. The first re-

alization of a public-key system was proposed

in 1977 by Rivest, Shamir and Adleman (RSA

Cryptosytem), and its security is based on the

problem of factorization of large integers.
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Modern cryptography, as applied in commer-

cial world, is concern with a number of (new)

problems. The most important of these are:

1. Confidentiality: A message sent form Alice

to Bob cannot be read by anyone else.

2. Authenticity: Bob knows that only Alice

could have sent the message he has just re-

ceived.

3. Integrity: Bob knows that the message from

Alice has not been tampered with in transit.

4. Non-repudiation: It is impossible for Alice

to deny later that she sent the message.

The typical situation is that Alice wishes to

buy some item over the Internet from Bob.
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It should be said that the public key systems
are much slower than best symmetric systems
(e.g. Advanced Encryption Standard - AES).
Therefore, their use in confidentiality is usu-
ally limited to the transmission of key for sym-
metric ciphers. On the other hand, digital
signatures, which give the users the authen-
ticity, integrity and non-repudiation properties
required in electronic commerce, require the
use of public-key cryptography.

Idea of digital signatures: Alice signs the mes-
sage x by sending to Bob the ciphertext z =
dA(y) = dA(eB(x)). Bob decrypts the cipher
using Alice’s public key eA and his secret key
dB:

dB(eA(z)) = dB(eA(dA(eB(x)))) = x.

Bob now knows that only Alice could have sent
the message he has just received because only
Alice knows dA. If Alice later denies that she
sent the message, Bob can present the mes-
sages x and z and confirm that eB(x) = eA(z).
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Diffie-Hellman key exchange

protocol:

1. Alice and Bob agree on a group G

and an element g of G of order n.

The group G and the element g are

assumed to be public knowledge, and

in particular to be known to Eve.

2. Alice chooses secret integer

a ∈ {1,2, ..., n− 1},
computes A = ga

and sends A to Bob.

3. Bob chooses secret integer

b ∈ {1,2, ..., n− 1},
computes B = gb

and sends B to Alice.

4. Alice computes Ba = gab.

5. Bob computes Ab = gab.
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Bob and Alice both know the value

Ab = gab = Ba.

Eve knows G, g, A and B. She has to compute

gab (Diffie-Hellman problem (DHP)). If she can

solve discrete logarithm problem (DLP), i.e.

determine a from g and A = ga, then she can

use a and B to compute gab.

DLP is easy in some groups. E.g. Z/nZ under

addition, the Euclidean algorithm solves the

DLP.
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But for some groups, DLP is quite difficult,

and can be used in Diffie-Hellman protocol, or

serve as a base for building a public key cryp-

tosystem. Such group is e.g. the multiplica-

tive group F∗p of a finite field under multipli-

cation. Indeed, when someone refers to the

DLP with no further adjectives, it generally

indicates this case. Best known algorithm (In-

dex Calculus Method) for solving DLP in F∗p is

sub-exponential.

However, there are groups where it takes fully

exponential time to solve the DLP. The most

important examples are groups of elliptic curves

over finite fields.
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2. Elliptic curves over the rationals

Let K be a field. An elliptic curve over K is a
nonsingular projective cubic curve over K with
at least one K-rational point. It has the (affine)
equation of the form

F (x, y) = ax3+bx2y+cxy2+dy3+ex2+fxy+gy2+hx+iy+j = 0,

where a, b, c, . . . , j ∈ K, and the nonsingularity
means that in every point on the curve, consid-
ered in the projective plane P2(K) over the al-
gebraic clusure of K, at least one partial deriva-
tive of F is non-zero. Each such equation can
be transformed by birational transformations
to the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

which is called the Weierstrass form.

Program packages which deal with elliptic curves
(PARI/GP, KANT, SAGE, MAGMA, APECS)
usually initialize an elliptic curve as the vector
[a1, a2, a3, a4, a6].
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If char(K) ̸= 2,3, then the equation (1) can be
transformed to the form

y2 = x3 + ax+ b, (2)

which is called the short Weierstrass form. Now
the nonsingularity means that the cubic poly-
nomial f(x) = x3+ax+b has no multiple roots
(in algebraic closure K), or equivalently that
the discriminant ∆ = −4a3 − 27b2 in nonzero.

Thus, if char(K) ̸= 2,3, it is often convenient
to define an elliptic curve E(K) over K as the
set of points (x, y) ∈ K × K which satisfy an
equation

E : y2 = x3 + ax+ b,

where a, b ∈ K and 4a3 + 27b2 ̸= 0, together
with a single element denoted by O and called
the “point in infinity”.

If char(K) = 2, then we have two types of
equations:

y2+cy = x3+ax+b or y2+xy = x3+ax2+b.

14



The point in infinity appears naturally if we

represent the curve in projective plane P2(K),

i.e. the set of equivalence classes of triples

(X,Y, Z) ∈ K3 \ {(0,0,0)}, where (X,Y, Z) ∼
(kX, kY, kZ), k ∈ K, k ̸= 0. Replacing x by X

Z
and y by Y

Z , we obtain the projective equation

of elliptic curve

Y 2Z = X3 + aXZ2 + bZ3.

If Z ̸= 0, then (X,Y, Z) has representative of

the form (x, y,1) and it may be identified with

the affine point (x, y). But there is one equiva-

lence class with Z = 0. It has a representative

(0,1,0), and this point we identify with O.
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One of the most important facts about elliptic

curves is that the set of points on an elliptic

curve forms an abelian group. In order to visu-

alize the group operation, assume for the mo-

ment that K = R. Then we have an ordinary

curve in the plane. It has one or two compo-

nents, depending on the number of real roots

of the cubic polynomial f(x) = x3 + ax+ b.

1 root – 1 component 3 roots – 2 components
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Let E be an elliptic curve over R, and let P and
Q be two points on E. We define −P as the
point with the same x-coordinate but negative
y-coordinate of P . If P and Q have different
x-coordinates, then the straight line though P

and Q intersects the curve in exactly one more
point, denoted by P ∗ Q. We define P + Q as
−(P ∗Q). If P = Q, then we replace the secant
line by the tangent line at the point P . We also
define P + O = O + P = P for all P ∈ E(R),
where O is the point in infinity.

secant line tangent line
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Using this geometric definition, we can deter-
mine explicit algebraic formulas for this group
law. Such formulas make sense over any field
(with small modification for fields of charac-
teristic 2 or 3), and give an abelian group law
on the points of an elliptic curve.

Let P = (x1, y1) and Q = (x2, y2). Then

1) −O = O;

2) −P = (x1,−y1);

3) O + P = P ;

4) if Q = −P , then P +Q = O;

5) if Q ̸= −P , then P +Q = (x3, y3),
x3 = λ2 − x1 − x2,
y3 = −y1 + λ(x1 − x3),

λ =


y2−y1
x2−x1

, if x2 ̸= x1,

3x2
1
+a

2y1
, if x2 = x1.
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Let E be an elliptic curve over Q.

By Mordell’s theorem, the group E(Q) of ratio-
nals points on E is a finitely generated abelian
group. Hence, it is the product of the torsion
group and r ≥ 0 copies of infinite cyclic group:

E(Q) ∼= E(Q)tors × Zr.

The subgroup E(Q)tors of points of finite order
is called the torsion group of E, and the integer
r ≥ 0 is called the rank of E and it is denoted
by rank(E). Thus, there exist r rational points
P1, . . . , Pr on E such that any rational point P
on E can be represented in the form

P = T + [m1]P1 + · · ·+ [mr]Pr,

where T is a point of finite order and m1, . . . ,mr

are integers.

We may ask which values are possible for E(Q)tors
and rank(E) for general E, and also how we
can compute them for a given E. It appears
that these questions are much easier for the
torsion group.
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By Mazur’s theorem, we know that E(Q)tors is

one of the following 15 groups:

Z/nZ, with 1 ≤ n ≤ 10 or n = 12,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

Let us now discuss the problem of finding the

torsion points on an elliptic curve

E : y2 = x3 + ax+ b

over Q. First, let P = (x, y) be a point of

order 2. From 2P = O it follows P = −P , i.e.

(x, y) = (x,−y), which implies y = 0. Hence,

the points of order 2 are exactly the points

with y-coordinate equal to 0. We may have 0,

1 or 3 such points, depending on the number

of rational roots of the polynomial x3 + ax +

b. These points, with the point in infinity O,

form a subgroup of E(Q)tors which is trivial or

isomorphic to Z/2Z or to Z/2Z× Z/2Z.
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Other points of finite order can be found by

the Lutz-Nagell theorem:

Let E be an elliptic curve given by the equation

y2 = x3 + ax+ b, a, b ∈ Z.

If P = (x, y) ∈ E(Q)tors, then x, y are integers.

(If E is given by the (long) Weierstrass equa-

tion with integer coefficients, then 4x and 8y

are integers.)

Furthermore, if P = (x, y) ∈ E(Q)tors, then

either y = 0 (and P has order 2) or y2|∆,

where ∆ = −4a3 − 27b2.

21



Example: Find the torsion group for the ellip-

tic curve

E : y2 = x3 +8.

Solution: We have ∆ = −1728. If y = 0,

then x = −2 and we have the point (0,−2) of

order 2. If y ̸= 0, then y2|1728, i.e. y|24. By

testing all possibilities, we find the following

points with integer coordinates: P1 = (1,3),

P2 = (2,4), −P1 = (1,−3), −P2 = (2,−4). We

compute

2P1 =
(
−
7

4
,−

13

8

)
, 2P2 =

(
−
7

4
,
13

8

)
,

and since the points 2P1 and 2P2 do not have

integer coordinates, we conclude that P1 and

P2 are points of infinite order. Hence,

E(Q)tors = {O, (0,−2)} ∼= Z/2Z.
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On the other hand, it is not know what values

of rank r are possible for elliptic curves over Q.

The “folklore” conjecture is that a rank can

be arbitrary large, but it seems to be very hard

to find examples with large rank. The current

record is an example of elliptic curve over Q
with rank ≥ 28, found by Elkies in May 2006.
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History of elliptic curves rank records:

rank ≥ year Author(s)
3 1938 Billing
4 1945 Wiman
6 1974 Penney & Pomerance
7 1975 Penney & Pomerance
8 1977 Grunewald & Zimmert
9 1977 Brumer - Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao & Kouya
22 1997 Fermigier
23 1998 Martin & McMillen
24 2000 Martin & McMillen
28 2006 Elkies

http://web.math.hr/~duje/tors/rankhist.html
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There is even a stronger conjecture that for

any of 15 possible torsion groups T we have

B(T ) = ∞, where

B(T ) = sup{rank (E(Q)) : torsion group of E over Q is T}.

Montgomery (1987): Proposed the use of el-

liptic curves with large torsion group and pos-

itive rank in factorization.

It follows from results of Montgomery, Suyama,

Atkin & Morain (Finding suitable curves for the

elliptic curve method of factorization, 1993),

that B(T ) ≥ 1 for all torsion groups T .

Womack (2000): B(T ) ≥ 2 for all T

Dujella (2003): B(T ) ≥ 3 for all T
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B(T ) = sup{rank (E(Q)) : E(Q)tors
∼= T}.

The best known lower bounds for B(T ):

T B(T ) ≥ Author(s)

0 28 Elkies (06)

Z/2Z 19 Elkies (09)

Z/3Z 13 Eroshkin (07,08,09)

Z/4Z 12 Elkies (06)

Z/5Z 8 Dujella & Lecacheux (09), Eroshkin (09)

Z/6Z 8 Eroshkin (08), Dujella & Eroshkin (08),
Elkies (08), Dujella (08)

Z/7Z 5 Dujella & Kulesz (01), Elkies (06),
Eroshkin (09), Dujella & Lecacheux (09),
Dujella & Eroshkin (09)

Z/8Z 6 Elkies (06)

Z/9Z 4 Fisher (09)

Z/10Z 4 Dujella (05,08), Elkies (06)

Z/12Z 4 Fisher (08)

Z/2Z× Z/2Z 15 Elkies (09)

Z/2Z× Z/4Z 8 Elkies (05), Eroshkin (08),
Dujella & Eroshkin (08)

Z/2Z× Z/6Z 6 Elkies (06)

Z/2Z× Z/8Z 3 Connell (00), Dujella (00,01,06,08),
Campbell & Goins (03), Rathbun (03,06),
Flores, Jones, Rollick & Weigandt (07),
Fisher (09)

http://web.math.hr/~duje/tors/tors.html
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Construction of high-rank curves

1. Find a parametric family of elliptic curves
over Q which contains curves with relatively
high rank (i.e. an elliptic curve over Q(t) with
large generic rank); e.g. by Mestre’s polyno-
mial method.

2. Choose in given family best candidates for
higher rank. General idea: a curve is more
likely to have large rank if #E(Fp) is relatively
large for many primes p. Precise statement:
Birch and Swinnerton-Dyer conjecture. More
suitable for computation: Mestre’s conditional
upper bound (assuming BSD and GRH), Mestre-
Nagao sums, e.g. the sum:

s(N) =
∑

p≤N, p prime

#E(Fp) + 1− p

#E(Fp)
log(p)

3. Try to compute the rank (Cremona’s pro-
gram MWRANK - very good for curves with
rational points of order 2), or at least good
lower and upper bounds for the rank.
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Mestre’s polynomial method (1991):

Lemma: Let p(x) ∈ Q[x] be a monic polyno-

mial and deg p = 2n. Then there exist unique

polynomials q(x), r(x) ∈ Q[x] such that p =

q2 − r and deg r ≤ n− 1.

The polynomial q can be obtained from the

asymptotic expansion of
√
p.

Assume now that p(x) =
∏2n
i=1(x − ai), where

a1, . . . , a2n are distinct rationals. The curve

C : y2 = r(x)

contains the points (ai,±q(ai)), i = 1, . . . ,2n.

If deg r = 3 or 4, and r(x) has only simple

roots, then C is an elliptic curve. This state-

ment is clear for deg r = 3. If deg r = 4, we

choose one rational point on C (e.g. (a1, q(a1)))

for the point in infinity and transform C into

an elliptic curve.
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For n = 5, almost all choices of ai’s give deg r =

4. Then C has 10 rational points of the form

(ai, q(ai)) and by the mentioned transforma-

tion we may expect to obtain an elliptic curve

with rank ≥ 9. Mestre constructed a family

of elliptic curves (i.e. a curve over Q(t)) with

rank ≥ 11, by taking n = 6 and ai = bi + t,

i = 1, . . . ,6; ai = bi−6 − t, i = 7, . . . ,12, and by

choosing numbers b1, . . . , b6 in such a way that

the coefficient with x5 in r(x) be equal to 0

(e.g. b1 = −17, b2 = −16, b3 = 10, b4 = 11,

b5 = 14, b6 = 17).

- extended by Mestre, Nagao and Kihara up to

rank 14 over Q(t)

- generalized by Fermigier, Kulesz and Lecacheux

to curves with nontrivial torsion group

- Elkies (2006): rank 18 over Q(t) (methods

from algebraic geometry)
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3. Elliptic curves over finite fields

For the applications in cryptography, the most

important case is when K is a finite field.

Let Fq denotes a field which has q elements.

Let p be a characteristic of Fq. Then Fq con-

tains the prime field Fp = Z/pZ, and so it is a

vector space over Fp. Let k denotes dimension

of Fq as an Fp - vector space. Then Fq has pk

elements, i.e. q = pk.

Moreover, for every prime power q = pk there

is a field of q elements, and it is unique (up

to isomorphism). It can be represented as

Fp[x]/(f(x)), where f(x) is an irreducible poly-

nomial od degree k over Fp (we have pk poly-

nomials in Fp[x] of degree at most k − 1, and

addition and multiplication is as in Fp[x], fol-

lowed by a reduction modulo f(x)).
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The number of irreducible polynomials in Fp[x]
of degree k is approximately pk/k.

Testing irreducibility uses the fact that f(x) is

irreducible if and only if

gcd(f(x), xp
j
− x) = 1, for j = 1, . . . , ⌊k/2⌋.

For better efficiency, it is advisable to use poly-

nomials f(x) with small weight W (number of

nonzero coefficients). In the case q = 2k,

it seems that it is always possible to choose

W = 3 or W = 5. E.g. in the case q = 28

(which is used in AES), we may take f(x) =

x8 + x4 + x3 + x+1.

Let F∗q denotes the multiplicative group of the

field Fq. The group F∗q is cyclic, i.e. there exist

an element g ∈ F∗q such that the powers of g

run through all of the elements of F∗q.
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Example: Let us consider the elliptic curve

E : y2 = x3 + x+3

over F7. We want to find all elements and the

structure of the group E(F7).

Note that squares in F7 are 0, 1, 2 and 4.

Inserting x = 0, 1, 2, 3, 4, 5, 6 in y2 = x3+x+3

we get equations y2 = 3,5,6,5,1,0,1 in F7.
We conclude that exactly for x = 4,5 and 6

corresponding equations are solvable, and we

find that

E(F7) = {O, (4,1), (4,6), (5,0), (6,1), (6,6)}.

Let us determine the structure of the group

E(F7). Take P = (4,1) are compute its multi-

ples:

[2]P = (6,6), [3]P = (5,0), [4]P = (6,1),

[5]P = (4,6), [6]P = O.

Hence, E(F7) is a cyclic group of order 6.
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Let E be an elliptic curve over finite field Fq
with q = pk elements. It is easy to see that
#E(Fq) ≤ 2q + 1, since we have the point at
infinity and for every x at most two y’s. But
since only half of elements of F∗q have square
roots (those of the form g2n, where g is a gen-
erator of the multiplicative cyclic group F∗q), we
may expect that #E(Fq) will only about a half
of that number. The precise version of this
observation is given by Hasse’s theorem:

|q +1−#E(Fq)| ≤ 2
√
q.

The quantity t defined by #E(Fq) = q + 1 − t
is called the trace of Frobenius. We have |t| ≤
2
√
q.

For curves over Fp, where p is a prime, there is
an elliptic curve with group of rational points of
any given order in the interval ⟨p+1−2

√
p, p+

1+ 2
√
p⟩ (Deuring). In subinterval

⟨p+1−√
p, p+1+

√
p⟩

each order occurs with an almost uniform dis-
tribution (Lenstra).
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In general case, q = pk, there exist an elliptic

curve E over Fq such that #E(Fq) = q + 1− t

if and only if |t| ≤ 2
√
q and t satisfies one of

the following conditions:

1) gcd(t, p) = 1;

2) k is even and t = ±2
√
q or (t = ±√

q and

p ̸≡ 1 (mod 3)) or (t = 0 and p ̸≡ 1 (mod 4));

3) k is odd and t = 0 or (t = ±
√
2q and p = 2)

or (t = ±
√
3q and p = 3).

Contrary to the case of elliptic curves over Q
where the characterization of possible ranks of

groups E(Q) is an open problem, in the case

of elliptic curves of finite fields we know that

E(Fq) ∼= (Z/n1Z)× (Z/n2Z),

where n1, n2 are positive integers satisfying n1|n2
and n1|q−1 (including the possibility that n1 =

1). Thus, E(Fq) is “almost cyclic”.
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Until now we considered mainly elliptic curves
in fields of characteristic different from 2 and
3. However, since the elliptic curves in fields
of characteristic 2 are very important for ap-
plications in cryptography, we will give some
information about them.

Every elliptic curve over Fq, where q = 2k, can
be transformed into one of the following two
forms: y2 + cy = x3 + ax + b or y2 + xy =
x3 + ax2 + b. But the curves of the first form
are supersingular curves, which are not used in
cryptography. Hence, we can concentrate on
curves of the form

y2 + xy = x3 + ax2 + b.

Here b is an arbitrary nonzero element from Fq,
while for a we have only two essentially differ-
ent choices (which give nonisomorphic curves):
a = 0 or a = γ, where γ is a fixed element of
Fq with the property that

Tr(γ) := γ + γ2 + γ4 + · · ·+ γ2
k−1

= 1.

If k is odd, we can take just γ = 1.
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Let us give the formulas for addition on the

elliptic curve given by the equation y2 + xy =

x3 + ax2 + b over a field of characteristic 2.

If P = (x1, y1) and Q = (x2, y2), then −P =

(x1, x1 + y1), and P + Q = (x3, y3), P + P =

[2]P = (x4, y4), where

x3 =

(
y1 + y2
x1 + x2

)2
+

(
y1 + y2
x1 + x2

)
+ a+ x1 + x2,

y3 = y1 + x3 + (x1 + x3) ·
(
y1 + y2
x1 + x2

)
,

x4 =

(
x21 + y1

x1

)2
+

(
x21 + y1

x1

)
+ a,

y4 = y1 + x4 + (x1 + x4) ·
(
x21 + y1

x1

)
.
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4. Implementation of operations

If we want to use some group G as a basis

for a public-key cryptosystem, it is important

that we can make multiplication and exponen-

tiation efficiently. Since the group law on el-

liptic curves is written additively, we will talk

on points addition and point multiplication:

[m]P = P + P + · · ·+ P︸ ︷︷ ︸
m summands

.

From the formulas for point addition we see

that when P ̸= Q the computation of P + Q

requires one field inversion and three multi-

plications (1I + 3M) (we neglect the cost of

field additions and multiplications by small con-

stants). When P = Q, the cost of the point

doubling is 1I + 4M.
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These results are for fields of characteristic

> 3. In characteristic 2, the situation is similar,

except that is this case the cost of squaring op-

eration is much smaller than that of a general

multiplication (so we have 1I + 2M).

The inverse can be computed by extended Eu-

clidean algorithm (ordinary integer version in

the case q = p, and polynomial version in the

case q = 2k). Although the complexity of the

Euclidean algorithm is theoretically compara-

ble with the complexity of the field multipli-

cations, in practise the multiplication is much

faster than inversion.
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The field inversion can be avoided by using

the Jacobi or weighted projective representa-

tion, where the projective point (X,Y, Z) cor-

responds to (X/Z2, Y/Z3) (first coordinate has

weight 2, a second has weight 3). The equa-

tion in this new coordinates is

Y 2 = X3 + aXZ4 + bZ6.

The point in infinity has coordinates (1,1,0).

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2). Then

the coordinates of P +Q = (X3, Y3, Z3) can be

computed by

r = X1Z
2
2 , s = X2Z

2
1 , t = Y1Z

3
2 ,

u = Y2Z
3
1 , v = s− r, w = u− t,

X3 = −v3 − 2rv2 + w2,

Y3 = −tv3 + (rv2 −X3)w, Z3 = vZ1Z2,
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while the coordinates of P + P = (X4, Y4, Z4)

can be computed by

v = 4X1Y
2
1 , w = 3X2

1 + aZ4
1 ,

X4 = −2v + w2,

Y4 = −8Y 4
1 + (v −X3)w, Z4 = 2Y1Z1.

In these coordinates we need 16M (12M + 4S)

for computing P +Q and 10M (4M + 6S) for

P + P , and no inversion. In the applications,

it has some advantages to choose parameter

a = −3, since then in computing P +P we can

avoid one multiplication because

w = 3(X2
1 − Z4

1) = 3(X1 + Z2
1)(X1 − Z2

1).
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There are other type of (projective) coordi-

nates which avoid computing the inverse.

Recently, the Edwards coordinates were intro-

duced which unify formulas for P+Q and P+P .

Let K be a field of characteristic different from

2. Let c, d ∈ K∗ and d is not a square in K.

Then the curve

C : u2 + v2 = c2(1 + du2v2)

is isomorphic to the elliptic curve

E : y2 = (x− c4d− 1)(x2 − 4c4d),

with the corresponding substitutions

x =
−2c(w − c)

u2
,

y =
4c2(w − c) + 2c(c4d+1)u2

u3
,

where w = (c2du2 − 1)v.
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The point (0, c) is neutral element, negative

element of (u, v) is (−u, v), while the addition

low is given by the formula

(u1, v1) + (u2, v2) =(
u1v2+u2v1

c(1+du1u2v1v2)
, v1v2−u1u2
c(1−du1u2v1v2)

)
,

for all points (u1, v1), (u2, v2) ∈ C(K).

u2 + v2 = 4(1− u2v2)
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The point multiplication on elliptic curves is

a special case of the general problem of the

exponentiation in abelian groups. As such, it

benefits from all techniques available for the

general problem.

The simplest (and oldest) efficient method for

points multiplication relies on the binary ex-

pansion of m. It is called binary method, binary

ladder or repeated squaring method.

E.g. assume that we want to compute [13]P .

The binary expansion of 13 is (1 101)2. Now,

we can compute [13]P as

[13]P = P + [2]([2]P ) + [2]([2][2]P )).

Here we read the expansion from right to left.

By reading it from left to right, we can com-

pute [13]P as

[13]P = [2]([2](P + [2]P )) + P.
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Thus, we have the following two algorithms for

computing Q = [m]P , where m = (md, . . . ,m0)2.

Binary method (from right to left):

Q = O; R = P

for i = 0 to d− 1

if (mi = 1) then Q = Q+R

R = [2]R

Q = Q+R

Binary method (from left to right):

Q = P

for i = d− 1 to 0 by −1

Q = [2]Q

if (mi = 1) then Q = Q+ P
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Both variants have the same number of oper-

ations: d duplications and number of additions

is equal to number of nonzero digits in binary

expansion for m (which is ≤ d + 1, and d/2

in average). The variant “from left to right”

has an advantage that in the step Q = Q+ P ,

always the same point P is added, and this

might be used for more efficient implementa-

tion. The number of bit operations for com-

puting [m]P is O(logm log2 q).

There are several general improvements of the

binary method, but we will mention one method

which is specific for elliptic curves. Namely, in

elliptic curve group the subtraction has virtu-

ally the same cost as the addition (−(x, y) =

(x,−y); and in characteristic 2, −(x, y) = (x, x+

y)), while usually division in a group is more

computationally expensive then multiplication.
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This lead us to consider the signed digit (SD)

representation of the form m =
∑d

i=0 si2
i, where

si ∈ {−1,0,1}. Such representation is clearly

not unique. E.g.

3 = (0 1 1) = (1 0 -1).

Thus we may choose the representation which

leads to more efficient multiplication algorithm.

We say that a SD representation is sparse or

non-adjacent form (NAF) if it has no adjacent

nonzero digits, i.e. sisi+1 = 0 for all i ≥ 0.

It can be proved that every integer m has a

unique NAF, and NAF has the lowest weight

(number of nonzero digits) among all SD rep-

resentations of m. Expected weight of NAF of

lenght d is d/3 (compared with d/2 in binary

method).
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The following algorithm computes NAF rep-
resentation (sd, . . . , s0) of number n, starting
from its binary representation (nd−1, . . . , n0)2
(we assume that ni = 0 for i ≥ d).

Algorithm for NAF representation

c0 = 0
for i = 0 to d

ci+1 = ⌊(ni + ni+1 + ci)/2⌋
si = ni + ci − 2ci+1

Alternatively, we can use the following table,
which for all possible inputs (ni, ci, ni+1) give
the corresponding outputs (ci+1, si).

ni 0 0 0 0 1 1 1 1
ci 0 0 1 1 0 0 1 1

ni+1 0 1 0 1 0 1 0 1
ci+1 0 0 0 1 0 1 1 1
si 0 0 1 -1 1 -1 0 0
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It is straightforward to adapt binary method to

NAF.

Signed binary method (from left to right):

Q = P

for i = d− 1 to 0 by −1

Q = [2]Q

if (mi = 1) then Q = Q+ P

if (mi = −1) then Q = Q− P
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For applications in cryptography, the most im-

portant finite fields are prime fields Fp and

fields of characteristic two F2k. With p and 2k

of the same size they offer the same level of

security. The choice of F2k is better for hard-

ware applications. But if a crypto coproces-

sor (accelerate modular arithmetic) is already

available, then Fp may offer performance ad-

vantages over F2k.

To minimize time to perform modular multi-

plication, it is recomended that p has the form

2m± c for some small c (e.g. Mersenne primes

2m − 1, 2160 +7, 2255 +95, . . .).

For F2k, some popular choices are q = 2155,

2163, 2191, 2239, 2431. In the case of a field

F2k, we should also select a representation for

the elements of F2k. Namely, there are many

different bases of F2k over F2. We will mention

two types: trinomial and normal bases.
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If f(x) is an irreducible polynomial of degree k

over F2, the the field F2k can be represented

as the set of polynomials of degree less then k

over F2. Such a representation is called poly-

nomial basis representation.

A trinomial basis representation is a polyno-

mial basis representation in which the polyno-

mial f(x) has the form f(x) = xk + xm + 1.

Such representations have the advantage that

reduction modulo f(x) can be performed effi-

ciently, both in software and hardware. Irre-

ducible trinomials exist over half of values k in

the range k ≤ 1000, but they do not exist e.g.

if k ≡ 0 (mod 8).
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A normal basis for F2k over F2 is a basis of the

form

{b, b2, b2
2
, . . . , b2

k−1
},

where b ∈ F2k. Such a basis always exists. The

field squaring is trivial in normal basis repre-

sentation: if a = (a0, a1, . . . , ak−1), then

a2 = (ak−1, a0, a1, . . . , ak−2),

i.e. squaring is just a cyclic shift. However,

the multiplication in a general normal basis is

more complicated. The normal basis in which

the cost of multiplication in minimal are called

optimal normal basis (ONB). One of necessary

conditions for the existence of a ONB is that

k +1 or 2k +1 is a prime.
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5. Algorithms for determining the group

order

To decide whether an elliptic curve E over Fq
is “good” for applications in cryptography, we

should know the order of the group E(Fq).
There are several types of curves with should

be avoided.

- Pohlig-Hellman reduction implies that #E(Fq)
should be divisible by a sufficiently large prime

p′ to resist the BSGS or Pollard ρ attack (e.g.

p′ > 2160 is enough).

- E should not be “anomalous”. Anomalous

curves are those with trace of Frobenius t = 1,

i.e. #E(Fq) = q. For such curves there exist a

polynomial-time algorithm for ECDLP (Smart,

Satoh, Araki, Semaev).
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- E should not be “supersingular”. The curve

over Fpk is supersingular if p|t. For curves over

Fp with p ≥ 5 this means that t = 0 and

#E(Fp) = p+ 1. For such curves there is the

MOV attack (Menezes, Okamoto, Vanstone)

which in polynomial time reduces ECDLP in

E(Fq) to DLP in Fq2. More generally, one

should avoid curves such that

ql ≡ 1 (mod #E(Fq))

for small l (say l ≤ 20), because then MOV

attack reduces the problem to DLP in Fql.
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A straightforward method for computing #E(Fp)
is by using Legendre’s symbol:

#E(Fp) = p+1+
∑
x∈Fp

(
x3 + ax+ b

p

)
.

It has complexity O(p log2 p) = O(p1+ε), thus it

is applicable only for small p’s, say p < 10000.

We will now describe the Shanks-Mestre method,

which has complexity O(p1/4+ε) and works in

practise for p < 1030.

By the Hasse theorem we know that #E(Fp) =

p+1− t, |t| ≤ 2
√
p. Choose random P ∈ E(Fp).

We want for find a number N ∈ ⟨p+1−2
√
p, p+

1 + 2
√
p⟩ such that [N ]P = O. Such num-

ber N certainly exists since order of P divides

#E(Fp). If the order of P is greater than 4
√
p

(by a result of Mestre, the point P with this

property exists on E or its twist E′ if p > 457),

then such N is unique and equal to #E(Fp).
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The search for N is based of Shanks’ “baby
step - giant step” (BSGS) method. Let Q =
[p+1+ ⌊2√p⌋]P . Then n = p+1+ ⌊2√p⌋−N
satisfies 0 ≤ n ≤ 4

√
p and

[n]P = [p+1+ ⌊2√p⌋ −N ]P = Q.

Actually this is a discrete logarithm problem.
We do not have very efficient algorithm for
this problem, but at least we can do better
than just testing all O(p1/2) possibilities for n.

Shanks-Mestre’s method:

m = ⌈2p1/4⌉
P ∈ E(Fp), |P | > 4

√
p

Q = [p+1+ ⌊2√p⌋]P
for (0 ≤ j ≤ m− 1)

compute and save [j]P
for (0 ≤ i ≤ m− 1) {

if (Q− [i]([m]P ) = [j]P for some
0 ≤ j ≤ m− 1) then
t = im+ j − ⌊2√p⌋ }

return t
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Example: Given is the curve

E : y2 = x3 +3x+5

over F163. Compute the order of the group
E(F163).

We have m = 8. Take P = (1,3). Then Q =
[163+1+25]P = (106,61). In the next table
“baby steps” are given:

j 0 1 2 3
[j]P O (1,3) (162,162) (4,154)

j 4 5 6 7
[j]P (11,37) (143,101) (77,80) (118, 5)

We compute R = [8]P = (97,150).
“Giant steps” are given in the next table:

i 0 1 2 3
Q− [i]R (106,61) (79,83) (145,65) (118, 5)

i 4 5 6 7
Q− [i]R (1,160) (142,61) (7,83) (124,8)

Hence, n = 3 ·8+7 = 31, t = 31−25 = 6 and
finally #E(F163) = 163+ 1− 6 = 158.
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The first polynomial-time algorithm for com-

puting #E(Fq) was proposed in 1985 by Schoof.

Its complexity is O(log8 q), and it is not effi-

cient enough for all q’s of practical interest.

There are some improvements of this algo-

rithm by Atkin and Elkies which works satis-

factory for q’s of 160 bits.

Let us say just few words about Schoof’s algo-

rithm. By Hasse’s theorem, #E(Fq) = q+1−t,

|t| ≤ 2
√
q. The idea of Schoof’s algorithm is

the determination of t modulo primes l, for

l ≤ lmax, where lmax is the smallest prime such

that ∏
l prime
l≤ lmax

l > 4
√
q.

Then from t mod l, for 2 ≤ l ≤ lmax, by CRT

we can determine uniquely the value of t. By

Prime Number Theorem we have lmax = O(log q),

so the number of congruences is O( log q
log log q).
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In determining t mod l, the Frobenious endo-

morphism is used. This is the map φ : E(Fq) →
E(Fq) given by φ(x, y) = (xq, yq), φ(O) = O.

Frobenius endomorphism φ and Frobenius trace

t are related by

φ2 − [t]φ+ [q] = [0],

i.e. for each P = (x, y) ∈ E(Fq) it holds

(xq
2
, yq

2
)− [t](xq, yq) + [q](x, y) = O.

Let P ∈ E(Fq) be such that [l]P = O, and

let ql = q mod l. If t′ ∈ 0,1, . . . , l − 1 satisfies

φ2(P ) + [ql]P = [t′]φ(P ), then t mod l = t′.
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If E is defined over Fq, then E can be viewed

as a curve over any extension Fqk of Fq. If we

know #E(Fq), then #E(Fqk) can be computed

by the formula

#E(Fqk) = qk +1− αk − βk,

where α and β are complex numbers satisfying

1− tT + qT2 = (1− αT )(1− βT ).

We can apply this method to construct suitable

curves over F2k, where k is divisible by a small

integer l. We first pick a curve over small field

F2l, compute #E(F2l), and then use the above

formula to determine #E(F2k).
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Example: Koblitz curve is a curve of the form

y2 + xy = x3 + ax2 +1

with a = 0 or 1. So it has coefficients in F2.
But for the applications, we can consider it

as a curve over F2k with large k. Using the

above method we get that (1−αT )(1−βT ) =

1+ µT +2T2, where µ = (−1)a, and thus

#E(F2k) = 2k+1−
(
−µ+

√
−7

2

)k
−
(
−µ−

√
−7

2

)k
.

Let us mention that on Koblitz curves, the

computation of [m]P can be done more effi-

ciently by using representation of m involving

powers of τ = −µ+
√
−7

2 , instead of binary rep-

resentation (doubling points is replaced by ap-

plication of Frobenius endomorphism).
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6. Elliptic Curve Cryptosystems

Definition: A cryptosystem is a quintuple
(P, C,K, E,D), where the following conditions
are satisfied:
P is a finite set of possible plaintexts;
C is a finite set of possible ciphertexts;
K is a finite set of possible keys;
For each K ∈ K, there is an encryption rule
eK ∈ E and a corresponding decryption rule
dK ∈ D. Each eK : P → C and dK : C → P are
functions such that dK(eK(x)) = x for every
x ∈ P.

ElGamal cryptosystem from 1985, is a public
key cryptosystem bases on the discrete loga-
rithm problem in F∗p. Actually, it can be easily
transformed in finite abelian group G. For be-
ing suitable for such applications, the group G
should be present in such a way that multipli-
cation and exponentiation are easy, while com-
puting discrete logarithm is hard. It should also
be possible to generate random elements from
the group with an almost uniform distribution.
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ElGamal cryptosystem: Let p be a

prime and α ∈ F∗p a primitive root mod-

ulo p (generator of F∗p). Let P = F∗p,
C = F∗p × F∗p and

K = {(p, α, a, β) : β ≡ αa (mod p)}.

The values p, α, β are public, and the

value a is secret.

For K ∈ K and secret random number

k ∈ {0,1, . . . , p− 1} we define

eK(x, k) = (αk mod p, xβk mod p).

For y1, y2 ∈ F∗p we define

dK(y1, y2) = y2(y
a
1)

−1 mod p.

We can say that the plaintext x is “masked”

by multiplying it by βk. Those how knows the

secret exponent a, using αk, can compute βk

and “remove the mask”.
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ElGamal cryptosystem can be easily modified

to work with the group E(Fp). But direct

translation might have some disadvantages. The

first problem is that it is not so straightforward

to code elements of plaintext into points on an

elliptic curve. There is no deterministic algo-

rithm for that purpose, but only a probabilistic

algorithm which uses that fact the one half

of elements of a fine field are squares. This

means that in k attempts with probability 1− 1
2k

we may expect to find an x such that x3+ax+b

is a square Fp. For practical purposes we may

take k = 30.
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The second problem is that the ciphertext in

this variant of ElGamal cryptosytem consists

of a pair of points on an elliptic curve. Thus

it is four times longer than the plaintext (but

only two times longer in the original ElGamal

cryptosytem).

There is a modification of ElGamal cryptosytem

due to Menezes and Vanstone, which solves

both of these problems. It uses elliptic curves

only for “masking”, while plaintexts and ci-

phertexts are arbitrary pairs of elements in the

field (and not necessarily pairs which corre-

spond to coordinates of points on the elliptic

curve). Thus the ciphertext is only two times

longer than the plaintext.
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Menezes-Vanstone cryptosystem:

Let E be an elliptic curve over Fp, and

H cyclic subgroup of E generated by α.

Let P = F∗p × F∗p, C = E × F∗p × F∗p and

K = {(E,α, a, β) : β = [a]α},

where [a]α denotes α + α + · · · + α (a

times), and + is addition on the elliptic

curve E.

The values E, α, β are public, and the

value a is secret.
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For K ∈ K and secret random num-

ber k ∈ {0,1, . . . , |H| − 1}, and for x =

(x1, x2) ∈ F∗p × F∗p we define

eK(x, k) = (y0, y1, y2),

where y0 = [k]α, (c1, c2) = [k]β, y1 =

c1x1 mod p, y2 = c2x2 mod p.

For a ciphertext y = (y0, y1, y2) we de-

fine

dK(y) = (y1(c1)
−1 mod p, y2(c2)

−1 mod p),

where [a]y0 = (c1, c2).
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The most popular algorithms for generating
digital signatures are Digital Signature Algo-
rithm (DSA/DSS) and Elliptic Curve Digital
Signature Algorithm (ECDSA). DSA is based
on DLP in the multiplicative group of a finite
field, while ECDSA uses elliptic curves over fi-
nite fields. In 1999, ECDSA was adapted as
an official ANSI standard.

We will describe three phases of ECDSA.

1. ECDSA Key generation

E is an elliptic curve over Fp, P is a point of
prime order n on E(Fp). Each user does the
following:

a) Select random integer d in {1,2, . . . , n−1};

b) Compute Q = [d]P ;

c) Q is public key, d is private key.
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2. ECDSA Signature generation

To sign the message m, Bob does the following

a) Select random integer k in {1,2, . . . , n−1};

b) Compute [k]P = (x1, y1) and r = x1 mod
n. If r = 0, then go back to step a)
(if r = 0 then the signing equation does
not involve the private key d);

c) Compute k−1 mod n;

d) Compute s = k−1(H(m)+dr) mod n, where
H is a hash function (e.g. SHA-1, which
produces a 160-bit message digest). If s =
0, then go back to step a)
(in the step 3.c) the inverse s−1 is used);

e) The signature for the message m is the pair
(r, s).
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3. ECDSA Signature verification

To verify Bob’s signature (r, s) of the message
m, Alice should do the following:

a) Obtain Bob’s public key Q,

b) Verify that r and s are integers in
{1, . . . , n− 1};

c) Compute w = s−1 mod n and H(m);

d) Compute u1 = H(m)w mod n and u2 =
rw mod n;

e) Compute [u1]P + [u2]Q = (x0, y0) and v =
x0 mod n;

f) Accept the signature if and only if v = r.

69



7. Comparing elliptic curve with other types
of cryptography

RSA Cryptosystem was invented in 1977 by
Rivest, Shamir and Adleman. Its security is
based on the difficulty of factoring large inte-
gers.

Description of RSA:
Each user chooses two primes p and q, and sets
n = p · q.
Knowing factorization of n, it is easy to com-
pute

φ(n) = (p− 1)(q − 1) = n+1− p− q.

Next, the user chooses an integer e between 1
and φ(n) such that gcd(e, φ(n)) = 1.
He computes the multiplicative inverse of e
modulo φ(n) by Euclidean algorithm:

d · e ≡ 1 (mod φ(n)).

The values n and e are public, while the values
p, q and d are secret.
Enciphering transformation is x 7→ xe mod n.
Deciphering transformation is y 7→ yd mod n.
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If the RSA Cryptosystem is to be secure, it is

necessary that n = pq must be large enough

that factoring it will be computationally in-

feasible. Hence, it is recommended that one

should choose p and q to each be primes hav-

ing at least 100 digits.

There are basically two types of factoring al-

gorithms: special-purpose (use special features

of the number n) and general-purpose (depend

only on the size of n). The special-purpose al-

gorithms suggest which kind of numbers n (i.e.

p and q) should be avoided. E.g. if p and q are

very close to each other, then they can be dis-

covered by testing numbers near
√
n (Fermat’s

factorization). Also, if p− 1 or q− 1 have only

small prime factors (they are “smooth”), then

Pollard’s p− 1 can be efficient.
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However, in the case of RSA modulus n, such
special-purpose algorithms are easy to avoid,
so for the serious attacks on RSA, the general-
purpose algorithms are more relevant. The
best such algorithms today are quadratic sieve
(QS) and number field sieve (NFS). They are
based on idea of using a factor base of primes
in order to find numbers s and t satisfying
t2 ≡ s2 (mod n), and then to find a nontriv-
ial factor of n by gcd(t± s, n).

The running time for both algorithms is sub-
exponential. More precisely, let

Ln[u, v] = ev(logn)u(log logn)1−u

(for u = 0 we have Ln[0, v] = (logn)v, poly-
nomial time; for u = 1 we have Ln[1, v] = nv,
exponential time). Then running times are:
for QS: Ln[12,1+ ε],
for NFS: Ln[13, (

32
9 )1/3 + ε)].

It should be mentioned that the best known al-
gorithms of DPL in Fq (Index Calculus Method)
have very similar complexity.
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There also other attacks on RSA besides fac-

torization. It is known that RSA is insecure if

encryption exponent is very small. So e = 3

is not recommended, but e = 216 + 1 can be

safely used. There are attacks also on RSA

with small decryption exponent d.

If d < 4
√
n, the d can be recovered from con-

tinued fraction expansion of (publicly known)

e/n (Wiener’s attack). There are also exten-

sions of Wiener’s attack to slightly larger value

of d which use tools from Diophantine approx-

imations and LLL-algorithm (Verheul & van

Tilborg, Dujella, Boneh & Durfee, Blömer &

May).
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The most efficient known algorithms for DLP

in F∗p are based on Index Calculus Method.

This method can be defined in an arbitrary

group G, but its efficiency depends heavily on

the properties of the group G. We should be

able to choose relatively small subset B of G

(factor base) with the property that significant

number of elements of G can be represented

as a product of elements from B.

For the efficiency of this method in F∗p, very im-

portant fact is that there exist infinitely many

prime numbers. More precisely, the number of

primes which are less than x is approximately
x

logx.

We will describe an algorithm which for given

cyclic group G of order n with generator g com-

putes the discrete logarithm logg h of an ele-

ment h of G (index is an alternative name for

discrete logarithm).
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Index calculus algorithm:

1. Choice of factor base

Choose subset B = {p1, p2, . . . , pm} of G

with the property that many elements

from G can be represented as a product

of elements from B.

2. Linear relations in logarithms

For random number k, 0 ≤ k ≤ n − 1,

compute gk, and try to represent it as

a product of elements from B:

gk =
m∏

i=1

p
ci
i , ci ≥ 0.

By taking logarithms, we get

k ≡
m∑

i=1

ci logg pi (mod n).

Repeat this procedure until we get at

least m such relations.
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3. Solving the system

Solve the linear system of m equations

and m variables, and get the values

logg pi.

4. Computing x = logg h

For random number k, 0 ≤ k ≤ n − 1,

compute h · gk, and try to represent it

as a product of elements of B:

h · gk =
m∏

i=1

p
di
i , di ≥ 0.

(If we didn’t succeed, then we choose

another k.) By taking logarithms, we

get

logg h =

 m∑
i=1

di logg pi − k

 mod n.

76



In the application of Index Calculus Method on

the group F∗p, which is a cyclic group of order

n = p − 1, for the factor base B we choose

the first m prime numbers. Then we try to

represent integers r = gk mod p as products of

powers of small primes. It is clear that with

larger m we will have better chances to repre-

sent r as a product of powers of the first m

primes. On the other hand, for large m it will

be hard to solve the system in Step 3.

It appears that the optimal choice is to take

the larger element pm of the factor base to be

approximately

e
√
log p log log p.

With this choice, index calculus algorithm be-

comes a sub-exponential algorithm for DLP in

F∗p.
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The main reason why Index Calculus Method

cannot be applied on elliptic curves is that it is

difficult to find elliptic curves over Q with large

rank and generated by points of small height.

If we could find such curves, and if moreover

we could “lift” the curve over Fp to such curve

of Q, then the generators of E(Q) would be

elements of the factor base (they will play the

role of small primes).

For this reason, it was proposed by Miller and

Koblitz in 1985 that for cryptographic pur-

poses, one should replace F ∗
q by the group of

rational points E(Fq) on an elliptic curve over

finite field.

Silverman and Suzuki (1998) estimated that

for p ≈ 2160, which is the size of standard

values is use today, in order to apply the In-

dex Calculus Method to E(Fp) we need rank

r ≈ 180.
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We may conclude that ECC offers the higher

strength-per-key-bit of any known public key

system (7 times smaller key compared with

RSA and ElGamal; standard values are 1024

for RSA and 160 for ECC). The smaller key

size results is smaller system parameters, smaller

public-key certificates, faster implementation

and smaller hardware processors. In particular,

this is important in applications (like smart-

cards) with limited space for storing keys.
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In 2001, Lenstra and Verheul gave the rec-

ommendations for key sizes needed for rea-

sonable security. They compared symmetric

cryptosystems (DES, AES), public key cryp-

tosystems based on factorization or DLP in F∗q
(RSA, ElGamal) and cryptosystems based on

elliptic curves (ECC). Compared are key sizes

needed for equivalent strength security (MIPS

years needed to recover one key). The term

MIPS year denotes the computational power of

a MIPS (million-instructions-per-second) com-

puter utilized for one year.

Year DES key size RSA key size ECC key size

1990 63 622 117

2000 70 952 132

2010 78 1369 146

2020 86 1881 161

2030 93 2493 176

2040 101 3214 191
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8. Elliptic curve discrete logarithm prob-

lem

The basis for the security of elliptic curve cryp-

tosystems is the apparent intractability of the

Elliptic Curve Discrete Logarithm Problem

(ECDLP):

Given an elliptic curve defined over Fq, a point

P ∈ E(Fq) of order n, and a point Q ∈ E(Fq),
determine the integer m, 0 ≤ m ≤ n − 1, such

that Q = [m]P , provided that such an integer

exists.
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Let us describe the Pohlig-Hellman algorithm

which reduces the determination of m to the

determination of m modulo each of the prime

factors of n. An obvious consequence of this

algorithm is that to maintain security of a sys-

tem based on ECDLP, n should have a large

prime divisor.

The algorithm works in any finite abelian group

G. Let G has the order n divisible by a prime p

and suppose that we wish to solve the follow-

ing DLP: Q = mP . Then the problem can be

reduced to a subgroup of order p by solving

Q′ = n′Q = m0(n
′P ) = m0P

′,

where n′ = n/p, m ≡ m0 (mod p). Thus P ′ is
a point of order p. Solving this problem will

determine the value m0.
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The values of m modulo p2, p3, . . . , pc (where

pc is the largest power of p dividing n) can

be computed in the following way. Suppose

m ≡ m′ (mod pi) is known and m = mi + λpi

for some integer λ. Then

R = Q−miP = λ(piP ) = λS,

where R and S are known and S has order s =

n/pi. The value of λ mod p can be determined

just as m mod p was found above.

Continuing in this manner, by solving DLPs in

subgroups of order p, we eventually determine

m mod pc. After computing m modulo pα for

all prime divisor p of n, the true solution, num-

ber m, to the original DLP can be obtained

using the Chinese Remainder Theorem (CRT).
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Example: Given is the curve

E : y2 = x3 +71x+602

over F1009. The order of E(F1009) is 1060 =

22 · 5 · 53. Given are points P = (1,237), Q =

(190,271) on E(F1009). Solve ECDLP Q =

[m]P .

The point P has the order 530 = 2 · 5 · 53 in

the group E(F1009). Thus, we have n = 530

and by the Pohlig-Hellman algorithm we have

to compute m modulo 2, 5 and 53.

Modulo 2: Multiplying the points P and Q

by 530/2 = 265, we obtain the points P2 =

[265]P = (50,0) and Q2 = [265]Q = (50,0).

We get ECDLP

Q2 = (m mod 2)P2,

which clearly gives m ≡ 1 (mod 2).
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Modulo 5: Multiplying the points P and Q by

530/5 = 106, we obtain the points

P5 = [106]P = (639,160) and

Q5 = [106]Q = (639,849). Clearly, Q5 = −P5,

which implies m ≡ −1 ≡ 4 (mod 5).

Modulo 53: Now we multiply the points by

530/53 = 10. We obtain the points P53 =

[10]P = (32,737) and Q53 = [10]Q = (592,97).

Thus, we get EDLP in a group of order 53. We

will solve it later as an illustration of BSGS

method. The result is m ≡ 48 (mod 53).

The solution of the original problem Q = [m]P ,
za P = (1,237), Q = (190,271), is obtained
by solving the system of congruences

m ≡ 1 (mod 2), m ≡ 4 (mod 5), m ≡ 48 (mod 53).

By the Chinese Remainder Theorem, we get

m = 419.
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There are several known methods for solving

ECDLP which have complexity O(
√
n). Such

methods are the Pollard ρ-method and the baby

step - giant step (BSGS) method due to Shanks.

Pollard ρ-method is based on the birthday para-

dox. Namely, if we randomly choose elements

from a set of n numbered elements, we only

need to choose about
√
n elements until we get

a collision. This idea can be applied to solv-

ing DLP problem in a finite abelian group of

order n. We want to find x such that gx = h.

Consider random group elements of the form

gahb. If we find a collision, i.e. if gaihbi and

gajhbj represent the same group element, then

ai + bix ≡ aj + bjx (mod n), and we find x as

x = (aj − ai)(bi − bj)
−1 mod n.
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We will explain the BSGS method. This is a

method for a general finite abelian group G.

It has complexity O(
√
n), where #G = n. But

it requires also the storage of O(
√
n) group

elements.

Let P,Q ∈ G with Q = mP . By simple Eu-

clidean division we know m can be written as

m = ⌈
√
n⌉a+ b, where 0 ≤ a, b <

√
n.

The only problem is that the values of a and

b are not known. The equation Q = mP is

rewritten in the form

(Q− bP ) = a(⌈
√
n⌉P ).

It may seem like just an added complication,

but it allows us to perform space/time trade off.
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A table of “baby steps” is first computed. This

is a table of all values of

Rb = Q− bP, for b = 0,1, . . . , ⌈
√
n⌉ − 1.

This table should be sorted and stored in mem-

ory so that it can be efficiently searched.

After having computed “baby steps”, the “gi-

ant steps” are computed:

Sa = a(⌈
√
n⌉P ), za a = 0,1, . . . , ⌈

√
n⌉ − 1.

On each computation of a giant step it is checked

whether Sa occurs in the table. If it does, the

values of a and b are recovered. This proce-

dure must terminate before a reaches the value

⌈
√
n⌉.
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Example: Let us consider again the curve

E : y2 = x3 +71x+602

over F1009. After the application of the Pohlig-

Hellman algorithm, we arrived to ECDLP Q′ =
[m0]P

′, where Q′ = (592,97), P ′ = (32,737).

We know that the order of P ′ is 53. Since

⌈
√
53⌉ = 8, eight baby steps are required. So

we compute:

b Rb = Q′ − [b]P ′

0 (592,97)
1 (728,450)
2 (537,344)
3 (996,154)
4 (817,136)
5 (365,715)
6 (627,606)
7 (150,413)
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The giant steps a([8]P ′) are computed:

a Sa = [a]([8]P ′)
1 (996,855)
2 (200,652)
3 (378,304)
4 (609,357)
5 (304,583)
6 (592,97)

We see that a match is obtained with a =

6 and b = 0, which implies that m0 = 8a +

b = 48. (Note that already from a = 1 we

might conclude that S1 = −R3 and [8]P ′ =

−Q + [3]P ′, which again gives m ≡ −5 ≡ 48

(mod 53).)
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9. Lenstra’s elliptic curve factoring method

Pollard’s p− 1 factorization method, proposed
in 1974, is a special-purpose factorization al-
gorithm. Its starting point is Fermat’s little
theorem. Let n be a composite number and
p its unknown prime factor. Then ap−1 ≡ 1
(mod p) for gcd(a, p) = 1.

Moreover, am ≡ 1 (mod p) for any multiple of
p − 1. If we can find such multiple m, then
gcd(am − 1, n) will give us a factor (hopefully
nontrivial) of n. But, how we can find a mul-
tiple of p− 1 if we don’t know p? This can be
done if we somehow know that p− 1 has only
small prime factors (this is why the method
is “special-purpose”). We say that p − 1 is
smooth. Assume that all prime powers di-
viding p − 1 are ≤ B. Then we may take
m = lcm(1,2, . . . , B). In the worst case, when
p−1
2 is a prime, this method is not better than

simple trial division.
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The success of p−1 method depends on smooth-

ness of the number p − 1. There are variants

of this method which use smoothness of num-

bers p + 1, p2 + p + 1, p2 + 1 or p2 − p + 1.

But the most important modification of p − 1

method is Lenstra’s elliptic curve factorization

method (ECM), proposed in 1987. It replaces

the group F∗p of order p − 1 with the group

E(Fp), which order varies inside Hasse’s inter-

val [p+1−2
√
p, p+1+2

√
p], and thus we may

expect to find an elliptic curve over Fp with

sufficiently smooth order.

We will work with elliptic curves over the ring

Z/nZ. We may assume that gcd(n,6) = 1, so

we consider elliptic curves of the form

Ea,b : y2 = x3 + ax+ b,

where gcd(4a3 + 27b2, n) = 1. When n is a

prime, then there is exactly one point at infinity

on the curve. For composite n, we may have

more such points.
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Let us describe the basic steps in ECM.

- The choice of the elliptic curve:

We can randomly choose elements a, x, y ∈ Z/nZ
and then compute b = (y2 − x3 − ax) mod n.

Let g = gcd(4a3 + 27b2, n). If 1 < g < n, then

we are done, since we have found a nontrivial

factor of n. If g = n, then we have to choose

new a, x, y. If g = 1, then we have found an

elliptic curve over Ea,b over Z/nZ and a point

P = (x, y) on it.

- Let k = lcm(1,2, . . . , B), for suitably chosen

bound B. We may start with B = 10000, and

increase it latter if necessary.
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- We compute [k]P ∈ Ea,b(Z/nZ) according to

formula for the addition:

(x3, y3) = (λ2−x1−x2 mod n, λ(x1−x3)−y1 mod n),

where λ = (3x21 + a) · (2y1)−1 mod n if the

points are equal, and

λ = (y1 − y2)(x1 − x2)
−1 mod n, otherwise.

- If in the computation of [k]P we cannot com-

pute the sum of certain points because we can-

not compute d−1 since d has no inverse modulo

n, then we compute g = gcd(d, n). If g ̸= n,

then we have found a nontrivial factor of n.

- If the algorithm fails (i.e. we are able to

compute [k]P ), then we can increase the bound

B or choose new elliptic curve.
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Example: Factorize n = 209.

Let B = 3, so that k = 6. Let us choose the

elliptic curve

y2 = x3 +4x+9

and an obvious point on it P = (0,3). We

compute [6]P = [2](P + [2]P ). First we com-

pute [2]P . Corresponding λ is 4·6−1 = 140 mod

209, and we get [2]P = (163,169). Then

we compute [3]P = P + [2]P . Correspond-

ing λ is 166 · 163−1 = 60 mod 209, and we

have [3]P = (148,143). Finally, we compute

[6]P = [2]([3]P ). Corresponding λ is 90 ·77−1.

In an attempt to compute the inverse of 77

modulo 209, we get that the inverse does not

exist because gcd(77,209) = 11. Thus, we

conclude that the number 11 is a factor of

209. Indeed, 209 = 11 · 19.
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This algorithm we be successful if k is a mul-

tiple of #E(Fp), where p is a prime factor of

n. Indeed, in that case while computing the

point [k]P , the corresponding denominator will

be divisible by p, so it will not have an inverse

modulo n. Namely, in E(Zp) it will hold that

[k]P = O.

We can use elliptic curves E with large torsion

group over Q (and known point of infinite or-

der), as the torsion group will inject into E(Fp)
for all primes p of good reduction, and thus we

will have that #E(Q)tors divides #E(Fp). This

in turn makes the order of E(Fp) more likely

to be smooth (Montgomery, Atkin & Morain).

Recently, the analogous applications of ellip-

tic curves with large torsion and positive rank

over number fields of small degree are studied

(Brier & Clavier, Dujella & Najman).
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In estimating the complexity of ECM algorithm,

the crucial question is how to choose opti-

mally the bound B. Using the fact that the

orders #E(Fp) are almost uniformly distributed

in Hasse’s interval, it can be proved that the

optimal value is approximately

B = e(
√
2/2+ε)

√
log p log log p ,

which lead to complexity

e(
√
2+ε)

√
log p log log p .

In the worst case (when p = O(
√
n)), the com-

plexity is eO(
√
logn log logn). Hence, this is a

sub-exponential algorithm. Complexity is of

the same order as in QS, and it is worse then in

NFS. However, an important property of ECM

is that its complexity depends on the smallest

prime factor of n. This is not an advantage in

factorizing RSA modulus, i.e. number of the

form n = pq, where p and q are primes of the

same size.
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But in factorization of “random numbers”, ECM

often has the best performances, since such

numbers usually have some prime factor which

is significantly smaller than
√
n.

There are some famous factorizations obtained

by ECM, like finding 33-digits factor of Fer-

mat number 22
15

+ 1 (Crandall, van Halewyn,

1997), and 49-digit factor of Mersenne number

22071 − 1 (Zimmermann, 1998).
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10. Elliptic curve primality proving algo-

rithm

In the construction of almost all public key

cryptosystems one of the starting points is choos-

ing one or more large prime numbers. Thus it

is very important fact that there exist very effi-

cient primality tests which can be used for that

purpose. In particular, these test are much

more efficient than best known factorization

methods. All these tests start with Fermat’s

little theorem, which gives important property

of primes, but do not characterize them. Thus

some modifications are needed in order to con-

clude (with reasonable probability) that the

number which passes the test is indeed a prime.

99



Very efficient primality test is the Miller-Rabin
test. It combines two simple properties of
primes:
ap−1 ≡ 1 (mod p) if gcd(a, p) = 1;
x2 ≡ 1 (mod p) implies x ≡ ±1 (mod p).

Definition: Let n be an odd composite pos-
itive integer and n − 1 = 2s · t, with t odd. If
for an integer b it holds

bt ≡ 1 (mod n)

or there exists r, 0 ≤ r < s such that

b2
rt ≡ −1 (mod n),

then we say that n is a stong pseudoprime in
base b (n is spsp(b)).

Fact: An odd composite positive integer n is
spsp(b) for at most (n−1)/4 basis b, 0 < b < n.

Thus, if n passes Miller-Rabin primality tests
in k different basis, the probability that n is
composite is less than 1/4k.
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If an integer n passes several good primality

tests (like Miller-Rabin test for several different

bases), then we can be reasonably sure that

n is prime. For the most of applications in

cryptography (e.g. for choosing primes p and

q in RSA) this is fine. However, these tests do

not proved a proof that n is prime. We will now

discuss some methods for primality proving.

Theorem (Pocklington): Let s be a divisor

of n − 1 which is greater than
√
n. Assume

that there exists a positive integer a with the

following property

an−1 ≡ 1 (mod n),

gcd(a(n−1)/q − 1, n) = 1

for all prime divisors q of s. Then n is a prime.
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Proof: If n is composite, then it has a prime

factor p ≤
√
n. Let b = a(n−1)/s. Then

bs ≡ an−1 ≡ 1 (mod n),

and so bs ≡ 1 (mod p). We claim that s is the

order of b modulo p. Indeed, if a divisor q of

s satisfies bs/q ≡ 1 (mod p), then p divides n

and bs/q − 1, i.e. a(n−1)/q − 1, contrary to our

assumption that n and a(n−1)/q−1 are coprime.

From Fermat’s little theorem we have bp−1 ≡ 1

(mod p), and thus we conclude that s divides

p− 1. But this is impossible since s >
√
n, and

p ≤
√
n.
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A problem with the application of Pockling-

ton’s theorem is that it requires partial fac-

torization of the number n − 1. This number

n− 1 can be viewed as the order of the group

(Z/nZ)∗ (if n is prime). One idea (introduced

by Goldwasser and Killian in 1986) how to

overcome this problem is to replace (again) the

group (Z/nZ)∗ by the group E(Z/nZ), where E

is certain elliptic curve. Namely, with orders

of E(Z/nZ) we have much larger flexibility, so

we may expect to find some curve with order

which will be easy to factorize.

Theorem: Let E be an elliptic curve over

Z/nZ, where gcd(6, n) = 1 and n > 1, given by

the equation y2 = x3+ax+b. Let m be a posi-

tive integer with a prime factor q > (n1/4+1)2.

If there exists a point P ∈ E(Z/nZ) such that

[m]P = O and [m/q]P ̸= O,

then n is a prime.
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Proof: If n is composite, then it has a prime

factor p ≤
√
n. Consider the elliptic curve

E′ over Fp given by the same equation as E.

Let m′ be the order of the group E′(Fp). By

Hasse’s theorem

m′ ≤ p+1+2
√
p = (

√
p+1)2 ≤ (n1/4+1)2 < q.

Hence, gcd(m′, q) = 1, and there exists u ∈ Z
such that uq ≡ 1 (mod m′). Let P ′ ∈ E′(Fp)
be the point obtained from P by reducing the

coordinates modulo p. By the assumption of

the theorem, [m/q]P is well defined and ̸= O,

so we conclude that [m/q]P ′ ̸= O. But, on the

other hand we have

[m/q]P ′ = [uq·
m

q
]P ′ = [um]P ′ = [u]([m]P ′) = O.
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Example: Let us prove that n = 907 is prime.

Let E be the elliptic curve given by the equa-

tion y2 = x3 + 10x − 2 over Z/nZ. The or-

der of E(Z/nZ) is m = 923 = 71 · 13. Let us

take P = (56,62) and q = 71. Then [13]P =

(338,305) ̸= O and [923]P = [71]([13]P ) = O
(using algorithms for point multiplications ex-

plained before; note that NAF representation

are 13 = (1,0,−1,0,1) and

71 = (1,0,0,1,0,0,−1)).

Since 71 > (9071/4 + 1)2, we conclude that

907 is prime (assuming that we already know

that 71 is prime; otherwise we apply the same

method for n = 71).
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In practise, the main problem is to find an el-

liptic curve such that the order of E(Zn), that

is the number m from the theorem, has suffi-

ciently large prime factor. One possibility is to

choose curves randomly and then compute the

order by Schoof’s algorithm. To estimate the

chance of success, we should know something

about distribution of primes in the intervals of

the form

[x+1− 2
√
x, x+1+ 2

√
x].

However, at present we have only (unproved)

conjectures. It is believed that

π(x+1+ 2
√
x)− π(x+1− 2

√
x) > A

√
x

logx
,

for a constant A (motivated by the Prime Num-

ber Theorem), and this will imply that the ex-

pected number of operations in the Goldwasser-

Killian algorithm is O(log10 n).
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In 1993, Atkin and Morain proposed a vari-

ant of this method which uses elliptic curves

with complex multiplication with correspond-

ing imaginary quadratic field Q(
√
−d). For such

curves E it is known that if 4p = x2+dy2, then

the order of E(Fp) is p+1± x.

This method is efficient for numbers with up

to 1000-digits.

Let us mention that in 2002, Agrawal, Kayal

and Saxena discovered the first (uncondition-

ally) polynomial algorithm for primality prov-

ing, now called AKS algorithm.
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