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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set
{%, %, %, %} has the following property: the product of any two of its
distinct elements increased by 1 is a square of a rational number (see [5]).
Fermat first found a set of four positive integers with the above property,
and it was {1, 3,8,120}.

Let n be an integer. A set of positive integers {x1,x9,..., Ty} is said
to have the property D(n) if for all 1 < i < j < m the following holds:
T +mn = yi?j, where y;; is an integer. Such a set is called a Diophantine
m-tuple.

Davenport and Baker [4] showed that if d is a positive integer such that
the set {1,3,8,d} has the property of Diophantus, then d has to be 120.
This implies that the Diophantine quadruple {1,3,8,120} cannot be ex-
tended to the Diophantine quintuple with the property D(1). Analogous re-
sult was proved for the Diophantine quadruple {2, 4, 12,420} with the prop-
erty D(1) [17], for the Diophantine quadruple {1,5,12,96} with the prop-
erty D(4) [15] and for the Diophantine quadruples {k—1, k+1, 4k, 16k3—4k}
with the property D(1) for almost all positive integers k [9].

Euler proved that every Diophantine pair {z1,z2} with the property
D(1) can be extended in infinitely many ways to the Diophantine quadruple
with the same property (see [12]). In [6] it was proved that the same
conclusion is valid for the pair with the property D(I?) if the additional
condition that xiz9 is not a perfect square is fulfilled.

Arkin, Hoggatt and Strauss [3] proved that every Diophantine triple
with the property D(1) can be extended to the Diophantine quadruple.
More precisely, if z;x; +1 = y?j, then we can set x4 = 1 + 22 + x3 +
2x1x973 + 2y12Y13Yy23. For the Diophantine quadruple obtained in this way,
they proved the existence of a positive rational number x5 with the property
that z;x5 4+ 1 is a square of a rational number for ¢ = 1, 2, 3, 4.

Using this construction, in [2, 7, 8, 11] some formulas for Diophantine
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quintuples in the terms of polynomials, Fibonacci, Lucas, Pell and Pell-
Lucas numbers were obtained.

In the present paper we prove that for all positive rational numbers
q,%1,%2, 73,24 such that x;x; + P = yfj, yij; € Q, for 1 <1 < j < 4,
and x1xox3x4 # q*, there exists a positive rational number z5 such that
x;T5 + ¢2 is a square of a rational number for i = 1,2,3,4. As a corollary
we get the result that for all Diophantine quadruples {x1,x2, x3, x4} with
the property D(1) there exists a rational number x5 such that z;z5 + 1 is
a square of a rational number for ¢ = 1,2, 3,4.

2 Extension of Diophantine quadruples

THEOREM 1 Let q,x1,22,73,24 be rational numbers such that x;x; +
@ = y?j, Yij € Q, for all1 <i < j < 4. Assume that z1x27374 # ¢*. Then
the rational number x5 = A/B, where
A = ¢*12y10013Y14123Y2aY34 + qr1T2324(T1 + T2 + T3 + T4)

+ 2q3(x1x2x3 + X1T2T4 + T1T3T4 + 1’2%3334) + q5(x1 + a9 +x3 + :1:4)] ,

B = (z129w324 — ¢*)?,

has the property that x;xs + ¢* is a square of a rational number for i =
1,2,3,4. To be more precise, for i € {1,2,3,4} it holds:
TiYikY51Ykl + qYijYikYil )2

r1220324 — ¢

i

zivs + ¢ = (¢

where {i,7,k, 1} ={1,2,3,4}.
Proof. Let i€ {1,2,3,4} and {i,7,k,l} ={1,2,3,4}. Then we have:
(z1@2a324 — ¢*)* (235 + °)

= 2¢°Ty12013Y14Y23Y24Y34 + ¢ 12234 (21 + T2 + 23 + T4)
+ 22;¢% (21073 4+ T12074 + T1T3T4 + ToT3T4)
+ 2iq° (21 + T2 + 23 + 24) + Crivsa3e] — 2¢°T wow37s + ¢

= ¢*[2qmiy1213Y14Y23Y24Y34 + CriwjeRm (2 + 25 + T) + 27)
+ 2q4:c?(:1cjxk +xjx; + xpay) + 2q4xix]~xk$l + 52?2
+ q6(azz~xj + xixg + 7)) + x?x?mzx? — 2q4ximja:ka:l + ¢

= ¢*[2qziy12013Y14Y23Y24Y34 + 23 (257 + ¢°) (220 + ) (Tps + ¢°)
+ @ (wiwj + ) (@iwy + ) (@i + ¢°))]

= ¢*(2qziy12913Y14Y23Y24Y34 + m?yfky?lyil + qzyij?kyfl)

= [q(@iyryiym + qiyieya))
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which proves the theorem. [ |

Since the signs of y;; are arbitrary, we have two choices for x5. Let
acgr and x5 denote these two numbers, and let xgr be the number which
corresponds to the case where all y;; are nonnegative.

COROLLARY 1 Let {x1,x9,x3,24} C N be the set with the property
D(1). Then there exists a rational number xz, 0 < x5 < 1, such that
xixs + 1 is a square of a rational number fori=1,2,3,4.

Proof. We claim that the number x;, obtained by applying the con-
struction from Theorem 1 to the set {x1,x2,x3, x4}, has the desired prop-
erty. Indeed, it is sufficient to prove that z7 < 1. Let us introduce the
following notation:

o1 = 21 +x2+ 23+ 24

09 = T1X2 + X1T3 + T1X4 + T2T3 + TaXy + T3T4

03 = T122%3 + T12X2T4 + T123T4 + T2T374

04 — X1X2X3T4

X = 0104+ 203+ 01

Y = y12y13Y14Y23Y24Y34 -
2Y + X

The proof that x;r = (+1)2 < 1 is completed by showing that
04 —
2X < (04 —1)* and 4Y < (04 —1)2. (1)

Without loss of generality we can assume that z; < xo < x3 < z4. If
x1 = 1, then x5 # 2. Therefore, zo > 3, 3 > 4 and x4 > 5. Hence o4 > 60.
Furthermore, from
1 1 1 1 13
- - + <=<
T1X2X3 X1T2X4 T1X3T4 ToI3X4 60

=

it follows that 52 < 407 < o4. In the same manner we can see that
59 < 09 < 04 and 107 < 03 < 204 (see also [12]). Hence

2
1
(04—1)2—2X>UZ—204+1—%—804—%:§(ai—2104+2)>0

(since o4 > 60). To get the second inequality from (1), we note that

Y? = (1'1.%'2 + 1)(1’1.%'3 + 1)(1’1.%'4 + 1)(1’2.%‘3 + 1)(372.%'4 + 1)(373.%'4 + 1)
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= O'Z) + 0’20’2 — UZ + 010304 + 0%04 — 20904 + a§ —o4+o0103+09+1

3 3 N 2 o3
<(74"‘0'4—0'4+?+T6—1180'4+4U4—U4+?+U4+1
41 7
Therefore,

(o4 —1)* = 16Y2
> 0] — 403 + 607 — 4oy + 1 — 4103 — 5607 + 188804 — 16
= o — 4503 — 5007 + 188404 — 15> 0

(since o4 > 60), which completes the proof. |

COROLLARY 2 Let q,x1,x2,x3 be rational numbers such that a:ixj—f—qQ =
Y%, yi; €Q forall 1 <i < j<3. Let

T4 = [2y12Y13Y03 + 2710023 + ¢* (21 + 29 + 73)] /47,

S dy12y13y23 (123 + Yi2vy13) (T2y13 + Y12Y23) (T3Y12 + Y13Y23)
> (z1227374 — ¢*)?

Then the set {x1,x2,x3, x4, x5} has the property that the product of its any
two distinct elements increased by q* is equal to the square of a rational
number. In the notation of Theorem 1, we have

A3 Yy12Y13Y14Y23Y24Y34
5= — 12
(z1722374 — ¢*)

Proof. Let z1 = x1, 29 = x3, 23 = w3, 24 = 0. Then the rational num-
bers z1, 29, 23, z4 satisfy the conditions of Theorem 1, and its application
gives us the number

25 = [2y12913Y03 + 2212273 + ¢* (21 + 72 + 73)] /42 .

Set z4 = z5. We can now apply Theorem 1 on the numbers x1, x2, x3, 4.

Let x5 be the number which is obtained by this construction. Observe that,
by Theorem 1, for all i € {1,2,3}

qQYis = TiYjk + YijYik » (2)
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where {i,7,k} = {1,2,3}. Let us introduce the following notation:

Y1 = x1+ 29+ 73

Yo = x172+ 1173 + T23
Y3 = T1T23
V= y12913Y23

W = y14y21Y3a .
We have
V? = (2123 + ¢°) (w123 + ¢*) (2273 + ¢°) = 3 + ¢*E1 85 + ¢ B2 + ¢°
From (2) it follows that

W = (21923 + y12y13) (22013 + Y12y23) (T3Y12 + Y13Y23)
=452 43422103 + 2¢*50 + 0 + V(433 + ¢°%).

Now it is easy to check that, in notation of Corollary 1,
gtoros +2¢803 4+ g8y =23V IV . (3)
Consequently,

4°VIW
(v1@ox324 — ¢*)?
4¢3 Y12Y13Y14Y23Y24Y34
(z1702314 — ¢*)?
4y12y13Y23(1Y23 + Y12913) (L2113 + Y12923) (£3Y12 + Y13Y23)
(r1200314 — ¢*)?

Irs =

Let us now consider the question when one or both (since 27 and xz
can be equal) of the numbers a:gr and zy will be equal to zero. For the
obvious reason, such extension of a Diophantine quadruple we will call
trivial. We will see that the answer to this question is closely connected to
the construction of Corollary 2. From now on, we assume that ¢ # 0.

PROPOSITION 1 In the notation of Theorem 1, we have x5+ =x5 =0
if and only if there exist 1 < i < j < 4 such that x;x; = —q¢% and Tit+x; =
x + xy, where {i,j,k,1} ={1,2,3,4}.



6 A. Dujella

Proof. From x; = x5 we conclude that there exist 1 <i < j <4 such
that y;; = 0, i.e. x;x; = —q?. Substituting this into expression for x5 we
obtain

C.IQ(éUz' +a; —x — ;)
TRT + ¢2

(4)

Iy =

Consequently, the condition x5 = 0 implies that x; + z; = x3 + ;.
Conversely, suppose that x1, 9, 3, x4 satisfy the condition of the propo-
sition. Then y;; = 0, and (4) implies that 23 = 25 = 0. |

PROPOSITION 2 In the notation of Theorem 1, we have 0 € {x3, x5}
if and only if there exists i € {1,2,3,4} such that

zi = 2yjeyiyr + 2v5282 + (2 + 2 + 21)] /42
where {i,j,k, 1} ={1,2,3,4}.

Proof. We can assume that y;; # 0 since otherwise the assertion of the
proposition follows from Proposition 1. If x5 = 0, then z;z5 + ¢° = ¢°
for i = 1,2,3,4. Hence, if 0 € {27,253}, then Theorem 1 implies that for
appropriate choice of the sign of y;; we have

TRyl + QYiYinya = £(v1327374 — %),
where {i,j,k, 1} = {1,2,3,4}. Hence, there is no loss of generality is as-
suming that

T1Y23Y24Y34 T qY12Y13Y14 = T2Y13Y14Y34 + qY12Y23Y24 -

This gives (x1y34 — qy12)y23Yy24 = (T2y34 — qU12)Y13Y14- Set T1yz4 — qyi2 =
ay13y14. Then woyzs — qy12 = ay23y24, and so

a(x1Y23Y24Y34 + qY12Y13Y14)
= 21y34(22y34 — qu12) + qY12(T1Y34 — qY12)
= m1x2y§4 - q2yf2 = T1X223T4 — q4 .
We thus get « = +1 and z1y34 — qy12 = £Y13y14. Squaring this relation

we obtain

33%1’3964 + q%% + q29€1$2 + q4 —2qr1y12Y34 = 95%503904 + q2x1x3 +q*w1my + q4 )
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and (if 1 # 0) 2y12y34 = q(x1 + x2 — x3 — x4). Squaring again we obtain
the quadratic equation in x4:

?23 — 224]q% (21 + 22 + 73) + 2717973)
+ @ (22 + 2% + 23 — 27129 — 20173 — 27973 — 4¢%) =0,

with the solutions
xy = [¢*(21 + 22 + 3) + 2717223 + 2y19Y13Y23]/¢° - (5)

We have been working under assumption that z; # 0. Now suppose that
1 = 0. In the same manner, using Corollary 2, it can be proved that
x1 = 0 implies

T4 = T2 + x3 £ Y23,

which is exactly the relation (5) for 21 = 0.
This proves one implication of the proposition. The opposite implica-
tion is direct consequence of the relation (3). ]

3 Examples

EXAMPLE 1 Let us first show that the condition zixex3zs # ¢* from
Theorem 1 is not superfluous. Indeed, the set {25600, 50625, 82944, 518400}
has the property D(86400%) and

25600 - 50625 - 82944 - 518400 = 86400%.

As an illustration of the situation from Proposition 1 let us adduce the
set {—25,25, —24, 24} with the property D(625) and the set {—1,64,48,15}
with the property D(64). In both cases the construction from Theorem 1
gives x; =x5 =0.

From [10, (13)], for a = 2 and k = 3, we obtain the Diophantine
quadruple {2, 20, 44,72} with the property D(81). It is easy to check that
this quadruple does not satisfy the conditions of Proposition 2. There-
fore the numbers 27 and x; are different from 0. Indeed, 3 = %
and x5 = —%égg%g. Using x;, we obtain the Diophantine quintuple
{338, 3380, 4860, 7436, 12168} with the property D(39%).

If we apply the construction from Theorem 1 to the original set of

3 17 105 5= 549120 5 g = —26880

: i3 ;
Diophantus {13, 75, 7 7g  We obtain zj = 2505 TOTER

The definition of a Diophantine m-tuple can be extended to the subsets
of Q. Let ¢ be a rational number. We call a set A = {x1,22,...,2m} C
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Q\{0} a (rational) Diophantine m-tuple with the property D(q) if the prod-
uct of any two distinct elements of A increased by ¢ is equal to the square
of a rational number. The construction of the rational Diophantine quintu-
ple with the property D(1) which extends the given Diophantine triple was
described in [3]. That construction is equivalent to the construction from
Corollary 2. But Theorem 1 makes possible the extension of the Diophan-
tine quadruples which are not of the form {x1, x9, 3, z4} from Corollary 2.
One such quadruple is the set {2,20,44, 72} from Example 1. Let us now
examine two ways for generation of such Diophantine quadruples.

EXAMPLE 2 Let {x1,x9,z3, 24} C Q be an arbitrary set with the prop-
erty D(q?) and let 25 € Q be the number which is obtained by applying
Theorem 1 to this set. Then the set {x2,x3, x4, 25} also has the property
D(q?), and we can apply Theorem 1 again. In this way we obtain x5 € Q
such that the set {xs, 23,24, 75, 26} has the property D(q?).

For example, if 21 = k—1, 9 = k+1, 23 = 4k and x4 = 16k> — 4k, then
the set {x1,x2,r3, x4} has the property D(1) ([6, p. 22]) and we obtain

 4k(2k — 1)(2k + 1)(4k* — 2k — 1)(4k? + 2k — 1)(8k? — 1)
= (64k6 — 80k + 16k2 — 1)2 ’
and zg = P(k)/Q(k), where

P(k) = (8k® —4k* + 1)(8K® 4 4k* — 4k — 1)(8K> — 12k* + 1)
x (8% 4 4Kk3 — 8k? — k + 1)(32k* — 8k3 + 28Kk% + 3)
x (32k* + 8k3 — 12k% 4+ 1)(32k* + 24K% — 12k — 4k + 1)
x (32k* +40k> + 4k — 4k + 1),

Q(k) = (131072k™ + 131072k% — 184320k12 — 180224k + 9625610
+ 86016k — 26880k% — 18432k" + 4480k5 + 1792k — 480k
— 64k3 + 32k% — 1)%.

It turns out that this factorization of the numerator of xg is not accidental.
Namely, it can be checked that, in notation of Theorem 1, 24 = P/Q, where

P = ¢*(y12y13y14 + qy12Y13 + qy12Y23 + qy13Y23)

(y12y13Y14 + QY1213 — qY12Y23 — qY13Y23)

(Y12913Y14 — QY1213 + qY12Y23 — qY13Y23)

(V12913914 — qY12913 — qY12Y23 + qY13Y23) (Y23Y24 + Y23Y34 + Y24Y34)
(y23Y24 + Y23Y34 — Yoay3a) (Y23y24 — Y23Y34 + Y24Y34)

(

=49
X
X
X
X
X (—Y23Y24 + Y2334 + Y24Y34) ,
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Q = o] (42T3T4Y12Y13Y14Y23Y24Y34 — T TITIT + 2000120734 — ¢°)*

PROPOSITION 3 Let x1, x2, and x3 be rational numbers such that the
denominator of
8(xs — x1 — wo) (w1 + x3 — w2) (w2 + 23 — 1)
(22 + 2% + 23 — 22129 — 22173 — 27973)2

Ty =
is different from 0. Then x1x4 + 1, xoxg + 1 and xz3x4 + 1 are squares of

rational numbers.

Proof. It follows immediately that

l’% — 2xox3 + .Z‘% — 31}% + 2172 + 22173 |9
9:% + x% + LL’% — 2x1x9 — 20123 — 22973

:E11‘4+1:(

and analogous relations hold for xox4 + 1 and z3z4 + 1. [ ]

EXAMPLE 3 Let us observe that the set {x1,x2,23} in Proposition 3
does not need to have the property D(1). Let us take for example z; =
Font1, v2 = Fopyg and x3 = Fb,ys. Then the set {z1,x2,z3} has the
property D(—1) for every positive integer n (see [13, 14]). Proposition
3 implies that there exists a rational number x5 with the property that
rixg + 1,7 =1,2,3, are squares of rational numbers. We will show that in
this case the number x4 is an integer. Indeed,

a:% + x% + m% — 2x1T9 — 22123 — 2973
= (z1 — x93 + 23)% — 4z 23
= [Fans1 = Fongs + (3Fant3 — Fony1)]” — 4Fon11 Fonys
= A(F3 5 — Pony1Fopi5) = —4.

Hence,

8
Ta= 16 2F9 49 - 2F5n 13- 2F5, 14 = 4F5 10 F0n 1 3F0n 14 .

ExaMPLE 4 If zq20 +1 = y%Z and x3 = x1 + 22 + 2y12, then the
set {1, z2,z3} has the property D(1). If we apply the construction from
Proposition 3 to this set we obtain

xg = dy12(x1 + y12) (2 + y12) -

If we apply the construction from Corollary 2 to the set {xz1,x2,z3} we
obtain exactly the same result.
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ExXAMPLE 5 Let 1 = 1, 9 = 3 and x3 = 120. Then proposition 3

gives T4 = 83334691628. The set {x1,z2, 23,24} has the property D(1) and we

can apply the construction from Theorem 1. We obtain:

x+___3985166705520-4812 x____426360-6014392
5 5 7 4812.6014392

6014392 - 4812 ’

It turns out that this cancelation is not accidental. Namely, let {x1, x2, x5}
be the arbitrary set with the property D(1), let x4 be the number which
is obtained by applying Proposition 3 to this set, and let $5+ and x5
be the numbers which are obtained by applying Theorem 1 to the set
{z1, 22,23, 24}. Then

— a+b)(a—0bed
\/xlx;-i-l © A/ x1xy -i-l:]( ing ) |,

where

a = x1yss|rd(droxz+1) — 221 (vo+23) (21203 —1) — (323 +220234+323)],
b = yioyis[ri (—daows — 3) + 231 (w2 + 23) (23223 + 1) + (22 — 73)%],

¢ = (z1+ 22+ 33)% — A(z12273 — Y12Y13Y23)° + 4,

d = 4(z12223 + Yray13y2s)’ — (21 + 22 + 23)° — 4.

For x1 =1, z9 = 3 and z3 = 120, we get ¢ =4 -481 and d = 4 - 601439.

4 Some open problems

One question still unanswered is whether there exists a (positive in-
teger) Diophantine quintuple with the property D(1). Corollary 1 shows
that if such a quintuple exists it cannot be obtained by the construction
from Theorem 1. Let us mention that the analogous result for the sets
with the property D(I?), where [ > 1, does not hold. For example, if we
apply the construction from Theorem 1 to the quadruples {4,21,69,125}
and {7,12,63,128} with the property D(400), we obtain 3 = 384, z5 =
—4(1)?27090 and x; = 375, x5 = —%, respectively. Hence, the sets
{4,21,69,125,384} and {7,12,69,125,375} are Diophantine quintuples
with the property D(400).

One may ask which is the least positive integer n;, and which is the
greatest negative integer no, for which there exists a Diophantine quintuple
with the property D(n;), i = 1,2. Certainly n; < 256 and ny > —255, since
the sets {1, 33,105, 320, 18240} and {5, 21,64, 285,6720} have the property
D(256), and the set {8,32,77,203,528} has the property D(—255).
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In present paper we have considered the quintuples with the property
D(q), where ¢ was a square of a rational number. However, the last set
with the property D(—255) indicates that there exist quintuples with the
property D(q), where ¢ is not a perfect square (see also [9, 16]). Thus we
came to the following open problem: For which rational numbers g there
exists a rational Diophantine quintuple with the property D(q)? It follows
easily from [6, Theorem 5] that for every rational number ¢ there exists a
rational Diophantine quadruple with the property D(q).

At present it is not known whether there exists a rational number ¢ # 0
such that there exists a rational Diophantine sextuple with the property
D(q). In [1], some rational ”sextuples” with the property D(1) were ob-
tained, but all of them have two equal elements. Thus, they are actually
quintuples with the additional property that x? + 1 is a perfect square.
There exists also a rational Diophantine quintuple {z1,...,z5} with the
property D(1) such that 23+ 1, 341 and 2% + 1 are perfect squares. How-
ever, the question of the existence of Diophantine sextuples is still open.
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