On Diophantine quintuples

ANDREJ DUJELLA (Zagreb, Croatia)

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\}$ has the following property: the product of any two of its distinct elements increased by 1 is a square of a rational number (see [5]). Fermat first found a set of four positive integers with the above property, and it was $\{1, 3, 8, 120\}$.

Let n be an integer. A set of positive integers $\{x_1, x_2, \ldots, x_m\}$ is said to have the property D(n) if for all $1 \le i < j \le m$ the following holds: $x_i x_j + n = y_{ij}^2$, where y_{ij} is an integer. Such a set is called a Diophantine *m*-tuple.

Davenport and Baker [4] showed that if d is a positive integer such that the set $\{1, 3, 8, d\}$ has the property of Diophantus, then d has to be 120. This implies that the Diophantine quadruple $\{1, 3, 8, 120\}$ cannot be extended to the Diophantine quintuple with the property D(1). Analogous result was proved for the Diophantine quadruple $\{2, 4, 12, 420\}$ with the property D(1) [17], for the Diophantine quadruple $\{1, 5, 12, 96\}$ with the property D(4) [15] and for the Diophantine quadruples $\{k-1, k+1, 4k, 16k^3-4k\}$ with the property D(1) for almost all positive integers k [9].

Euler proved that every Diophantine pair $\{x_1, x_2\}$ with the property D(1) can be extended in infinitely many ways to the Diophantine quadruple with the same property (see [12]). In [6] it was proved that the same conclusion is valid for the pair with the property $D(l^2)$ if the additional condition that x_1x_2 is not a perfect square is fulfilled.

Arkin, Hoggatt and Strauss [3] proved that every Diophantine triple with the property D(1) can be extended to the Diophantine quadruple. More precisely, if $x_ix_j + 1 = y_{ij}^2$, then we can set $x_4 = x_1 + x_2 + x_3 + 2x_1x_2x_3 + 2y_{12}y_{13}y_{23}$. For the Diophantine quadruple obtained in this way, they proved the existence of a positive rational number x_5 with the property that $x_ix_5 + 1$ is a square of a rational number for i = 1, 2, 3, 4.

Using this construction, in [2, 7, 8, 11] some formulas for Diophantine

quintuples in the terms of polynomials, Fibonacci, Lucas, Pell and Pell-Lucas numbers were obtained.

In the present paper we prove that for all positive rational numbers q, x_1, x_2, x_3, x_4 such that $x_i x_j + q^2 = y_{ij}^2$, $y_{ij} \in \mathbf{Q}$, for $1 \le i < j \le 4$, and $x_1 x_2 x_3 x_4 \ne q^4$, there exists a positive rational number x_5 such that $x_i x_5 + q^2$ is a square of a rational number for i = 1, 2, 3, 4. As a corollary we get the result that for all Diophantine quadruples $\{x_1, x_2, x_3, x_4\}$ with the property D(1) there exists a rational number x_5 such that $x_i x_5 + 1$ is a square of a rational number for i = 1, 2, 3, 4.

$\mathbf{2}$ Extension of Diophantine quadruples

THEOREM 1 Let q, x_1, x_2, x_3, x_4 be rational numbers such that $x_i x_j +$ $q^2 = y_{ij}^2, y_{ij} \in \mathbf{Q}$, for all $1 \le i < j \le 4$. Assume that $x_1 x_2 x_3 x_4 \neq q^4$. Then the rational number $x_5 = A/B$, where

 $A = q^{3}[2y_{12}y_{13}y_{14}y_{23}y_{24}y_{34} + qx_{1}x_{2}x_{3}x_{4}(x_{1} + x_{2} + x_{3} + x_{4})]$ + $2q^{3}(x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4} + x_{2}x_{3}x_{4}) + q^{5}(x_{1} + x_{2} + x_{3} + x_{4})],$

$$B = (x_1 x_2 x_3 x_4 - q^4)^2 \,,$$

has the property that $x_i x_5 + q^2$ is a square of a rational number for i =1, 2, 3, 4. To be more precise, for $i \in \{1, 2, 3, 4\}$ it holds:

$$x_i x_5 + q^2 = \left(q \frac{x_i y_{jk} y_{jl} y_{kl} + q y_{ij} y_{ik} y_{il}}{x_1 x_2 x_3 x_4 - q^4}\right)^2,$$

where
$$\{i, j, k, l\} = \{1, 2, 3, 4\}$$
.
Proof. Let $i \in \{1, 2, 3, 4\}$ and $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Then we have:
 $(x_1x_2x_3x_4 - q^4)^2(x_ix_5 + q^2)$
 $= 2q^3x_iy_{12}y_{13}y_{14}y_{23}y_{24}y_{34} + q^4x_1x_2x_3x_4x_i(x_1 + x_2 + x_3 + x_4)$
 $+ 2x_iq^6(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)$
 $+ x_iq^8(x_1 + x_2 + x_3 + x_4) + q^2x_1^2x_2^2x_3^2x_4^2 - 2q^6x_1x_2x_3x_4 + q^{10}$
 $= q^2[2qx_iy_{12}y_{13}y_{14}y_{23}y_{24}y_{34} + q^2x_i^2x_jx_kx_l(x_i + x_j + x_k + x_l)$
 $+ 2q^4x_i^2(x_jx_k + x_jx_l + x_kx_l) + 2q^4x_ix_jx_kx_l + q^6x_i^2$
 $+ q^6(x_ix_j + x_ix_k + x_ix_l) + x_i^2x_j^2x_k^2x_l^2 - 2q^4x_ix_jx_kx_l + q^8]$
 $= q^2[2qx_iy_{12}y_{13}y_{14}y_{23}y_{24}y_{34} + x_i^2(x_jx_k + q^2)(x_jx_l + q^2)(x_kx_l + q^2)$
 $+ q^2(x_ix_j + q^2)(x_ix_k + q^2)(x_ix_l + q^2)]$
 $= q^2(2qx_iy_{12}y_{13}y_{14}y_{23}y_{24}y_{34} + x_i^2y_{jk}^2y_{jl}^2y_{kl}^2 + q^2y_{ij}^2y_{ik}^2y_{il}^2)$
 $= [q(x_iy_jky_{jl}y_{kl} + qy_{ij}y_{ik}y_{il})]^2$,

which proves the theorem.

Since the signs of y_{ij} are arbitrary, we have two choices for x_5 . Let x_5^+ and x_5^- denote these two numbers, and let x_5^+ be the number which corresponds to the case where all y_{ij} are nonnegative.

COROLLARY 1 Let $\{x_1, x_2, x_3, x_4\} \subset \mathbf{N}$ be the set with the property D(1). Then there exists a rational number x_5 , $0 < x_5 < 1$, such that $x_ix_5 + 1$ is a square of a rational number for i = 1, 2, 3, 4.

Proof. We claim that the number x_5^+ , obtained by applying the construction from Theorem 1 to the set $\{x_1, x_2, x_3, x_4\}$, has the desired property. Indeed, it is sufficient to prove that $x_5^+ < 1$. Let us introduce the following notation:

 $\begin{aligned} \sigma_1 &= x_1 + x_2 + x_3 + x_4 \\ \sigma_2 &= x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 \\ \sigma_3 &= x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 \\ \sigma_4 &= x_1 x_2 x_3 x_4 \\ X &= \sigma_1 \sigma_4 + 2 \sigma_3 + \sigma_1 \\ Y &= y_{12} y_{13} y_{14} y_{23} y_{24} y_{34} \,. \end{aligned}$

The proof that $x_5^+ = \frac{2Y + X}{(\sigma_4 - 1)^2} < 1$ is completed by showing that

$$2X < (\sigma_4 - 1)^2$$
 and $4Y < (\sigma_4 - 1)^2$. (1)

Without loss of generality we can assume that $x_1 < x_2 < x_3 < x_4$. If $x_1 = 1$, then $x_2 \neq 2$. Therefore, $x_2 \geq 3$, $x_3 \geq 4$ and $x_4 \geq 5$. Hence $\sigma_4 \geq 60$. Furthermore, from

$$\frac{1}{x_1 x_2 x_3} + \frac{1}{x_1 x_2 x_4} + \frac{1}{x_1 x_3 x_4} + \frac{1}{x_2 x_3 x_4} \le \frac{13}{60} < \frac{1}{4}$$

it follows that $52 \leq 4\sigma_1 < \sigma_4$. In the same manner we can see that $59 \leq \sigma_2 < \sigma_4$ and $107 \leq \sigma_3 < 2\sigma_4$ (see also [12]). Hence

$$(\sigma_4 - 1)^2 - 2X > \sigma_4^2 - 2\sigma_4 + 1 - \frac{\sigma_4^2}{2} - 8\sigma_4 - \frac{\sigma_4}{2} = \frac{1}{2}(\sigma_4^2 - 21\sigma_4 + 2) > 0$$

(since $\sigma_4 \ge 60$). To get the second inequality from (1), we note that

$$Y^{2} = (x_{1}x_{2}+1)(x_{1}x_{3}+1)(x_{1}x_{4}+1)(x_{2}x_{3}+1)(x_{2}x_{4}+1)(x_{3}$$

$$\begin{split} &= \sigma_4^3 + \sigma_2 \sigma_4^2 - \sigma_4^2 + \sigma_1 \sigma_3 \sigma_4 + \sigma_1^2 \sigma_4 - 2\sigma_2 \sigma_4 + \sigma_3^2 - \sigma_4 + \sigma_1 \sigma_3 + \sigma_2 + 1 \\ &< \sigma_4^3 + \sigma_4^3 - \sigma_4^2 + \frac{\sigma_4^2}{2} + \frac{\sigma_4^2}{16} - 118\sigma_4 + 4\sigma_4^2 - \sigma_4 + \frac{\sigma_4^2}{2} + \sigma_4 + 1 \\ &= \frac{41}{16}\sigma_4^3 + \frac{7}{2}\sigma_4^2 - 118\sigma_4 + 1 \,. \end{split}$$

Therefore,

$$\begin{aligned} (\sigma_4 - 1)^4 - 16Y^2 \\ > \sigma_4^4 - 4\sigma_4^3 + 6\sigma_4^2 - 4\sigma_4 + 1 - 41\sigma_4^3 - 56\sigma_4^2 + 1888\sigma_4 - 16 \\ = \sigma_4^4 - 45\sigma_4^3 - 50\sigma_4^2 + 1884\sigma_4 - 15 > 0 \end{aligned}$$

(since $\sigma_4 \ge 60$), which completes the proof.

COROLLARY 2 Let q, x_1, x_2, x_3 be rational numbers such that $x_i x_j + q^2 = y_{ij}^2$, $y_{ij} \in \mathbf{Q}$ for all $1 \le i < j \le 3$. Let

$$x_4 = \frac{[2y_{12}y_{13}y_{23} + 2x_1x_2x_3 + q^2(x_1 + x_2 + x_3)]}{q^2},$$

$$x_5 = \frac{4y_{12}y_{13}y_{23}(x_1y_{23} + y_{12}y_{13})(x_2y_{13} + y_{12}y_{23})(x_3y_{12} + y_{13}y_{23})}{(x_1x_2x_3x_4 - q^4)^2}$$

Then the set $\{x_1, x_2, x_3, x_4, x_5\}$ has the property that the product of its any two distinct elements increased by q^2 is equal to the square of a rational number. In the notation of Theorem 1, we have

$$x_5 = \frac{4q^3y_{12}y_{13}y_{14}y_{23}y_{24}y_{34}}{(x_1x_2x_3x_4 - q^4)^2}$$

Proof. Let $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_3$, $z_4 = 0$. Then the rational numbers z_1, z_2, z_3, z_4 satisfy the conditions of Theorem 1, and its application gives us the number

$$z_5 = [2y_{12}y_{13}y_{23} + 2x_1x_2x_3 + q^2(x_1 + x_2 + x_3)]/q^2$$

Set $x_4 = z_5$. We can now apply Theorem 1 on the numbers x_1, x_2, x_3, x_4 . Let x_5 be the number which is obtained by this construction. Observe that, by Theorem 1, for all $i \in \{1, 2, 3\}$

$$qy_{i4} = x_i y_{jk} + y_{ij} y_{ik} \,, \tag{2}$$

4

where $\{i, j, k\} = \{1, 2, 3\}$. Let us introduce the following notation:

$$\begin{split} \Sigma_1 &= x_1 + x_2 + x_3 \\ \Sigma_2 &= x_1 x_2 + x_1 x_3 + x_2 x_3 \\ \Sigma_3 &= x_1 x_2 x_3 \\ V &= y_{12} y_{13} y_{23} \\ W &= y_{14} y_{24} y_{34} \,. \end{split}$$

We have

$$V^{2} = (x_{1}x_{2} + q^{2})(x_{1}x_{3} + q^{2})(x_{2}x_{3} + q^{2}) = \Sigma_{3}^{2} + q^{2}\Sigma_{1}\Sigma_{3} + q^{4}\Sigma_{2} + q^{6}.$$

From (2) it follows that

$$q^{3}W = (x_{1}y_{23} + y_{12}y_{13})(x_{2}y_{13} + y_{12}y_{23})(x_{3}y_{12} + y_{13}y_{23})$$

= $4\Sigma_{3}^{2} + 3q^{2}\Sigma_{1}\Sigma_{3} + 2q^{4}\Sigma_{2} + q^{6} + V(4\Sigma_{3} + q^{2}\Sigma_{1}).$

Now it is easy to check that, in notation of Corollary 1,

$$q^4 \sigma_1 \sigma_4 + 2q^6 \sigma_3 + q^8 \sigma_1 = 2q^3 V W.$$
(3)

Consequently,

$$\begin{aligned} x_5 &= \frac{4q^3 V W}{(x_1 x_2 x_3 x_4 - q^4)^2} \\ &= \frac{4q^3 y_{12} y_{13} y_{14} y_{23} y_{24} y_{34}}{(x_1 x_2 x_3 x_4 - q^4)^2} \\ &= \frac{4y_{12} y_{13} y_{23} (x_1 y_{23} + y_{12} y_{13}) (x_2 y_{13} + y_{12} y_{23}) (x_3 y_{12} + y_{13} y_{23})}{(x_1 x_2 x_3 x_4 - q^4)^2}. \end{aligned}$$

Let us now consider the question when one or both (since x_5^+ and x_5^- can be equal) of the numbers x_5^+ and x_5^- will be equal to zero. For the obvious reason, such extension of a Diophantine quadruple we will call trivial. We will see that the answer to this question is closely connected to the construction of Corollary 2. From now on, we assume that $q \neq 0$.

PROPOSITION 1 In the notation of Theorem 1, we have $x_5^+ = x_5^- = 0$ if and only if there exist $1 \le i < j \le 4$ such that $x_i x_j = -q^2$ and $x_i + x_j = x_k + x_l$, where $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

Proof. From $x_5^+ = x_5^-$ we conclude that there exist $1 \le i < j \le 4$ such that $y_{ij} = 0$, i.e. $x_i x_j = -q^2$. Substituting this into expression for x_5 we obtain

$$x_5 = \frac{q^2(x_i + x_j - x_k - x_l)}{x_k x_l + q^2}.$$
(4)

Consequently, the condition $x_5 = 0$ implies that $x_i + x_j = x_k + x_l$.

Conversely, suppose that x_1, x_2, x_3, x_4 satisfy the condition of the proposition. Then $y_{ij} = 0$, and (4) implies that $x_5^+ = x_5^- = 0$.

PROPOSITION 2 In the notation of Theorem 1, we have $0 \in \{x_5^+, x_5^-\}$ if and only if there exists $i \in \{1, 2, 3, 4\}$ such that

$$x_i = [2y_{jk}y_{jl}y_{kl} + 2x_jx_kx_l + q^2(x_j + x_k + x_l)]/q^2,$$

where $\{i, j, k, l\} = \{1, 2, 3, 4\}.$

Proof. We can assume that $y_{ij} \neq 0$ since otherwise the assertion of the proposition follows from Proposition 1. If $x_5 = 0$, then $x_i x_5 + q^2 = q^2$ for i = 1, 2, 3, 4. Hence, if $0 \in \{x_5^+, x_5^-\}$, then Theorem 1 implies that for appropriate choice of the sign of y_{ij} we have

$$x_i y_{jk} y_{jl} y_{kl} + q y_{ij} y_{ik} y_{il} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} y_{ik} = \pm (x_1 x_2 x_3 x_4 - q^4) + q y_{ij} y_{ik} + q y_{ij} y_{ik} + q y_{ij} y_{ik} + q y_{ij} + q y_{$$

where $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Hence, there is no loss of generality is assuming that

$$x_1y_{23}y_{24}y_{34} + qy_{12}y_{13}y_{14} = x_2y_{13}y_{14}y_{34} + qy_{12}y_{23}y_{24}$$

This gives $(x_1y_{34} - qy_{12})y_{23}y_{24} = (x_2y_{34} - qy_{12})y_{13}y_{14}$. Set $x_1y_{34} - qy_{12} = \alpha y_{13}y_{14}$. Then $x_2y_{34} - qy_{12} = \alpha y_{23}y_{24}$, and so

$$\begin{aligned} \alpha(x_1y_{23}y_{24}y_{34} + qy_{12}y_{13}y_{14}) \\ &= x_1y_{34}(x_2y_{34} - qy_{12}) + qy_{12}(x_1y_{34} - qy_{12}) \\ &= x_1x_2y_{34}^2 - q^2y_{12}^2 = x_1x_2x_3x_4 - q^4 \,. \end{aligned}$$

We thus get $\alpha = \pm 1$ and $x_1y_{34} - qy_{12} = \pm y_{13}y_{14}$. Squaring this relation we obtain

$$x_1^2 x_3 x_4 + q^2 x_1^2 + q^2 x_1 x_2 + q^4 - 2q x_1 y_{12} y_{34} = x_1^2 x_3 x_4 + q^2 x_1 x_3 + q^2 x_1 x_4 + q^4 ,$$

and (if $x_1 \neq 0$) $2y_{12}y_{34} = q(x_1 + x_2 - x_3 - x_4)$. Squaring again we obtain the quadratic equation in x_4 :

$$q^{2}x_{4}^{2} - 2x_{4}[q^{2}(x_{1} + x_{2} + x_{3}) + 2x_{1}x_{2}x_{3}] + q^{2}(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 2x_{1}x_{2} - 2x_{1}x_{3} - 2x_{2}x_{3} - 4q^{2}) = 0,$$

with the solutions

$$x_4 = [q^2(x_1 + x_2 + x_3) + 2x_1x_2x_3 \pm 2y_{12}y_{13}y_{23}]/q^2.$$
(5)

We have been working under assumption that $x_1 \neq 0$. Now suppose that $x_1 = 0$. In the same manner, using Corollary 2, it can be proved that $x_1 = 0$ implies

$$x_4 = x_2 + x_3 \pm y_{23} \,,$$

which is exactly the relation (5) for $x_1 = 0$.

This proves one implication of the proposition. The opposite implication is direct consequence of the relation (3).

3 Examples

EXAMPLE 1 Let us first show that the condition $x_1x_2x_3x_4 \neq q^4$ from Theorem 1 is not superfluous. Indeed, the set {25600, 50625, 82944, 518400} has the property $D(86400^2)$ and

 $25600 \cdot 50625 \cdot 82944 \cdot 518400 = 86400^4.$

As an illustration of the situation from Proposition 1 let us adduce the set $\{-25, 25, -24, 24\}$ with the property D(625) and the set $\{-1, 64, 48, 15\}$ with the property D(64). In both cases the construction from Theorem 1 gives $x_5^+ = x_5^- = 0$.

From [10, (13)], for a = 2 and k = 3, we obtain the Diophantine quadruple $\{2, 20, 44, 72\}$ with the property D(81). It is easy to check that this quadruple does not satisfy the conditions of Proposition 2. Therefore the numbers x_5^+ and x_5^- are different from 0. Indeed, $x_5^+ = \frac{4860}{169}$ and $x_5^- = -\frac{1156680}{1054729}$. Using x_5^+ , we obtain the Diophantine quintuple $\{338, 3380, 4860, 7436, 12168\}$ with the property $D(39^4)$.

If we apply the construction from Theorem 1 to the original set of Diophantus $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\}$, we obtain $x_5^+ = \frac{549120}{101^2}$ and $x_5^- = \frac{-26880}{421^2}$.

The definition of a Diophantine *m*-tuple can be extended to the subsets of **Q**. Let *q* be a rational number. We call a set $A = \{x_1, x_2, \ldots, x_m\} \subset$

 $\mathbf{Q}\setminus\{0\}$ a (rational) Diophantine m-tuple with the property D(q) if the product of any two distinct elements of A increased by q is equal to the square of a rational number. The construction of the rational Diophantine quintuple with the property D(1) which extends the given Diophantine triple was described in [3]. That construction is equivalent to the construction from Corollary 2. But Theorem 1 makes possible the extension of the Diophantine quadruples which are not of the form $\{x_1, x_2, x_3, x_4\}$ from Corollary 2. One such quadruple is the set $\{2, 20, 44, 72\}$ from Example 1. Let us now examine two ways for generation of such Diophantine quadruples.

EXAMPLE 2 Let $\{x_1, x_2, x_3, x_4\} \subset \mathbf{Q}$ be an arbitrary set with the property $D(q^2)$ and let $x_5 \in \mathbf{Q}$ be the number which is obtained by applying Theorem 1 to this set. Then the set $\{x_2, x_3, x_4, x_5\}$ also has the property $D(q^2)$, and we can apply Theorem 1 again. In this way we obtain $x_6 \in \mathbf{Q}$ such that the set $\{x_2, x_3, x_4, x_5, x_6\}$ has the property $D(q^2)$.

For example, if $x_1 = k - 1$, $x_2 = k + 1$, $x_3 = 4k$ and $x_4 = 16k^3 - 4k$, then the set $\{x_1, x_2, x_3, x_4\}$ has the property D(1) ([6, p. 22]) and we obtain

$$x_5 = \frac{4k(2k-1)(2k+1)(4k^2-2k-1)(4k^2+2k-1)(8k^2-1)}{(64k^6-80k^4+16k^2-1)^2}$$

and $x_6 = P(k)/Q(k)$, where

$$P(k) = (8k^3 - 4k^2 + 1)(8k^3 + 4k^2 - 4k - 1)(8k^3 - 12k^2 + 1)$$

× (8k⁴ + 4k³ - 8k² - k + 1)(32k⁴ - 8k³ + 28k² + 3)
× (32k⁴ + 8k³ - 12k² + 1)(32k⁴ + 24k³ - 12k² - 4k + 1)
× (32k⁴ + 40k³ + 4k² - 4k + 1),

$$\begin{split} Q(k) &= (131072k^{14} + 131072k^{13} - 184320k^{12} - 180224k^{11} + 96256k^{10} \\ &+ 86016k^9 - 26880k^8 - 18432k^7 + 4480k^6 + 1792k^5 - 480k^4 \\ &- 64k^3 + 32k^2 - 1)^2 \,. \end{split}$$

It turns out that this factorization of the numerator of x_6 is not accidental. Namely, it can be checked that, in notation of Theorem 1, $x_6 = P/Q$, where

$$\begin{split} P &= q^3 (y_{12}y_{13}y_{14} + qy_{12}y_{13} + qy_{12}y_{23} + qy_{13}y_{23}) \\ &\times (y_{12}y_{13}y_{14} + qy_{12}y_{13} - qy_{12}y_{23} - qy_{13}y_{23}) \\ &\times (y_{12}y_{13}y_{14} - qy_{12}y_{13} + qy_{12}y_{23} - qy_{13}y_{23}) \\ &\times (y_{12}y_{13}y_{14} - qy_{12}y_{13} - qy_{12}y_{23} + qy_{13}y_{23})(y_{23}y_{24} + y_{23}y_{34} + y_{24}y_{34}) \\ &\times (y_{23}y_{24} + y_{23}y_{34} - y_{24}y_{34})(y_{23}y_{24} - y_{23}y_{34} + y_{24}y_{34}) \\ &\times (-y_{23}y_{24} + y_{23}y_{34} + y_{24}y_{34}), \end{split}$$

$$Q = x_1^4 (4x_2x_3x_4y_{12}y_{13}y_{14}y_{23}y_{24}y_{34} - qx_1^2x_2^2x_3^2x_4^2 + 2q^5x_1x_2x_3x_4 - q^9)^2$$

PROPOSITION 3 Let x_1 , x_2 , and x_3 be rational numbers such that the denominator of

$$x_4 = \frac{8(x_3 - x_1 - x_2)(x_1 + x_3 - x_2)(x_2 + x_3 - x_1)}{(x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3)^2}$$

is different from 0. Then $x_1x_4 + 1$, $x_2x_4 + 1$ and $x_3x_4 + 1$ are squares of rational numbers.

Proof. It follows immediately that

$$x_1x_4 + 1 = \left(\frac{x_2^2 - 2x_2x_3 + x_3^2 - 3x_1^2 + 2x_1x_2 + 2x_1x_3}{x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3}\right)^2,$$

and analogous relations hold for $x_2x_4 + 1$ and $x_3x_4 + 1$.

EXAMPLE 3 Let us observe that the set $\{x_1, x_2, x_3\}$ in Proposition 3 does not need to have the property D(1). Let us take for example $x_1 = F_{2n+1}$, $x_2 = F_{2n+3}$ and $x_3 = F_{2n+5}$. Then the set $\{x_1, x_2, x_3\}$ has the property D(-1) for every positive integer n (see [13, 14]). Proposition 3 implies that there exists a rational number x_4 with the property that $x_ix_4 + 1$, i = 1, 2, 3, are squares of rational numbers. We will show that in this case the number x_4 is an integer. Indeed,

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3 \\ &= (x_1 - x_2 + x_3)^2 - 4x_1x_3 \\ &= [F_{2n+1} - F_{2n+3} + (3F_{2n+3} - F_{2n+1})]^2 - 4F_{2n+1}F_{2n+5} \\ &= 4(F_{2n+3}^2 - F_{2n+1}F_{2n+5}) = -4. \end{aligned}$$

Hence,

$$x_4 = \frac{8}{16} \cdot 2F_{2n+2} \cdot 2F_{2n+3} \cdot 2F_{2n+4} = 4F_{2n+2}F_{2n+3}F_{2n+4}$$

EXAMPLE 4 If $x_1x_2 + 1 = y_{12}^2$ and $x_3 = x_1 + x_2 + 2y_{12}$, then the set $\{x_1, x_2, x_3\}$ has the property D(1). If we apply the construction from Proposition 3 to this set we obtain

$$x_4 = 4y_{12}(x_1 + y_{12})(x_2 + y_{12}).$$

If we apply the construction from Corollary 2 to the set $\{x_1, x_2, x_3\}$ we obtain exactly the same result.

EXAMPLE 5 Let $x_1 = 1$, $x_2 = 3$ and $x_3 = 120$. Then proposition 3 gives $x_4 = \frac{834968}{3361^2}$. The set $\{x_1, x_2, x_3, x_4\}$ has the property D(1) and we can apply the construction from Theorem 1. We obtain:

$$x_5^+ = \frac{3985166705520 \cdot 481^2}{601439^2 \cdot 481^2}, \qquad x_5^- = \frac{426360 \cdot 601439^2}{481^2 \cdot 601439^2}$$

It turns out that this cancelation is not accidental. Namely, let $\{x_1, x_2, x_3\}$ be the arbitrary set with the property D(1), let x_4 be the number which is obtained by applying Proposition 3 to this set, and let x_5^+ and x_5^- be the numbers which are obtained by applying Theorem 1 to the set $\{x_1, x_2, x_3, x_4\}$. Then

$$\sqrt{x_1x_5^+ + 1} \cdot \sqrt{x_1x_5^- + 1} = \left| \frac{(a+b)(a-b)cd}{c^2d^2} \right|,$$

where

$$a = x_1 y_{23} [x_1^2 (4x_2 x_3 + 1) - 2x_1 (x_2 + x_3) (2x_2 x_3 - 1) - (3x_2^2 + 2x_2 x_3 + 3x_2^2)],$$

$$b = y_{12} y_{13} [x_1^2 (-4x_2 x_3 - 3) + 2x_1 (x_2 + x_3) (2x_2 x_3 + 1) + (x_2 - x_3)^2],$$

$$c = (x_1 + x_2 + x_3)^2 - 4(x_1 x_2 x_3 - y_{12} y_{13} y_{23})^2 + 4,$$

$$d = 4(x_1 x_2 x_3 + y_{12} y_{13} y_{23})^2 - (x_1 + x_2 + x_3)^2 - 4.$$

For $x_1 = 1$, $x_2 = 3$ and $x_3 = 120$, we get $c = 4 \cdot 481$ and $d = 4 \cdot 601439$.

4 Some open problems

One question still unanswered is whether there exists a (positive integer) Diophantine quintuple with the property D(1). Corollary 1 shows that if such a quintuple exists it cannot be obtained by the construction from Theorem 1. Let us mention that the analogous result for the sets with the property $D(l^2)$, where l > 1, does not hold. For example, if we apply the construction from Theorem 1 to the quadruples $\{4, 21, 69, 125\}$ and $\{7, 12, 63, 128\}$ with the property D(400), we obtain $x_5^+ = 384$, $x_5^- =$ $-\frac{4032000}{1129^2}$ and $x_5^+ = 375$, $x_5^- = -\frac{11856000}{2021^2}$, respectively. Hence, the sets $\{4, 21, 69, 125, 384\}$ and $\{7, 12, 69, 125, 375\}$ are Diophantine quintuples with the property D(400).

One may ask which is the least positive integer n_1 , and which is the greatest negative integer n_2 , for which there exists a Diophantine quintuple with the property $D(n_i)$, i = 1, 2. Certainly $n_1 \leq 256$ and $n_2 \geq -255$, since the sets $\{1, 33, 105, 320, 18240\}$ and $\{5, 21, 64, 285, 6720\}$ have the property D(256), and the set $\{8, 32, 77, 203, 528\}$ has the property D(-255).

In present paper we have considered the quintuples with the property D(q), where q was a square of a rational number. However, the last set with the property D(-255) indicates that there exist quintuples with the property D(q), where q is not a perfect square (see also [9, 16]). Thus we came to the following open problem: For which rational numbers q there exists a rational Diophantine quintuple with the property D(q)? It follows easily from [6, Theorem 5] that for every rational number q there exists a rational Diophantine quadruple with the property D(q).

At present it is not known whether there exists a rational number $q \neq 0$ such that there exists a rational Diophantine sextuple with the property D(q). In [1], some rational "sextuples" with the property D(1) were obtained, but all of them have two equal elements. Thus, they are actually quintuples with the additional property that $x_1^2 + 1$ is a perfect square. There exists also a rational Diophantine quintuple $\{x_1, \ldots, x_5\}$ with the property D(1) such that $x_1^2 + 1$, $x_2^2 + 1$ and $x_3^2 + 1$ are perfect squares. However, the question of the existence of Diophantine sextuples is still open.

References

- J. Arkin, D. C. Arney, F. R. Giordano, R. A. Kolb and G. E. Bergum, An extension of an old classical Diophantine problem, in: Application of Fibonacci Numbers, Vol. 5, G. E. Bergum, A. N. Philippou and A. F. Horadam (eds.), Kluwer, Dordrecht, 1993, 45-48.
- [2] J. Arkin and G. E. Bergum, More on the problem of Diophantus, in: Application of Fibonacci Numbers, Vol. 2, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 177-181.
- [3] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333-339.
- [4] H. Davenport and A. Baker, *The equations* $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
- [5] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow, 1974 (in Russian).
- [6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
- [7] A. Dujella, Diophantine quadruples for squares of Fibonacci and Lucas numbers, Portugal. Math. 52 (1995), 305-318.

- [8] A. Dujella, Generalized Fibonacci numbers and the problem of Diophantus, Fibonacci Quart. 34 (1996), 164-175.
- [9] A. Dujella, Generalization of the Problem of Diophantus and Davenport. Dissertation, University of Zagreb, 1996 (in Croatian).
- [10] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. (to appear).
- [11] A. Dujella, A problem of Diophantus and Pell numbers, preprint.
- [12] P. Heichelheim, The study of positive integers (a, b) such that ab + 1 is a square, Fibonacci Quart. 17 (1979), 269-274.
- [13] V. E. Hogatt and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. 15 (1977), 323-330.
- [14] C. Long, G. E. Bergum, On a problem of Diophantus, in: Application of Fibonacci Numbers, Vol. 2, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 183-191.
- [15] S. P. Mohanty and M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its application, Simon Stevin 59 (1985), 203-214.
- [16] V. K. Mootha, On the set of numbers {14, 22, 30, 42, 90}, Acta Arith. 71 (1995), 259-263.
- [17] M. Veluppillai, The equations $z^2 3y^2 = -2$ and $z^2 6x^2 = -5$, in: A Collection of Manuscripts Related to the Fibonacci sequence, V. E. Hoggatt and M. Bicknell-Johnson (eds.), The Fibonacci Association, Santa Clara, 1980, 71-75.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ZAGREB BIJENIČKA CESTA 30 10000 ZAGREB CROATIA E-mail: DUJE@MATH.HR