
On Diophantine quintuples

Andrej Dujella (Zagreb, Croatia)

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set
{ 1
16 ,

33
16 ,

17
4 ,

105
16 } has the following property: the product of any two of its

distinct elements increased by 1 is a square of a rational number (see [5]).
Fermat first found a set of four positive integers with the above property,
and it was {1, 3, 8, 120}.

Let n be an integer. A set of positive integers {x1, x2, . . . , xm} is said
to have the property D(n) if for all 1 ≤ i < j ≤ m the following holds:
xixj + n = y2ij , where yij is an integer. Such a set is called a Diophantine
m-tuple.

Davenport and Baker [4] showed that if d is a positive integer such that
the set {1, 3, 8, d} has the property of Diophantus, then d has to be 120.
This implies that the Diophantine quadruple {1, 3, 8, 120} cannot be ex-
tended to the Diophantine quintuple with the propertyD(1). Analogous re-
sult was proved for the Diophantine quadruple {2, 4, 12, 420} with the prop-
erty D(1) [17], for the Diophantine quadruple {1, 5, 12, 96} with the prop-
ertyD(4) [15] and for the Diophantine quadruples {k−1, k+1, 4k, 16k3−4k}
with the property D(1) for almost all positive integers k [9].

Euler proved that every Diophantine pair {x1, x2} with the property
D(1) can be extended in infinitely many ways to the Diophantine quadruple
with the same property (see [12]). In [6] it was proved that the same
conclusion is valid for the pair with the property D(l2) if the additional
condition that x1x2 is not a perfect square is fulfilled.

Arkin, Hoggatt and Strauss [3] proved that every Diophantine triple
with the property D(1) can be extended to the Diophantine quadruple.
More precisely, if xixj + 1 = y2ij , then we can set x4 = x1 + x2 + x3 +
2x1x2x3+2y12y13y23. For the Diophantine quadruple obtained in this way,
they proved the existence of a positive rational number x5 with the property
that xix5 + 1 is a square of a rational number for i = 1, 2, 3, 4.

Using this construction, in [2, 7, 8, 11] some formulas for Diophantine
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quintuples in the terms of polynomials, Fibonacci, Lucas, Pell and Pell-
Lucas numbers were obtained.

In the present paper we prove that for all positive rational numbers
q, x1, x2, x3, x4 such that xixj + q2 = y2ij , yij ∈ Q, for 1 ≤ i < j ≤ 4,
and x1x2x3x4 ̸= q4, there exists a positive rational number x5 such that
xix5 + q2 is a square of a rational number for i = 1, 2, 3, 4. As a corollary
we get the result that for all Diophantine quadruples {x1, x2, x3, x4} with
the property D(1) there exists a rational number x5 such that xix5 + 1 is
a square of a rational number for i = 1, 2, 3, 4.

2 Extension of Diophantine quadruples

Theorem 1 Let q, x1, x2, x3, x4 be rational numbers such that xixj +
q2 = y2ij, yij ∈ Q, for all 1 ≤ i < j ≤ 4. Assume that x1x2x3x4 ̸= q4. Then
the rational number x5 = A/B, where

A = q3[2y12y13y14y23y24y34 + qx1x2x3x4(x1 + x2 + x3 + x4)

+ 2q3(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) + q5(x1 + x2 + x3 + x4)] ,

B = (x1x2x3x4 − q4)2 ,

has the property that xix5 + q2 is a square of a rational number for i =
1, 2, 3, 4. To be more precise, for i ∈ {1, 2, 3, 4} it holds:

xix5 + q2 = (q
xiyjkyjlykl + qyijyikyil

x1x2x3x4 − q4
)2 ,

where {i, j, k, l} = {1, 2, 3, 4}.

Proof. Let i ∈ {1, 2, 3, 4} and {i, j, k, l} = {1, 2, 3, 4}. Then we have:

(x1x2x3x4 − q4)2(xix5 + q2)

= 2q3xiy12y13y14y23y24y34 + q4x1x2x3x4xi(x1 + x2 + x3 + x4)

+ 2xiq
6(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

+ xiq
8(x1 + x2 + x3 + x4) + q2x21x

2
2x

2
3x

2
4 − 2q6x1x2x3x4 + q10

= q2[2qxiy12y13y14y23y24y34 + q2x2ixjxkxl(xi + xj + xk + xl)

+ 2q4x2i (xjxk + xjxl + xkxl) + 2q4xixjxkxl + q6x2i

+ q6(xixj + xixk + xixl) + x2ix
2
jx

2
kx

2
l − 2q4xixjxkxl + q8]

= q2[2qxiy12y13y14y23y24y34 + x2i (xjxk + q2)(xjxl + q2)(xkxl + q2)

+ q2(xixj + q2)(xixk + q2)(xixl + q2)]

= q2(2qxiy12y13y14y23y24y34 + x2i y
2
jky

2
jly

2
kl + q2y2ijy

2
iky

2
il)

= [q(xiyjkyjlykl + qyijyikyil)]
2 ,
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which proves the theorem.

Since the signs of yij are arbitrary, we have two choices for x5. Let
x+5 and x−5 denote these two numbers, and let x+5 be the number which
corresponds to the case where all yij are nonnegative.

Corollary 1 Let {x1, x2, x3, x4} ⊂ N be the set with the property
D(1). Then there exists a rational number x5, 0 < x5 < 1, such that
xix5 + 1 is a square of a rational number for i = 1, 2, 3, 4.

Proof. We claim that the number x+5 , obtained by applying the con-
struction from Theorem 1 to the set {x1, x2, x3, x4}, has the desired prop-
erty. Indeed, it is sufficient to prove that x+5 < 1. Let us introduce the
following notation:

σ1 = x1 + x2 + x3 + x4

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

σ3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

σ4 = x1x2x3x4

X = σ1σ4 + 2σ3 + σ1

Y = y12y13y14y23y24y34 .

The proof that x+5 =
2Y +X

(σ4 − 1)2
< 1 is completed by showing that

2X < (σ4 − 1)2 and 4Y < (σ4 − 1)2 . (1)

Without loss of generality we can assume that x1 < x2 < x3 < x4. If
x1 = 1, then x2 ̸= 2. Therefore, x2 ≥ 3, x3 ≥ 4 and x4 ≥ 5. Hence σ4 ≥ 60.
Furthermore, from

1

x1x2x3
+

1

x1x2x4
+

1

x1x3x4
+

1

x2x3x4
≤ 13

60
<

1

4

it follows that 52 ≤ 4σ1 < σ4. In the same manner we can see that
59 ≤ σ2 < σ4 and 107 ≤ σ3 < 2σ4 (see also [12]). Hence

(σ4 − 1)2 − 2X > σ2
4 − 2σ4 + 1− σ2

4

2
− 8σ4 −

σ4
2

=
1

2
(σ2

4 − 21σ4 + 2) > 0

(since σ4 ≥ 60). To get the second inequality from (1), we note that

Y 2 = (x1x2 + 1)(x1x3 + 1)(x1x4 + 1)(x2x3 + 1)(x2x4 + 1)(x3x4 + 1)
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= σ3
4 + σ2σ

2
4 − σ2

4 + σ1σ3σ4 + σ2
1σ4 − 2σ2σ4 + σ2

3 − σ4 + σ1σ3 + σ2 + 1

< σ3
4 + σ3

4 − σ2
4 +

σ2
4

2
+

σ2
4

16
− 118σ4 + 4σ2

4 − σ4 +
σ2
4

2
+ σ4 + 1

=
41

16
σ3
4 +

7

2
σ2
4 − 118σ4 + 1 .

Therefore,

(σ4 − 1)4 − 16Y 2

> σ4
4 − 4σ3

4 + 6σ2
4 − 4σ4 + 1− 41σ3

4 − 56σ2
4 + 1888σ4 − 16

= σ4
4 − 45σ3

4 − 50σ2
4 + 1884σ4 − 15 > 0

(since σ4 ≥ 60), which completes the proof.

Corollary 2 Let q, x1, x2, x3 be rational numbers such that xixj+q2 =
y2ij, yij ∈ Q for all 1 ≤ i < j ≤ 3. Let

x4 = [2y12y13y23 + 2x1x2x3 + q2(x1 + x2 + x3)]/q
2 ,

x5 =
4y12y13y23(x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

(x1x2x3x4 − q4)2
.

Then the set {x1, x2, x3, x4, x5} has the property that the product of its any
two distinct elements increased by q2 is equal to the square of a rational
number. In the notation of Theorem 1, we have

x5 =
4q3y12y13y14y23y24y34
(x1x2x3x4 − q4)2

.

Proof. Let z1 = x1, z2 = x2, z3 = x3, z4 = 0. Then the rational num-
bers z1, z2, z3, z4 satisfy the conditions of Theorem 1, and its application
gives us the number

z5 = [2y12y13y23 + 2x1x2x3 + q2(x1 + x2 + x3)]/q
2 .

Set x4 = z5. We can now apply Theorem 1 on the numbers x1, x2, x3, x4.
Let x5 be the number which is obtained by this construction. Observe that,
by Theorem 1, for all i ∈ {1, 2, 3}

qyi4 = xiyjk + yijyik , (2)
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where {i, j, k} = {1, 2, 3}. Let us introduce the following notation:

Σ1 = x1 + x2 + x3

Σ2 = x1x2 + x1x3 + x2x3

Σ3 = x1x2x3

V = y12y13y23

W = y14y24y34 .

We have

V 2 = (x1x2 + q2)(x1x3 + q2)(x2x3 + q2) = Σ2
3 + q2Σ1Σ3 + q4Σ2 + q6 .

From (2) it follows that

q3W = (x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

= 4Σ2
3 + 3q2Σ1Σ3 + 2q4Σ2 + q6 + V (4Σ3 + q2Σ1) .

Now it is easy to check that, in notation of Corollary 1,

q4σ1σ4 + 2q6σ3 + q8σ1 = 2q3VW . (3)

Consequently,

x5 =
4q3VW

(x1x2x3x4 − q4)2

=
4q3y12y13y14y23y24y34
(x1x2x3x4 − q4)2

=
4y12y13y23(x1y23 + y12y13)(x2y13 + y12y23)(x3y12 + y13y23)

(x1x2x3x4 − q4)2
.

Let us now consider the question when one or both (since x+5 and x−5
can be equal) of the numbers x+5 and x−5 will be equal to zero. For the
obvious reason, such extension of a Diophantine quadruple we will call
trivial. We will see that the answer to this question is closely connected to
the construction of Corollary 2. From now on, we assume that q ̸= 0.

Proposition 1 In the notation of Theorem 1, we have x+5 = x−5 = 0
if and only if there exist 1 ≤ i < j ≤ 4 such that xixj = −q2 and xi+xj =
xk + xl, where {i, j, k, l} = {1, 2, 3, 4}.
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Proof. From x+5 = x−5 we conclude that there exist 1 ≤ i < j ≤ 4 such
that yij = 0, i.e. xixj = −q2. Substituting this into expression for x5 we
obtain

x5 =
q2(xi + xj − xk − xl)

xkxl + q2
. (4)

Consequently, the condition x5 = 0 implies that xi + xj = xk + xl.

Conversely, suppose that x1, x2, x3, x4 satisfy the condition of the propo-
sition. Then yij = 0, and (4) implies that x+5 = x−5 = 0.

Proposition 2 In the notation of Theorem 1, we have 0 ∈ {x+5 , x
−
5 }

if and only if there exists i ∈ {1, 2, 3, 4} such that

xi = [2yjkyjlykl + 2xjxkxl + q2(xj + xk + xl)]/q
2 ,

where {i, j, k, l} = {1, 2, 3, 4}.

Proof. We can assume that yij ̸= 0 since otherwise the assertion of the
proposition follows from Proposition 1. If x5 = 0, then xix5 + q2 = q2

for i = 1, 2, 3, 4. Hence, if 0 ∈ {x+5 , x
−
5 }, then Theorem 1 implies that for

appropriate choice of the sign of yij we have

xiyjkyjlykl + qyijyikyil = ±(x1x2x3x4 − q4) ,

where {i, j, k, l} = {1, 2, 3, 4}. Hence, there is no loss of generality is as-
suming that

x1y23y24y34 + qy12y13y14 = x2y13y14y34 + qy12y23y24 .

This gives (x1y34 − qy12)y23y24 = (x2y34 − qy12)y13y14. Set x1y34 − qy12 =
αy13y14. Then x2y34 − qy12 = αy23y24, and so

α(x1y23y24y34 + qy12y13y14)

= x1y34(x2y34 − qy12) + qy12(x1y34 − qy12)

= x1x2y
2
34 − q2y212 = x1x2x3x4 − q4 .

We thus get α = ±1 and x1y34 − qy12 = ±y13y14. Squaring this relation
we obtain

x21x3x4+ q2x21+ q2x1x2+ q4−2qx1y12y34 = x21x3x4+ q2x1x3+ q2x1x4+ q4 ,
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and (if x1 ̸= 0) 2y12y34 = q(x1 + x2 − x3 − x4). Squaring again we obtain
the quadratic equation in x4:

q2x24 − 2x4[q
2(x1 + x2 + x3) + 2x1x2x3]

+ q2(x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3 − 4q2) = 0 ,

with the solutions

x4 = [q2(x1 + x2 + x3) + 2x1x2x3 ± 2y12y13y23]/q
2 . (5)

We have been working under assumption that x1 ̸= 0. Now suppose that
x1 = 0. In the same manner, using Corollary 2, it can be proved that
x1 = 0 implies

x4 = x2 + x3 ± y23 ,

which is exactly the relation (5) for x1 = 0.
This proves one implication of the proposition. The opposite implica-

tion is direct consequence of the relation (3).

3 Examples

Example 1 Let us first show that the condition x1x2x3x4 ̸= q4 from
Theorem 1 is not superfluous. Indeed, the set {25600, 50625, 82944, 518400}
has the property D(864002) and

25600 · 50625 · 82944 · 518400 = 864004.

As an illustration of the situation from Proposition 1 let us adduce the
set {−25, 25,−24, 24} with the property D(625) and the set {−1, 64, 48, 15}
with the property D(64). In both cases the construction from Theorem 1
gives x+5 = x−5 = 0.

From [10, (13)], for a = 2 and k = 3, we obtain the Diophantine
quadruple {2, 20, 44, 72} with the property D(81). It is easy to check that
this quadruple does not satisfy the conditions of Proposition 2. There-
fore the numbers x+5 and x−5 are different from 0. Indeed, x+5 = 4860

169
and x−5 = −1156680

1054729 . Using x+5 , we obtain the Diophantine quintuple
{338, 3380, 4860, 7436, 12168} with the property D(394).

If we apply the construction from Theorem 1 to the original set of
Diophantus { 1

16 ,
33
16 ,

17
4 ,

105
16 }, we obtain x+5 = 549120

1012
and x−5 = −26880

4212
.

The definition of a Diophantine m-tuple can be extended to the subsets
of Q. Let q be a rational number. We call a set A = {x1, x2, . . . , xm} ⊂
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Q\{0} a (rational) Diophantine m-tuple with the property D(q) if the prod-
uct of any two distinct elements of A increased by q is equal to the square
of a rational number. The construction of the rational Diophantine quintu-
ple with the property D(1) which extends the given Diophantine triple was
described in [3]. That construction is equivalent to the construction from
Corollary 2. But Theorem 1 makes possible the extension of the Diophan-
tine quadruples which are not of the form {x1, x2, x3, x4} from Corollary 2.
One such quadruple is the set {2, 20, 44, 72} from Example 1. Let us now
examine two ways for generation of such Diophantine quadruples.

Example 2 Let {x1, x2, x3, x4} ⊂ Q be an arbitrary set with the prop-
erty D(q2) and let x5 ∈ Q be the number which is obtained by applying
Theorem 1 to this set. Then the set {x2, x3, x4, x5} also has the property
D(q2), and we can apply Theorem 1 again. In this way we obtain x6 ∈ Q
such that the set {x2, x3, x4, x5, x6} has the property D(q2).

For example, if x1 = k−1, x2 = k+1, x3 = 4k and x4 = 16k3−4k, then
the set {x1, x2, x3, x4} has the property D(1) ([6, p. 22]) and we obtain

x5 =
4k(2k − 1)(2k + 1)(4k2 − 2k − 1)(4k2 + 2k − 1)(8k2 − 1)

(64k6 − 80k4 + 16k2 − 1)2
,

and x6 = P (k)/Q(k), where

P (k) = (8k3 − 4k2 + 1)(8k3 + 4k2 − 4k − 1)(8k3 − 12k2 + 1)

× (8k4 + 4k3 − 8k2 − k + 1)(32k4 − 8k3 + 28k2 + 3)

× (32k4 + 8k3 − 12k2 + 1)(32k4 + 24k3 − 12k2 − 4k + 1)

× (32k4 + 40k3 + 4k2 − 4k + 1) ,

Q(k) = (131072k14 + 131072k13 − 184320k12 − 180224k11 + 96256k10

+ 86016k9 − 26880k8 − 18432k7 + 4480k6 + 1792k5 − 480k4

− 64k3 + 32k2 − 1)2 .

It turns out that this factorization of the numerator of x6 is not accidental.
Namely, it can be checked that, in notation of Theorem 1, x6 = P/Q, where

P = q3(y12y13y14 + qy12y13 + qy12y23 + qy13y23)

× (y12y13y14 + qy12y13 − qy12y23 − qy13y23)

× (y12y13y14 − qy12y13 + qy12y23 − qy13y23)

× (y12y13y14 − qy12y13 − qy12y23 + qy13y23)(y23y24 + y23y34 + y24y34)

× (y23y24 + y23y34 − y24y34)(y23y24 − y23y34 + y24y34)

× (−y23y24 + y23y34 + y24y34) ,
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Q = x41(4x2x3x4y12y13y14y23y24y34 − qx21x
2
2x

2
3x

2
4 + 2q5x1x2x3x4 − q9)2 .

Proposition 3 Let x1, x2, and x3 be rational numbers such that the
denominator of

x4 =
8(x3 − x1 − x2)(x1 + x3 − x2)(x2 + x3 − x1)

(x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3)2

is different from 0. Then x1x4 + 1, x2x4 + 1 and x3x4 + 1 are squares of
rational numbers.

Proof. It follows immediately that

x1x4 + 1 = (
x22 − 2x2x3 + x23 − 3x21 + 2x1x2 + 2x1x3
x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3

)2 ,

and analogous relations hold for x2x4 + 1 and x3x4 + 1.

Example 3 Let us observe that the set {x1, x2, x3} in Proposition 3
does not need to have the property D(1). Let us take for example x1 =
F2n+1, x2 = F2n+3 and x3 = F2n+5. Then the set {x1, x2, x3} has the
property D(−1) for every positive integer n (see [13, 14]). Proposition
3 implies that there exists a rational number x4 with the property that
xix4 + 1, i = 1, 2, 3, are squares of rational numbers. We will show that in
this case the number x4 is an integer. Indeed,

x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3

= (x1 − x2 + x3)
2 − 4x1x3

= [F2n+1 − F2n+3 + (3F2n+3 − F2n+1)]
2 − 4F2n+1F2n+5

= 4(F 2
2n+3 − F2n+1F2n+5) = −4 .

Hence,

x4 =
8

16
· 2F2n+2 · 2F2n+3 · 2F2n+4 = 4F2n+2F2n+3F2n+4 .

Example 4 If x1x2 + 1 = y212 and x3 = x1 + x2 + 2y12, then the
set {x1, x2, x3} has the property D(1). If we apply the construction from
Proposition 3 to this set we obtain

x4 = 4y12(x1 + y12)(x2 + y12) .

If we apply the construction from Corollary 2 to the set {x1, x2, x3} we
obtain exactly the same result.
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Example 5 Let x1 = 1, x2 = 3 and x3 = 120. Then proposition 3
gives x4 = 834968

33612
. The set {x1, x2, x3, x4} has the property D(1) and we

can apply the construction from Theorem 1. We obtain:

x+5 =
3985166705520 · 4812

6014392 · 4812
, x−5 =

426360 · 6014392

4812 · 6014392
.

It turns out that this cancelation is not accidental. Namely, let {x1, x2, x3}
be the arbitrary set with the property D(1), let x4 be the number which
is obtained by applying Proposition 3 to this set, and let x+5 and x−5
be the numbers which are obtained by applying Theorem 1 to the set
{x1, x2, x3, x4}. Then√

x1x
+
5 + 1 ·

√
x1x

−
5 + 1 = |(a+ b)(a− b)cd

c2d2
| ,

where

a = x1y23[x
2
1(4x2x3+1)− 2x1(x2+x3)(2x2x3−1)− (3x22+2x2x3+3x22)] ,

b = y12y13[x
2
1(−4x2x3 − 3) + 2x1(x2 + x3)(2x2x3 + 1) + (x2 − x3)

2] ,

c = (x1 + x2 + x3)
2 − 4(x1x2x3 − y12y13y23)

2 + 4 ,

d = 4(x1x2x3 + y12y13y23)
2 − (x1 + x2 + x3)

2 − 4 .

For x1 = 1, x2 = 3 and x3 = 120, we get c = 4 · 481 and d = 4 · 601439.

4 Some open problems

One question still unanswered is whether there exists a (positive in-
teger) Diophantine quintuple with the property D(1). Corollary 1 shows
that if such a quintuple exists it cannot be obtained by the construction
from Theorem 1. Let us mention that the analogous result for the sets
with the property D(l2), where l > 1, does not hold. For example, if we
apply the construction from Theorem 1 to the quadruples {4, 21, 69, 125}
and {7, 12, 63, 128} with the property D(400), we obtain x+5 = 384, x−5 =
−4032000

11292
and x+5 = 375, x−5 = −11856000

20212
, respectively. Hence, the sets

{4, 21, 69, 125, 384} and {7, 12, 69, 125, 375} are Diophantine quintuples
with the property D(400).

One may ask which is the least positive integer n1, and which is the
greatest negative integer n2, for which there exists a Diophantine quintuple
with the property D(ni), i = 1, 2. Certainly n1 ≤ 256 and n2 ≥ −255, since
the sets {1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720} have the property
D(256), and the set {8, 32, 77, 203, 528} has the property D(−255).
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In present paper we have considered the quintuples with the property
D(q), where q was a square of a rational number. However, the last set
with the property D(−255) indicates that there exist quintuples with the
property D(q), where q is not a perfect square (see also [9, 16]). Thus we
came to the following open problem: For which rational numbers q there
exists a rational Diophantine quintuple with the property D(q)? It follows
easily from [6, Theorem 5] that for every rational number q there exists a
rational Diophantine quadruple with the property D(q).

At present it is not known whether there exists a rational number q ̸= 0
such that there exists a rational Diophantine sextuple with the property
D(q). In [1], some rational ”sextuples” with the property D(1) were ob-
tained, but all of them have two equal elements. Thus, they are actually
quintuples with the additional property that x21 + 1 is a perfect square.
There exists also a rational Diophantine quintuple {x1, . . . , x5} with the
property D(1) such that x21+1, x22+1 and x23+1 are perfect squares. How-
ever, the question of the existence of Diophantine sextuples is still open.
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