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Abstract

The absolute separation of a polynomial is the minimum nonzero dif-
ference between the absolute values of its roots. In the case of polynomials
with integer coefficients, it can be bounded from below in terms of the
degree and the height (the maximum absolute value of the coefficients)
of the polynomial. We improve the known bounds for this problem and
related ones. Then we report on extensive experiments in low degrees,
suggesting that the current bounds are still very pessimistic.

1 Separation and absolute separation

The absolute separation of a polynomial P ∈ C[X] is the minimal nonzero
distance between the absolute values of its complex roots:

abs sep(P ) := min
P (α)=P (β)=0,

|α|≠|β|

∣∣|α| − |β|
∣∣.

Having good lower bounds on this quantity for polynomials with integer coeffi-
cients is of interest in the asymptotic analysis of linear recurrent sequences.

To the best of our knowledge, the first published bound on this problem [7]

was abs sep(P ) ≫ H(P )−d(d2+2d−1)/2 where, here and below, the constant im-
plicit in the ≫ sign depends only on the degree d, while H(P ), the height of the
polynomial P , is the maximum of the absolute values of its coefficients. This
exponent was later [4, 15] improved to −d3/2 + d2 + d/2 − 2 and even more
recently [3] to −d3/2 + d2 + d/2 − 1. In this work, we improve this exponent
and that of related problems. Still, we do not know how far the exponent we
obtain is from being optimal. Thus an important part of this article is devoted
to experiments in low degree, from where we can infer families of polynomials
exhibiting a behaviour in H(P )−d−1 for d ∈ {3, 4, 5, 6}.

In the much more classical case of the separation

sep(P ) := min
P (α)=P (β)=0,

α ̸=β

|α− β|,
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the best available bound for a polynomial with integer coefficients goes back to
Mahler [10]:

sep(P ) ≫ H(P )−d+1. (1)

Even in that case, the tightness of the exponent −d + 1 is still unknown, with
best known upper bounds −(2d− 1)/3 for general d and −2 for d = 3 [1, 5, 14].
(A consequence noted by Mahler is that the right-hand side of (1) also gives a
lower bound on the absolute value of the imaginary parts of nonreal roots of P .)

This work consists of two parts. In the first one, we improve the known
exponents for the absolute separation and related problems with the following.

Theorem 1. Let P ∈ Z[X] be a polynomial of degree d and let α and β be two
of its roots such that |α| ̸= |β|, then

1. if α and β are real, then
∣∣|α| − |β|

∣∣ ≫ H(P )−(d−1);

2. if α is real and β is not, then
∣∣|α| − |β|

∣∣ ≫ H(P )−2(d−1)(d−2);

3. if neither of them is real, then
∣∣|α| − |β|

∣∣ ≫ H(P )−(d−1)(d−2)(d−3)/2.

We proved a more precise version of the first bound in a previous work [2],
where we showed that the exponent of H(P ) is optimal in that case. More de-
tailed but less precise bounds for the second case can be found in [4, Lemma 2.5],
[11, Lemma 3.6] and [12, Lemma 53]. Note that the third case requires d ≥ 4 to
be meaningful, since a cubic polynomial with real coefficients cannot have two
non-real roots with distinct absolute values.

The proof of Theorem 1 is based on constructing auxiliary polynomials with
integer coefficients of controlled height whose roots contain the desired differ-
ence. This is a very versatile approach. We illustrate it to rederive Mahler’s
exponent −d+ 1 in Section 2.1. Next, we apply it to the three cases covered in
Theorem 1. Similar bounds for the difference between the real or the imaginary
parts of roots of integer polynomials are derived in Sections 2.4 and 2.5.

In the second part of this work (Section 3), we describe experiments leading
to lower bounds on the absolute separation for small degrees, which can be
summarized as follows.

Theorem 2. For each d ∈ {3, 4, 5, 6}, there exists a sequence (Pd,M ) of polyno-
mials of degree d in Z[X], such that as M → ∞, the polynomial Pd,M has two
roots αM , βM with |αM | ̸= |βM | and∣∣|αM | − |βM |

∣∣ ≪ H(Pd,M )−d−1, M → ∞.

Thus apart from its first part, d = 3 is the only case where we know Theo-
rem 1 to be optimal. It is interesting to note that, in our examples, the growth
of H(P3,M ) is exponential in M , while that of H(Pd,M ), for d ∈ {4, 5, 6}, is
linear in M .
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2 General bounds from symmetric functions of
roots

Here and in the rest of this article, we consider a polynomial P (X) ∈ Z[X],

P (X) =
d∑

i=0

aiX
i = ad

d∏
i=1

(X − αi),

of degree d (ad ̸= 0) with coefficients of absolute value bounded by H and
complex roots α1, . . . , αd.

Our bounds on various types of separations that are asymptotic in the height
of the polynomial are obtained from the following two classical results, of which
we sketch the proofs for completeness.

Proposition 1 (Effective Version of the Fundamental Theorem of Symmetric

Functions). [16, Thm. 6.21] Let P (X) =
∑d

i=0 aiX
i = ad

∏d
i=1 (X − αi) ∈

Z[a0, . . . , ad, X] and let G ∈ Z[X1, . . . , Xd] be a symmetric polynomial of degree
at most k in each Xi. Then akdG(α1, . . . , αd) is a polynomial of total degree at
most k in Z[a0, . . . , ad].

This is a standard result on symmetric functions [9, Ch. 1]. We now give an
elementary self-contained proof.

Proof. Let bi = ad−i/ad for 1 ≤ i ≤ d. These are algebraically independent
symmetric functions of the αj ’s. We need to prove that G(α1, . . . , αd) is a
polynomial of total degree at most k in Z[b1, . . . , bd]. By linearity, it is sufficient
to consider the case where G is homogeneous of total degree k. Let Λk be the
linear space of such symmetric polynomials in α1, . . . , αd.

Since bi is of total degree i in the αj ’s, all products of the form

eµ = bµ1

1 bµ2

2 · · · bµd

d

indexed by µ = (µi) satisfying
∑d

i=1 iµi = k are linearly independent and in Λk.

Such a product has total degree
∑d

i=1 µi ≤ k in the bi’s. However, Λk is also
linearly generated by the monomials of the form

mλ =
∑
σ∈Sd

αλ1

σ(1) · · ·α
λd

σ(d)

indexed by λ = (λj) with λ1 ≥ λ2 ≥ · · · ≥ λd and
∑d

j=1 λj = k. The dimension
is given by the number of distinct such (λj), which is also the number of (µi),
where each µi = λi − λi+1. Therefore, the eµ’s also linearly span Λk and G can
be written as a linear combination of eµ’s with rational coefficients.

To prove that the coefficients are integers, we order the monomials in αj ’s
lexicographically. Since bi is the sum of

∏
j∈S αj over all subsets S of {1, . . . , d}

with i elements, the largest monomial in eµ is given by α
µ′
1

1 · · ·αµ′
d

d , where
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µ′
j =

∑d
i=j µi. The map µ 7→ µ′ = (µ′

j) is a bijection, which implies that
every eµ has a distinct monic leading monomial and all other monomials have
integral coefficients. Induction in the lexicographical order finally shows that
the coefficients of G in the basis (eµ)µ are all integers.

Proposition 2 (Cauchy Bound). [13, Thm. 4.2 (ii)] Let P (X) =
∑d

i=0 aiX
i ∈

Z[X] with |ai| ≤ H for all i and let α ̸= 0 ∈ C be one of its roots. Then

|α| ≥ 1

1 +H
.

Proof. We may assume |α| < 1, otherwise the result is obvious, and a0 ̸= 0.
Then, we get

1 ≤ |a0| ≤
d∑

i=1

|ai| · |αi| ≤ H
|α|

1− |α|
,

giving at once the lower bound |α| ≥ 1
1+H .

2.1 Motivating example: Mahler’s bound

Mahler’s bound is usually deduced from Hadamard’s bound on Sylvester’s ma-
trix applied to the discriminant of the polynomial. When only the asymptotic
exponent of H(P ) in the estimate is needed, Propositions 1 and 2 are sufficient.
Indeed, consider the polynomial

M(X) = a
2(d−1)
d

∏
i<j

(X − (αi − αj)
2).

It is symmetric in the αi’s, with degree in each αi that is twice the number of
j ̸= i, i.e., 2(d− 1). Thus, by Proposition 1, the polynomial M(X) has integer
coefficients of height bounded by cH2(d−1) for some constant c that depends
only on d. By Proposition 2, we thus get that for any (i, j) such that αi ̸= αj ,

|αi − αj |2 ≥ 1

1 + cH2(d−1)
.

Choosing (i, j) that minimizes |αi − αj | and taking square roots thus gives

sep(P ) ≫ H−(d−1),

recovering the exponent in Mahler’s bound.
This method could be refined to produce a bound rather than an asymptotic

estimate, by a more precise analysis of the coefficients of the polynomial involved
in Proposition 1.

Note also that the polynomial obtained by considering the roots αi + αj

in place of αi − αj in M satisfies the same bounds. It follows that the sum
of non-opposite roots of P is also lower bounded by H−(d−1), giving part 1 of
Theorem 1.
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2.2 Absolute real-complex gap

Part 2 of the theorem is obtained by considering the polynomial

R(X) = a
2(d−1)(d−2)
d

∏
i<j,k/∈{i,j}

(
X − (α2

k − αiαj)
)
.

This polynomial is symmetric in the αi’s, of degree 2(d − 1)(d − 2) in each of
them. Thus by Propositions 1 and 2, its smallest nonzero root has magnitude
at least H−2(d−1)(d−2). In particular, if α is a real root of P and β a nonreal
root such that |α| ̸= |β|, taking αk = α, αi = β and αj = β gives

|α2 − |β|2| ≫ H−2(d−1)(d−2).

If |α|+ |β| ≤ 2, then dividing both terms gives a similar inequality for
∣∣|α|−|β|

∣∣.
Otherwise, it is only in the case when ||α| − |β|| ≤ 1 that we need a lower

bound. Supposing first that |β| ≥ |α|, then we have |α| + 1 ≥ |β| and thus
|α| + |α| + 1 ≥ |α| + |β| > 2 and so |α| > 1/2 while 2|β| ≥ |α| + |β| > 2 gives
|β| > 1. Thus, 1/|αβ| < 2 and 1/|α|+1/|β| < 3. The same bounds are obtained
when supposing |α| ≥ |β|. Now, since α−1 and β−1 are roots of the reciprocal
polynomial XdP (1/X) that has the same height as P , we also have

|α−2 − |β|−2| =
∣∣|α| − |β|

∣∣
|α||β|

(
1

|α|
+

1

|β|

)
≫ H−2(d−1)(d−2),

whence the conclusion by dividing out by the factor smaller than 6.

2.3 Absolute complex-complex gap

We now analyse the polynomial

S(X) = a
(d−1)(d−2)(d−3)
d

∏
i<j,
k<ℓ,

{i,j}∩{k,ℓ}=∅

(
X1/2 − (αiαj − αkαℓ)

)
.

Exchanging the pairs (i, j) and (k, ℓ) shows that this is indeed a polynomial
in X. It is invariant under permutations of the αi’s. Its degree in X is ∼ d4/4,
but its degree in each of the αi’s is only (d − 1)(d − 2)(d − 3), corresponding
to all the possible choices of the other αj ’s. If α and β are two non-real roots
of P with |α| ̸= |β|, then taking αi = α, αj = α, αk = β, αℓ = β and using
Propositions 1 and 2 again gives

(|α|2 − |β|2)2 ≫ H−(d−1)(d−2)(d−3).

Taking square roots divides the exponent by 2, and then with the help of the
reciprocal polynomial XdP (X−1), the same argument as in the case of absolute
real-complex gap leads to

abs sep(P ) ≫ H−(d−1)(d−2)(d−3)/2,

which concludes the proof of Theorem 1.
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2.4 Gap on the real parts of roots

The same approach gives bounds on gaps between real parts of roots. There are
again three cases: real-real, real-complex, complex-complex. The real-real case
is simply the corresponding case in root separation, which is already known.
For the real-complex case, we consider the following polynomial

T1(X) = a
3
2 (d−1)(d−2)

d

∏
i<j,k/∈{i,j}

(
X − (αi + αj − 2αk)

)
,

while the complex-complex case relies on

T2(X) = a
(d−1)(d−2)(d−3)
d

∏
i<j,
k<ℓ,

{i,j}∩{k,ℓ}=∅

(
X1/2 − (αi + αj − αk − αℓ)

)
.

The analysis is as before. Both T1 and T2 can be seen to be polynomials in X.
They are symmetric polynomials in the αi’s. Their degrees in the αi’s is the
one used in the exponent of ad. The smallest nonzero root of T1 divided by 2
is a lower bound of the real-complex real-part gap, while T2 gives the complex-
complex case. Propositions 1 and 2 then give the following.

Theorem 3. Let P ∈ Z[X] be a polynomial of degree d and let α and β be two
of its roots such that ℜα ̸= ℜβ, then

|ℜα−ℜβ| ≫


H(P )−(d−1), if ℑα = ℑβ = 0,

H(P )−3(d−1)(d−2)/2, if ℑα = 0,

H(P )−(d−1)(d−2)(d−3)/2, otherwise.

2.5 Gap on the imaginary parts of roots

The situation for imaginary parts is similar. First, if one of the roots is real
and the other is not, then as already mentioned, Mahler’s bound applies to the
imaginary part. If both roots are nonreal but not conjugates, then the same
polynomial T2 as in the case of the real parts can be used, with (αi, αk) and
(αj , αℓ) taking the roles of conjugate roots. In the case when one of the roots
is purely imaginary, then the following generalization of T1 can be used

T3(X) = a
3(d−1)(d−2)
d

∏
i<j,k/∈{i,j}

(
X − (αi − αj − 2αk)

2
)
.

This discussion leads to the following.

Theorem 4. Let P ∈ Z[X] be a polynomial of degree d and let α and β be two
of its roots such that ℑα ̸= ℑβ, then

|ℑα−ℑβ| ≫


H(P )−(d−1), if ℑα = 0,

H(P )−3(d−1)(d−2)/2, if ℜα = 0,

H(P )−(d−1)(d−2)(d−3)/2, otherwise.
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3 Experiments and bounds in low degree

As already mentioned, even in the case of Mahler’s bound, the tightness of the
exponent is unknown. The situation is similar for the bounds obtained in the
previous section.

We now turn to experiments that lead to lower bounds on the asymptotic
separation. In order to obtain such an asymptotic result, we search for families
of polynomials exhibiting a small absolute separation. In particular, we would
like to approach a tight estimate in the case of low degrees, as a first step for a
better understanding of the actual growth of these bounds with the degree. We
use two complementary types of experiments.

Exhaustive search First, we perform an exhaustive search for polynomi-
als of small absolute separation given a degree and a bound on the height.
More specifically, given a degree, we search through all polynomials with inte-
ger coefficients within a given height, in case a pattern can be discerned in the
polynomials with small absolute separation. In some cases indeed, the roots of
these polynomials seem to concentrate in certain locations, letting us refine the
experiment and search more closely. This is successful in degree 3, where we
find a family of polynomials letting us prove the tightness of the exponent −4 in
that case (Proposition 3 below). However, even if some time is saved by taking
into account various symmetries, the number of polynomials to be tested is too
large for this approach to be used for large height and even more so for large
degree.

Perturbations While these exhaustive searches are purely numerical, our
second type of experiments relies heavily on symbolic computation. In degree d,
we consider polynomials of the form

Pd(X, ϵ) = Rd(X) + ϵQd(X).

Here, for a given r ∈ N+, Rd(X) is a polynomial with several roots of absolute
value r, having factors of the typeX±r andX2+aX+r2, with a an integer such
that |a| < 2r. The polynomial Qd(X) is subject to max(deg(Rd), deg(Qd)) = d
so that Pd(X, ϵ) has degree d in X. For X1(ϵ) and X2(ϵ) two roots of Pd(X, ϵ)
such that X1(0) and X2(0) are roots of selected factors of Rd, we compute a
series expansion of these roots of Pd in powers of ϵ, from which we deduce

|Xi(ϵ)|2 =
∑
k≥0

ci,kϵ
k.

This computation is purely symbolic, meaning that the ci,k’s are computed
as explicit polynomials in the coefficients of Rd and Qd. We then look for
integer solutions of the polynomial system {c1,k = c2,k, 1 ≤ k ≤ h − 1} that
do not satisfy c1,h = c2,h. Such solutions give a polynomial Pd(X, ϵ) such that
|X2(ϵ)|2 − |X1(ϵ)|2 is not zero but is O(ϵh), so that the polynomial P ∗

d (X) =
MPd(X,M−1) with integer M has integer coefficients and absolute separation
O(H(P ∗

d )
−h).
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degree, separation P (X) separation
max height type

3,10 |α− β| 5X3 + 8X2 − 9X + 2 1.421e-2
3,20 |α− β| 14X3 + 17X2 − 13X + 2 4.938e-3
4,10 |α− β| 3X4 − 9X3 − 10X2 + 7X − 1 4.187e-3
4,20 |α− β| 9X4 − 13X3 − 14X2 + 17X − 4 5.974e-4
5,10 |α− β| 9X5 +X4 − 4X3 − 9X2 − 3X + 7 4.656e-4
3,10 ||α| − |β|| 10X3 − 3X2 − 2X + 3 5.394e-4
3,20 ||α| − |β|| 17X3 − 9X2 − 7X + 8 1.233e-5
4,10 ||α| − |β|| X4 − 6X3 − 7X2 + 5X + 6 2.276e-6
4,20 ||α| − |β|| 5X4 − 17X3 − 20X2 + 11X + 12 1.034e-7
5,10 ||α| − |β|| 9X5 − 5X4 − 4X3 − 2X2 − 2X − 9 1.459e-7
3,10 |ℜα−ℜβ| 7X3 + 5X2 + 5X + 1 5.952e-4
3,20 |ℜα−ℜβ| 19X3 + 8X2 + 15X + 2 2.218e-5
4,10 |ℜα−ℜβ| 9X4 + 5X3 −X2 + 5X − 1 1.472e-6
4,20 |ℜα−ℜβ| 13X4 + 3X3 + 5X2 + 19X − 7 1.669e-7
5,10 |ℜα−ℜβ| 7X5 − 6X4 − 6X3 − 5X2 +X + 1 2.511e-7
3,10 |ℑα−ℑβ| 10X3 + 6X2 − 6X + 1 2.403e-2
3,20 |ℑα−ℑβ| 19X3 + 9X2 − 19X + 5 5.082e-3
4,10 |ℑα−ℑβ| 10X4 +X3 + 10 6.250e-5
4,20 |ℑα−ℑβ| 20X4 +X3 + 20 7.813e-6
5,10 |ℑα−ℑβ| 5X5 − 8X4 + 6X3 + 5X2 − 5X + 8 1.061e-7

Table 1: Record polynomials for small degree and height

Results The rest of this section reports on these experiments. The results of
an exhaustive search are first presented in §3.1. Next, we discuss a family of
polynomials of degree 3 proving the tightness of the exponent−4 by an argument
we have been unable to generalize. In degrees 4, 5 and 6, the perturbative
approach lets us find exponents −5,−6,−7.

3.1 Exhaustive search for small degree and height

The results of an exhaustive search are displayed in Table 1. It appears that
the classical separation seems to be larger than the three other ones (absolute
separation, separation of the real or imaginary parts), whose orders of growth
seem similar.

For the same degrees and larger height, a fully exhaustive search becomes
too time-consuming. Instead, we performed extensive experiments. The result-
ing record values are reported in Table 2. For degree 3 (resp. degree 4, degree
5), we computed up to height 200 (resp. height 120, height 30). As expected,
polynomials with small separation tend to have larger height. To balance this
bias, according to the form of the bounds on the separation, we filter the poly-
nomials of interest by their quality, defined as − ln(S)/ ln(H) for a polynomial
of height H and separation S, and display only polynomials of “high quality”.
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P (X) abssep − log abssep
log H(P )

2X3 +X2 −X − 1 5.309e-2 4.24
13X3 + 11X2 + 8X + 5 3.462e-5 4.00
8X3 + 7X2 − 9X − 17 2.038e-5 3.81
17X3 + 9X2 − 7X − 8 1.233e-5 3.99
17X3 + 9X2 + 7X + 8 1.957e-5 3.83

102X3 + 97X2 + 71X + 40 1.532e-8 3.89
153X3 + 97X2 − 71X − 60 4.492e-9 3.82

71X3 + 112X2 + 153X + 181 1.681e-9 3.89
181X3 + 153X2 + 112X + 71 9.007e-10 4.01

X4 −X2 − 2X − 3 8.615e-4 6.42
X4 −X2 + 2X − 3 8.615e-4 6.42

3X4 + 3X3 +X2 − 2X − 4 4.585e-5 7.21
4X4 + 2X3 −X2 − 3X − 3 3.655e-5 7.37
5X4 + 3X3 +X2 −X − 3 5.893e-5 6.05
X4 + 6X3 − 7X2 − 5X + 6 2.276e-6 6.68
6X4 + 5X3 − 7X2 − 6X + 1 2.497e-6 6.63

11X4 + 7X3 −X2 − 10X − 16 2.671e-8 6.29
16X4 + 10X3 +X2 − 7X − 11 2.266e-8 6.35
3X4 + 6X3 − 4X2 + 3X − 18 1.799e-8 6.17
18X4 + 3X3 + 4X2 + 6X − 3 1.095e-8 6.34

X4 + 40X3 + 11X2 − 14X − 55 3.384e-11 6.02
55X4 + 14X3 − 11X2 − 40X − 1 2.724e-11 6.07
X5 +X4 + 2X3 + 3X2 − 2X + 2 2.697e-5 9.58
2X5 +X4 −X3 +X2 −X − 1 1.051e-3 9.89

2X5 +X4 +X3 − 2X2 + 2X − 2 2.790e-3 8.49
2X5 +X4 +X3 −X2 −X − 1 3.800e-3 8.04

2X5 +X4 + 2X3 − 2X2 +X − 2 2.130e-3 8.88
2X5 +X4 + 2X3 −X2 −X − 2 3.350e-3 8.22

2X5 +X4 + 2X3 + 2X2 − 2X − 2 2.130e-3 8.88
2X5 + 2X4 +X3 −X2 − 2 6.473e-4 10.59

4X5 + 2X4 − 4X3 + 3X − 2 1.463e-6 8.03
8X5 + 5X4 − 4X3 + 4X2 − 5X − 4 5.185e-8 8.07

Table 2: Polynomials with small absolute separation
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n height abssep − log abssep
log H(P )

2 12 5.093e-3 2.12
5 123 2.447e-6 2.68
10 2,340 4.643e-11 3.36
20 1,694,157 1.690e-23 3.66
50 642,934,702,584,732 8.146e-58 3.86

Table 3: Absolute separation for cubic polynomials Pn from Proposition 3

Observing that cubic polynomials of high quality in Table 3, namely 13x3 +
11x2+8x+5 and 181x3+153x2+112x+71, have roots in similar locations pushed
us to refine our search in this vicinity and eventually led us to an unexpected
family leading to a proof of optimality in the next section.

For polynomials of degree 4 up to height 120, the results in Table 2 seem
to suggest a bound of at most O(H(P )−6), which should be reached by a real-
complex gap, as the complex-complex gap only gives O(H(P )−3). This is far
from the theoretical bound O(H(P )−12) from Theorem 1. The best exponent
we obtain by perturbations is −5, see §3.4.

For polynomials of degree 5, we only have results up to height 30 and even
those have been obtained by focusing in some cases of real-complex gap. Here,
the bound on the height seems to be too small to observe a family. We have two
polynomials with good quality that are relatively similar, namely 2x5 + x4 −
x3 + x2 − x− 1 and 8x5 + 5x4 − 4x3 + 4x2 − 5x− 4. No other polynomial close
to these two are observed with height at most 30.

3.2 The case of degree 3

Proposition 3. The family of cubic polynomials

Pn(X) = pn(3X
3 − 2X2 + 4X − 6) + 6qn(X

3 −X2 + 1) ∈ Z[X],

where (pn/qn)n is the sequence of convergents of the continued fraction expan-
sion of

√
3, has the property that

abs sep(Pn) ≪ H(Pn)
−4, n → ∞.

Theorem 1 shows that abs sep(Pn) ≫ H(Pn)
−4, so that the exponent −4

is optimal in degree 3. The absolute separations of a few polynomials in that
family are displayed in Table 3. The height of the polynomials Pn increases
exponentially with n.

Proof. It is readily checked that the bivariate polynomial

P (X,Y ) =

(
−1

3
X2 +

1

2
X3 +

2

3
X − 1

)
Y +X3 −X2 + 1 (2)
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is such that for Y =
√
3, its 3 roots have absolute value exactly

√
3−1. A small

perturbation Y =
√
3 + ϵ sends the real root to

√
3− 1 + (2−

√
3)ϵ+O(ϵ2),

while the complex roots have absolute value
√
3− 1 + (2−

√
3)ϵ+O(ϵ2),

with a different constant in the O() term so that the difference of the absolute
values is O(ϵ2). Evaluating Y at a convergent p/q of the continued fraction
expansion of

√
3 leads to ϵ = |p/q −

√
3| < 1/q2, so that the difference of the

absolute values of roots is O(q−4). The polynomial with integer coefficients ob-
tained by normalizing P (X, p/q) has coefficients growing asymptotically like q,
giving −4 as a bound in the exponent.

Further experiments In an unsuccessful attempt to generalize the nice fam-
ily of cubic polynomials in Proposition 3 to higher degrees, we analyzed more
precisely the properties of the bivariate polynomial of Equation (2). A polyno-
mial a3X

3 + · · ·+ a0 with simple roots, all of the same nonzero absolute value,
has coefficients that satisfy

a31a3 − a0a
3
2 = 0. (3)

The set of such polynomials is therefore contained in an algebraic set of dimen-
sion 3 in R4. The question is to find a good point on this set whose perturbations
behave well with respect to the absolute separation.

Polynomials in that set factor as (a2X + a1) times a quadratic polynomial,
whose discriminant has to be negative for its roots to have identical absolute
value. This gives necessary and sufficient conditions: a1a2 < 0 ≤ a1a3 ≤
a22 ≤ 3a1a3. These conditions define a region on our algebraic set where all
polynomials have 3 roots of identical absolute value.

A very special property possessed by the polynomial of Equation (2) is that
in its case, the polynomial from Equation (3) factors as a square (1 − Y 2/3)2.
Adding this condition and forcing the perturbation of Y to cancel the constant
and linear coefficients of the expansion of the absolute separation finally leads
to a 3-dimensional set of polynomials of which that of (2) is an instance:

a(X3 + 10c3) + b(3X2 + 6cX)− ((X2 + 4cX)b+ 6ac3)
√
3.

Polynomials in that family all have three roots of identical absolute value, and
replacing

√
3 by convergents to its continued fraction expansion lead to an ex-

ponent 4 for their asymptotic absolute separation.

3.3 Degrees 4 and 6

For d ∈ {4, 6}, we consider the polynomial P = M(Xd−1)−Qd(X), with M an
integer and Qd a polynomial of degree d−1 to be made precise later. AsM tends
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to infinity, the roots of P tend to those ofXd−1. In particular, one of them tends
to −1 and another one tends to cd a root of the d-th cyclotomic polynomial. The
asymptotic expansion in powers of 1/M of the difference between the absolute
values of these roots can be obtained as follows. First the equation P = 0 is
rewritten as

Xd − 1

Qd(X)
=

1

M
. (4)

In the neighbourhood of a root ω of Xd − 1, the left-hand side behaves like

d

ωQd(ω)
(X − ω) +

(
d(d− 1)

2ω2Qd(ω)
− dQ′

d(ω)

ωQd(ω)2

)
(X − ω)2 + · · · .

Power series inversion then gives the asymptotic behaviour of the corresponding
root of Equation (4):

Xω = ω + ωQd(ω)
1

dM
+

(
ω2Qd(ω)Q

′
d(ω)−

(d− 1)

2
ωQd(ω)

2

)
1

d2M2
+ · · ·

Substituting ω by 1/ω gives the expansion of the conjugate root and multiply-
ing them gives the expansion of |Xω|2. Finally, subtracting the values of this
expansion for ω = −1 and ω = cd gives an expansion of the distance between
the squares of these absolute values with coefficients that are polynomials in cd
and in the coefficients of Qd. Cancelling those coefficients up to order 1/Md

gives a system of d equations in the d coefficients of Q. Up to multiplying M by
a constant, when d ∈ {4, 6}, there is only one case when this system has integer
solutions that do not correspond to Qd having a common factor with Xd − 1,
leading to the following.

Proposition 4. Let d ∈ {4, 6} and let M be a positive integer. Consider the
polynomials Pd,M of degree d defined by

Pd,M = M(Xd−1)−Qd(X), with

{
Q4(X) = X3 −X2 +X − 5,

Q6(X) = 9X5 − 9X4 − 26X3 − 9X2 + 9X − 28,

As M tends to infinity, these polynomials have height M and two roots α, β
satisfying

0 <
∣∣|α| − |β|

∣∣ ≪ H(Pd,M )−d−1.

Absolute separations for a few polynomials in these families are given in Table 4.

Proof. Once these polynomials have been found, the proof can be carried out
by hand (and more easily with the help of a computer algebra system). The
polynomial P4,M has roots

z1 = 1− 1

M
− 2

M2
− 11

2M3
− 71

4M4
+O

(
1

M5

)
,

zi = i− i

M
− 1 + 4i

2M2
− 4 + 11i

2M3
− 66 + 143i

8M4
+O

(
1

M5

)
.
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d height abssep − log abssep
log H(P )

4 10 3.716e-5 4.43
4 20 4.183e-7 4.90
4 50 2.653e-9 5.05
4 100 7.175e-11 5.07
4 500 2.055e-14 5.07
4 1000 6.335e-16 5.07
6 102 3.336e-7 3.24
6 103 1.373e-14 4.62
6 104 1.267e-21 5.22
6 105 1.257e-28 5.58
6 1010 1.256e-63 6.29
6 1020 1.256e-133 6.65
6 1030 1.256e-203 6.76

Table 4: Absolute separation for polynomials Pd,M from Proposition 4

Taking the absolute values and subtracting shows that

|z1| − |z2| ∼
|z1|2 − |zi|2

2
= O

(
1

M5

)
.

The same reasoning applies to the polynomial P6,M , with roots

z1 = 1− 19

3M
− 1235

18M2
− 240445

162M3
+ · · ·

z−1+i
√

3
2

=
−1 + i

√
3

2
− 4(1− i

√
3)

3M
− 238− 166i

√
3

9M2
− 33383− 13511i

√
3

81M3
+ · · ·

leading to

|z1| −
∣∣∣z−1+i

√
3

2

∣∣∣ ∼ |z1|2 −
∣∣∣z−1+i

√
3

2

∣∣∣2
2

= O

(
1

M7

)
.

Perturbations of the other roots, namely (1 ± i
√
3)/2, lead to another system

of equations for the coefficients of Q6, but this system does not have integer
solutions.

Further experiments Looking for similar polynomials using different prod-
ucts of cyclotomic polynomials also yields

M(X2 − 1)(X2 +X + 1)−X3 + 3X + 4

with absolute separation in H−5.
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For d = 8, the same computation only produces an exponent −d + 4: the
polynomial system obtained when trying to cancel one more coefficient does not
have any integer solution.

For odd degree d, the use of cyclotomic polynomials in this method only
seems to reach exponent d instead of d+ 1, with examples like

M(X2 + 1)(X − 1) +X2 − 2X + 3, M(X2 −X + 1)(X − 1) + 2X2 − 4X − 3,

in degree 3 and

M(X − 1)(X2 +X + 1)(X2 −X + 1) + 3X4 − 2X3 + 5X2 − 4X + 7,

M(X − 1)(X2 + 1)(X2 −X + 1) + 2X4 − 8X3 + 13X2 − 12X + 7

in degree 5.

3.4 Degree 5

For polynomials of degree 5, exhaustive search cannot reach heights sufficient
to exhibit the beginning of an asymptotic behaviour.

The perturbative approach remains possible, although the polynomial sys-
tems become rapidly too large for the Gröbner basis engine we use, which is
Faugère’s FGb [6]. We consider the polynomial P = MR5(X)−Q5(X), with

R5(X) = (X2 + aX + r2)(X2 + bX + r2),

Q5(X) = X5 + q4X
4 + q3X

3 + q2X
2 + q1X + q0,

where all coefficients are unknowns, and expected to take rational values, with
a and b in the interval (−2r, 2r) so that R5 has four roots of absolute value |r|.
As in the previous case, the equation P = 0 rewrites

R5(X)

Q5(X)
=

1

M
.

Expanding the left-hand side in the neighbourhood of solutions of the factors
of R5 and inverting the power series expansion gives expansions of the cor-
responding perturbed roots X1(ϵ), X2(ϵ) of P . From there, the coefficients
c1,k, c2,k of |X1(ϵ)|2 and |X2(ϵ)|2 for k from 1 to 5 are obtained. These co-
efficients are polynomials in r, a, b and qi for 0 ≤ i ≤ 4. The polynomial system
{c1,k = c2,k, 1 ≤ k ≤ 5} is unfortunately too big for a direct computation by
Gröbner bases. Instead, we run a loop over possible integer values of r, a, b in
a given search range, and use Gröbner bases to determine whether each spe-
cialized system has (not necessarily integral) solutions and to determine the
solution. If the solution happens to be rational, this gives a family with sepa-
ration O(H(P )−6). This is how the following family was found.

Proposition 5. Let M be a positive integer and P5,M be defined by

P5,M = MR5(X)−Q5(X), with

{
R5(X) = (X2 − 9X + 36)(X2 − 11X + 36),

Q5(X) = X5 − 213X3 + 2404X2 − 11088X + 20736.

14



height abssep − log abssep
log H(P )

1010 7.165e-38 3.81
1020 7.164e-98 4.91
1050 7.164e-278 5.56
10100 7.164e-578 5.78
10200 7.164e-1178 5.89
10500 7.164e-2978 5.96

Table 5: Absolute separation for polynomials P5,M from Proposition 5

As M tends to infinity, this polynomial has height O(M) and two roots α, β
satisfying

0 <
∣∣|α| − |β|

∣∣ ≪ H(P5,M )−6.

Again, given the polynomials, the proof is a direct computation of the asymp-
totic absolute separation. Absolute separations for a few polynomials in this
family are given in Table 5.

Note that actually, we get two one-parameter families of such polynomials
with the same R5 as above and

Q5(X) = X5 + qX4 − (20q + 229)X3 + (2700 + 171q)X2

− (13104 + 720q)X + (25920 + 1296q),

Q5(X) = X5 + qX4 − (20q + 213)X3 + (2404 + 171q)X2

− (11088 + 720q)X + (20736 + 1296q).

The family in the proposition is the special case q = 0 of the second one.

4 Conclusion

From our experiments in low degree, it would be tempting to conjecture that a
tight bound on the exponent of the absolute separation in degree d is −d − 1,
but we have not been able to prove this, even for degrees 7 or 8. Even the
degree of the exponent of our lower bounds in Theorem 1 seems too high. The
bounds in Theorem 1 are derived by considering arbitrary triples or quadruples
of roots, without taking into account that some of them are conjugate, so this
approach could make them pessimistic. More deeply, the cubic exponent seems
to be inevitable for a purely algebraic approach: if P = a0+ · · ·+adz

d is written
ad

∏
(z− (xk + iyk)), then xk, yk and x2

k + y2k are generically algebraic of degree
d(d− 1)/2 over Q(a0, . . . , ad), with minimal polynomials having degree d− 1 in
the ai’s, whence again a cubic exponent. Obtaining better bounds thus probably
needs more analytic tools.

Another question which is of a more analytic nature and more directly rel-
evant for the complexity of algorithms on linear recurrences would be to deter-
mine a bound on the minimal distance between the two largest distinct absolute
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values of the roots. For any polynomial, this quantity is at least as large as the
absolute separation, but does it have a different asymptotic behaviour?

On a related matter, Koiran recently used analytic arguments (Rolle’s theo-
rem and Baker’s theory of linear forms in the logarithms of algebraic numbers)
to give a bound on the (classical) root separation for trinomials, with a very
small dependency on the degree [8]. It is not clear to us whether similar results
also hold for the absolute separation.
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