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Abstract. We show that for infinitely many square-free integers q there exist infinitely

many triples of rational numbers {a, b, c} such that a2 + q, b2 + q, c2 + q, ab+ q, ac+ q and

bc+ q are squares of rational numbers.

1. Introduction

Classically, a Diophantine m-tuple is a set {a1, . . . , am} of m non-zero integers with the

property that aiaj + 1 is a square, whenever i ̸= j; such an m-tuple is called rational if we

allow its elements to be non-zero rational numbers.

Fermat found the first Diophantine quadruple in integers {1, 3, 8, 120}. In 1969, Baker

and Davenport [1] proved that Fermat’s set cannot be extended to a Diophantine quintuple.

This result motivated the conjecture that there does not exist a Diophantine quintuples in

integers. The conjecture has been proved recently by He, Togbé and Ziegler [15].

The first example of a rational Diophantine quadruple, the set { 1
16
, 33

16
, 17

4
, 105

16
} was found

by Diophantus, while Euler proved that there exist infinitely many rational Diophantine

quintuples (see [16]), In 1999, Gibbs found the first example of rational Diophantine sextu-

ple { 11
192

, 35
192

, 155
27
, 512

27
, 1235

48
, 180873

16
} (see [13]). In 2017, Dujella, Kazalicki, Mikić and Szikszai

[9] proved that there are infinitely many rational Diophantine sextuples, and alternative

constructions of families of rational Diophantine sextuples are given in [8], [10] and [11]. It

is not known whether there exist any rational Diophantine septuple. More information on

Diophantine m-tuples can be found in the survey article [4].

Dujella and Petričević in [12] introduced the notion of strong rational Diophantine m-

tuple, as a rational Diophantinem-tuple with the additional property that a2i +1 is a rational

square for every i = 1, . . . ,m. They proved that there exist infinitely many strong rational

Diophantine triples. One such example is the set {1976/5607, 3780/1691, 14596/1197}.
Let q be a rational number. A set {a1, . . . , am} of nonzero integers (rationals) is called a

(rational)D(q)-m-tuple, if aiaj+q is a square of a rational number for all 1 ≤ i < j ≤ m. It is

known that for every rational number q there exist infinitely many rational D(q)-quadruples,
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and that there are infinitely many square-free integers q for which there exist infinitely many

rational D(q)-quintuples (see [3, 5]).

In this paper, we will consider the problem which arises, if we combine the two above

mentioned variants of Diophantine m-tuples.

Definition 1.1. Let q be a rational number. A strong rational Diophantine D(q)-m-tuple

is a set of non-zero rationals {a1, . . . , am} such that aiaj+q is a square for all i, j = 1, . . . ,m

(including the case i = j).

As we already mentioned, the case q = 1 was studied in [12]. The case q = −1 was studied

in [7] and it was shown that there exist infinitely many strong rational D(−1)-triples (in

[7] they are called strong Eulerian triples because of the direct connection between D(−1)-

m-tuples and so called Eulerian m-tuples, which are sets with property that xy + x + y =

(x+ 1)(y + 1)− 1 is a perfect square for all elements x, y of the set).

Our main result is the following theorem.

Theorem 1.2. There exist infinitely many square-free integers q with the property that there

exist infinitely many strong rational Diophantine D(q)-triples.

2. Construction of strong rational Diophantine D(q)-pairs and triples

One may see easily that if {a1, . . . , am} is a strong rational Diophantine D(q)-m-tuple,

then {za1, . . . , zam} is a strong rational DiophantineD(z2q)-m-tuple. Therefore, it is enough

to consider the problem of existence of strong rational Diophantine D(q)-triples for square-

free integers q, and we will do so in Section 3. Also, since we may choose z = 1/a1 there is

no lost of generality if we assume that a1 = 1 and consequently 12 + q = r2, i.e. q = r2 − 1.

We will now explain a construction of strong rational Diophantine D(q)-pairs which uses

properties of related elliptic curves.

Proposition 2.1. For all rational numbers r, r ̸= 0,±1,±1
2
, there exist infinitely many

rational numbers b such that {1, b} is a strong rational Diophantine D(r2 − 1)-pair.

Proof: For convenience, we set q = r2 − 1. We consider the elliptic curve Eq defined by

the equation

Eq : y2 = (x+ q)(x2 + q) = x3 + qx2 + qx+ q2.

The curve Eq is non-singular for q ̸= 0,−1, i.e. for r ̸= 0,±1, so in what follows we will

always assume that r ̸= 0,±1. Some obvious rational points on Eq are

T q = (−q, 0), P q = (0, q), Sq = (1, 1 + q).

It is easily checked that T q + P q + Sq = O.

Any rational number b such that {1, b} is a strong rational Diophantine D(q)-pair, is the

x-coordinate of a point on Eq.
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Standard 2-descent (see e.g. [17, 4.2, p.85]) yields that the x-coordinate b of any point in

2Eq(Q) satisfies that {1, b} is a strong rational Diophantine D(q)-pair. Hence, we will finish

the proof if we show that Eq has rank at least 1 over Q.

We notice that

2Sq =

(
1

4
+ q,

q

2
+

1

8

)
=

(
5

4
− r2,

r2

2
− 3

8

)
.

Assume for the moment that r is an integer. Since the y-coordinate of 2Sq cannot be an

integer, by the Lutz-Nagell theorem Sq has infinite order and rank(Eq) is at least 1. Let us

consider now the general case when r is a rational number. We want to show that again

the point Sq has infinite order. By Mazur’s classification of torsion points of elliptic curves

over Q, it is enough to check that kSq is not the point at infinity for k ≤ 12 by considering

rational roots of the denominators of the coordinates. We obtain that the only rational roots

of denominators are r = ±1
2
, in which cases the point Sq is of order 3. For all other rational

numbers r, the point Sq is of infinite order. 2

By the proof of Proposition 2.1, we may use the x-coordinate of 2kSr2−1, k is an integer,

to construct families of strong rational Diophantine D(r2 − 1)-pairs. However, since the

x-coordinate of Sr2−1 (which is equal to 1) satisfies that conditions that both x + r2 − 1

and x2 + r2 − 1 are rational squares, by 2-descent, we conclude that we may also use the

x-coordinate of (2k + 1)Sr2−1.

For example, the x-coordinates of 2Sr2−1, 3Sr2−1 and 4Sr2−1 yield that the pairs{
1,

5

4
− r2

}
,

{
1,

−16r4 + 16r2 + 1

16r4 − 8r2 + 1

}
,

{
1,

256r8 − 768r6 + 864r4 − 496r2 + 145

256r4 − 384r2 + 144

}
are D(r2 − 1)-pairs.

By extending the first of these three families of pairs, we will construct infinitely many

strong rational Diophantine D(r2 − 1)-triples for rational numbers r of certain form. More

precisely, we prove the following proposition.

Proposition 2.2. For any rational number t different from 0, ±1

5
, ±3

5
, ±7

5
or ± 7

15
, the

triple {
1,−625t4 − 930t2 + 49

1024 t2
,−(5t+ 1)(5t− 1)(5t+ 7)(5t− 7)

1600 t2

}
is a strong rational Diophantine D(q)-triple, with

q =
(t− 1)(t+ 1)(25t+ 7)(25t− 7)

1024 t2
.

Proof: In what follows we will use the symbol � to denote a square of a rational number.

A strong rational Diophantine D(q)-triple {a, b, c} amounts to the following conditions being
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simultaneously verified:

a2 + q = �aa, b2 + q = �bb, c2 + q = �cc,

ac+ q = �ac, ab+ q = �ab, bc+ q = �bc.

We set q = r2 − 1, a = 1, and b =
5

4
− r2, for a rational number r ̸= 0,±1,±1

2
.

We want to find c, different from 1 and b, such that {1, b, c} is a strong Diophantine

D(q)-triple. From the condition c+ q = s2, we shall write c = s2 − r2 + 1, for some rational

number s. We search for such values of the form s = kr. The condition bc + q = �bc then

becomes

p(k, r) =
5

4
r2k2 − r4k2 − 5

4
r2 + r4 +

1

4
= �bc.

This is possible for the values of k that make the discriminant of p(k, r) vanish. The dis-

criminant of p(k, r), with respect to r, is equal to

− 1

64
(5k − 3)2(5k + 3)2(k − 1)3(k + 1)3,

so to have c ̸= 1 we can choose k = 3/5. Then p(3/5, r) =
(

8r2−5
10

)2

. Thus, the only

condition left is c2 + q = �cc, with c = −16

25
r2 + 1, that translates into

1

625
r2(256r2 − 175) = �cc.

This implies that we need to find t ∈ Q such that

(256r2 − 175) = (16r + 25t)2,

that results into the equality r = − 1

32

25t2 + 7

t
. Substituting this value in the formulas for

b, c, and q, we finally obtain that the triple{
1,−625t4 − 930t2 + 49

1024 t2
,−(5t+ 1)(5t− 1)(5t+ 7)(5t− 7)

1600 t2

}

is a strong rational Diophantine D

(
(t− 1)(t+ 1)(25t+ 7)(25t− 7)

1024 t2

)
-tuple. Finally, the

two elements different from 1 are distinct if and only if t is different from ±3

5
or ± 7

15
. 2
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3. Proof of Theorem 1.2

From Proposition 2.2, we only need to prove that, for infinitely many square-free integers

q, there are infinitely many rational numbers t such that

(t− 1)(t+ 1)(25t+ 7)(25t− 7)

1024 t2
= qw2,

for some rational number w. Then by dividing all elements of the triple from Proposition

2.2 by w, we get a strong rational D(q)-triple.

In other words, we need to study the quartic curve Qq : qv
2 = (t−1)(t+1)(25t+7)(25t−7).

The latter curve is the q-quadratic twist of the curve Q : v2 = (t−1)(t+1)(25t+7)(25t−7).

The quartic curve Q is birationally equivalent, by the substitutions t = 144+x
144−x

, v = 576y
(x−144)2

,

to the elliptic curve described by the Weierstrass equation:

E1 : y
2 = x(x+ 81)(x+ 256);

similarly, Qq is birationally equivalent, by the same substitutions, to

Eq : qy
2 = x(x+ 81)(x+ 256).

We will conclude our proof if we can find infinitely many square-free q for which rank(Eq) ≥
1. We will follow the reasoning from [5]. It is well-known (see e.g. [6]) that for the elliptic

curve given by the equation y2 = f(x), the point (u, 1) is a rational point of infinite order

in Ef(u)(Q). By writing u = u1/u2, we get that for all integers q of the form

(1) q = u1u2(u1 + 81u2)(u1 + 256u2)

the curve Eq has positive rank. This gives us infinitely many square-free values of q for

which the rank is positive, and thus for which there exist infinitely many strong rational

D(q)-quintuples. Indeed, for fixed ε > 0 and sufficiently large N , there are at least N1/2−ε

square-free integers q, |q| ≤ N , of the form (9) (see e.g. [14]).

�

4. Examples and remarks

We computed the rank of Eq for small values q by mwrank [2], and obtained that rank is

positive for the following square-free integers in the range |q| < 100:

-5, -6, -7, -11, -17, -19, -21, -22, -23, -29, -30, -34, -35, -37, -38, -39, -43, -46, -51, -55,

-57, -58, -61, -62, -66, -67, -69, -74, -77, -78, -79, -83, -85, -86, -87, -91, -93, -94, -95,

2, 6, 10, 13, 15, 17, 23, 26, 29, 30, 31, 33, 35, 37, 42, 46

47, 53, 55, 58, 59, 66, 69, 77, 78, 79, 82, 91, 93, 95.
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In next table we give some examples of strong rational D(q)-triples {a, b, c}, for small val-

ues of q, obtained by the construction from Theorem 1.2. We provide also the corresponding

parameter t.

t q a b c

37

125
−11

370

27

21122

4995

75578

13875

11

25
−7

44

9

1051

396

736

275

101

155
−6

3131

684

21031705

8566416

591745

237956

−23

25
−5

23

3

709

276

1827

575

−119

457
2

7769

1638

38893009

50902488

50817649

35348950

− 23

265
6 −1219

1188

32386295

5792688

542735

160908

1

31
10

31

66
−173279

8184
−229437

17050

1

25
13

2

3
−58

3
−306

25

Just for fun, we also give a triple for q = 2019:

a = −
108425648984099462722723028577175690286281358594075905

1979956008273178460383709106649735645388794922519592
,

b =
19903622160350297465727113805280431196879309182571712631429120369343905672609842407986879203598345282474239

858712060627945518172033052697448822731672169127032763561281839945494931723647684264003999284669990523040
,

c =
2314875761476160622113200620592571545156501721172189311604105086986000693279887159122625184996952958005759

596327819880517720952800731039895015785883450782661641362001277739927035919199780738891666169909715641000
.

Remark 4.1. In Theorem 1.2, the existence of infinitely many square-free integers n for

which there are infinitely many D(n)-triples mounts down to investigating the Mordell-Weil

rank of the quadratic twists Eq : qy
2 = x(x+81)(x+256). Goldfeld’s minimalist conjecture

asserts that for 50% of square-free integers q, one would expect that rank(Eq) is positive,

hence there are infinitely many strong rational D(q)-triples for at least 50% of square-free

integers q. See [5] for reasoning how the Parity Conjecture implies that for q’s in certain

arithmetic progressions the rank of Eq is odd, and hence positive.
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Remark 4.2. Note that the elliptic curve E1, given by the equation y2 = x(x+81)(x+256)

has rank 0 and torsion group Z/2Z×Z/8Z. For curves with such torsion group it is known

that there are infinitely many quadratic twists with rank ≥ 4 (see [18, 19]).
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