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Abstract

We study root separation for reducible monic integer polynomials
of degree four. If H(P ) is the height and sep(P ) the minimal distance
between two distinct roots of a separable integer polynomial P (x), and
sep(P ) = H(P )−e(P ), we show that lim sup e(P ) = 2, where limsup is
taken over all reducible monic integer polynomials P (x) of degree 4.

1 Introduction

The height H(P ) of an integer polynomial P (x) is the maximum of the
absolute values of its coefficients. For an integer polynomial P (x) of degree
d ≥ 2 and with distinct roots α1, . . . , αd, we set

sep(P ) := min
1≤i<j≤d

|αi − αj |

and define e(P ) by
sep(P ) := H(P )−e(P ).

For an infinite set S of integer polynomials containing polynomials of arbi-
trary large height, we define

e(S) = lim sup
P (X)∈S,H(P )→+∞

e(P ).

In this note we will be concerned with reducible monic polynomials of
degree four with integer coefficients. Therefore, we introduce notation RMd
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for the set of all reducible monic polynomials of degree d with integer coef-
ficients.

First, we briefly summarize what is known about bounds on e(S) if S
is some class of integer polynomials of small degree. A classical result of
Mahler [5] asserts that if S contains only polynomials of degree d, then
e(S) ≤ d− 1.

The case of quadratic polynomials is almost trivial and won’t be dis-
cussed further:

d = 2 general monic

irreducible e = 1 e = 0

reducible e = 1 e = 0

For cubic polynomials, the case of general (i.e. nonmonic) polynomials
was first solved by Evertse [4] and later Schönhage [6] gave an easier con-
structive proof. In the monic case Bugeaud and Mignotte [3] proved the
lower bound e(M3) ≥ 3

2 , where M3 is the set of monic cubic polynomials
with integer coefficients. They also showed that e(M3) = 3

2 is equivalent to
Hall conjecture. Proving that e(RM3) = 1 is not hard when we notice that
a polynomial from this set is a product of a linear and a quadratic polyno-
mial, both monic and with integer coefficients because of Gauss’s Lemma.
In the next table we summarize known results for d = 3:

d = 3 general monic

irreducible e = 2 e ≥ 3
2

reducible e = 2 e = 1

Until now no exact values when d = 4 were known, just the lower bounds
given in the following table:

d = 4 general monic

irreducible e ≥ 13
6 e ≥ 3

2

reducible e ≥ 7
3 e ≥ 2

The bound for nonmonic irreducible case arises from a general construction
by Bugeaud and Dujella [2] which in this special case gives e((P 4,n(x))n∈N) =
13
6 , where

P 4,n(x) = (20n4 − 2)x4 + (16n5 + 4n)x3 + (16n6 + 4n2)x2 + 8n3x+ 1.
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For nonmonic reducible polynomials, a recent unpublished result by Bugeaud
and Dujella, shows that the sequence

P̃4,n(x) =
(
(2n+ 1)x3 + (2n− 1)x2 + (n− 1)x− 1

)(
(n2 + 3n+ 1)x− (n+ 2)

)
gives e ≥ e((P̃4,n(x))n∈N) = 7

3 . The bound for monic irreducible polynomials
e ≥ 3

2 is deduced by looking at the sequence

P̂4,n(x) = (x2 − nx+ 1)2 − 2(nx− 1)2, n ∈ N

(see Bugeaud and Mignotte [3]). Finally, for reducible monic polynomials,
it follows from a general case discussed in [3] that e(RM4) ≥ 2. While
the proof from [3] is nonconstructive, in Section 2 we establish the same
inequality by exhibiting a set S ⊆ RM4 such that e(S) = 2. In Section 3
we prove that e(RM4) ≤ 2. By putting together the results from Sections
2 and 3, we obtain the main result of this paper, which gives the first exact
value in the above table for d = 4.

Theorem 1 It holds that e(RM4) = 2.

Furthermore, in Section 4, we show that if the coefficients of polynomials
in the sequence S = (Pn(x))n∈N ⊆ RM4 grow polynomially in n, we must
have a strict inequality e(S) < 2. But we also show that we can choose such
a sequence so that e(S) is arbitrarily close to 2. More precisely, we prove
the following theorem.

Theorem 2 If S = (Pn(x))n∈N ⊆ RM4 is a sequence of polynomials whose
coefficients are polynomials in n, then e(S) < 2. For any ε > 0, there is a
a sequence of polynomials S = (Pn(x))n∈N ⊆ RM4 whose coefficients are
polynomials in n such that e(S) > 2− ε.

A survey of results on separation of roots for integer polynomials of
general degree can be found in the paper by Bugeaud and Mignotte [3] (see
also [2]).

2 The constructive proof of e(RM4) ≥ 2

We want to find a sequence of polynomials S = (Pn(x))n∈N ⊆ RM4 such
that e(S) = 2. We look at integer polynomials of the type

P (x) = (x2 + rx+ s)(x2 + ax+ b),
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where r and s are fixed while a and b depend on them and on n such that
one root of the polynomial in the first bracket is very close to a root of the
polynomial in the second bracket.

Choose r and s such that the roots λ1, λ2 of the polynomial R(x) =
x2 + rx + s ∈ Z[x] satisfy λ = λ1 > 1 > λ2 > 0. Also, let (an)n∈N
be an increasing sequence of positive integers that satisfies the recurrence
an+2 + ran+1 + san = 0 whose characteristic polynomial is R(x). Hence,

an = c1λ
n
1 + c2λ

n
2 = c1λ

n + c2
s

λn
,

for some constants c1, c2.
Assume that λ+ ε is a root of the polynomial x2 + ax+ b ∈ Z[x]. Then

we have
(λ+ ε)2 + a(λ+ ε) + b = 0

ε2 + (2λ+ a)ε+ (a− r)λ+ (b− s) = 0.

Therefore 2ε = −(2λ+ a)±
√

(2λ+ a)2 − 4
(
(a− r)λ+ (b− s)

)
. If we have

2λ+ a > 0 and |4
(
(a− r)λ+ (b− s)

)
| < (2λ+ a)2, (1)

then we get a smaller |ε| for the + sign, so

|2ε| =
∣∣∣∣ 4

(
(a− r)λ+ (b− s)

)
−(2λ+ a)−

√
(2λ+ a)2 − 4

(
(a− r)λ+ (b− s)

)∣∣∣∣
�
∣∣∣∣(a− r)λ+ (b− s)

2λ+ a

∣∣∣∣
(2)

(here M � N stands for M � N and N �M , where the implicit constants
depend only on r and s). At this point we see that by choosing

a− r = an, r ≤ −1, b− s = −an+1, s = 1,

conditions on λ1, λ2, (an)n∈N and inequalities (1) are fulfilled, while from
(2) we have

sep(Pn) = |ε| �
∣∣∣∣ anλ− an+1

2λ+ an + r

∣∣∣∣ =
∣∣∣∣c1λn+1 + c2

λn−1 − c1λn+1 − c2
λn+1

2λ+ c1λn + c2
λn + r

∣∣∣∣
� 1
λ2n
� max{1, |a|, |b|}−2 � H(Pn)−2

and thus
e((Pn)n∈N) = 2,
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where
Pn(x) = (x2 + rx+ 1)

(
x2 + (r + an)x+ (1− an+1)

)
.

This shows that e(RM4) ≥ 2.

Note that we could have taken s = −1 before and if we were trying to
approach the smaller root i.e. λ2, we would get a similar family of polyno-
mials

Pn(x) = (x2 + rx− 1)
(
x2 + (r − an+1)x− (an + 1)

)
,

and after substitution x 7→ −x, we would get

Pn(x) = (x2 − rx− 1)
(
x2 + (−r + an+1)x− (an + 1)

)
.

In case of a1 = 1, a2 = 1, r = −1, the above polynomial is

Pn(x) = (x2 + x− 1)
(
x2 + (1 + Fn+1)x− (Fn + 1)

)
where (Fn)n∈N is the Fibonacci sequence. This last sequence of polynomi-
als, which was first obtained by numerical experiments, was the motivating
factor for this study.

3 The proof of e(RM4) ≤ 2

Let us prove that e(RM4) ≤ 2. In other words, the best separation of roots
we can get in the case of a reducible separable monic quartic polynomial
P (x) ∈ Z[x] is �

(
H(P )

)−2. (All the constants implied in �,�,� in this
section are absolute.)

We have to look at two cases: when the polynomial has a cubic irre-
ducible factor and when the polynomial has a quadratic irreducible factor.
Because of Gauss’s Lemma all the divisors in Q[x] of P (x) will actually be
from Z[x]. Therefore, the case when P (x) is a product of linear factors is
trivial.

If we have P (x) = (x−k)(x3 +ax2 +bx+c), where a, b, c, k ∈ Z, then by
the result of Mahler we know that the roots of Q(x) = x3 +ax2 + bx+ c can
be no closer than � (max{1, |a|, |b|, |c|})−2. Because of Gelfond’s Lemma
(see e.g. [1, p. 221]), we have

1
16

max{1, |k|}max{1, |a|, |b|, |c|} ≤ H(P ) ≤ 16 max{1, |k|}max{1, |a|, |b|, |c|},
(3)

so sep(Q) � H(P )−2. There only remains to check whether we can have
a root of Q(x) close to k. Let us take Q(k + ε) = (k + ε)3 + a(k + ε)2 +
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b(k + ε) + c = 0 where without loss of generality we can suppose |ε| < 1.
It is obvious that |k + ε| < |a|+ |b|+ |c|+ 1 must hold, otherwise we get a
contradiction. Thus, from (3) we get |k| � H(P )1/2. Since P (x) does not
have multiple roots and Q(x) ∈ Z[x] we have

1 ≤ |Q(k)| = |Q(k + ε)−Q(k)| = |Q′(t)| · |ε|,

where t ∈ (k, k + ε) ⊂ 〈k − 1, k + 1〉. But, using (3) and |k| � H(P )1/2, we
get

|Q′(t)| = |3t2 + 2at+ b| ≤ 3(|k|+ 1)2 + 2|a|(|k|+ 1) + |b| � H(P ).

Finally, we arrive at |ε| ≥ 1/|Q′(t)| � H(P )−1.

If P (x) = Q1(x)Q2(x), where Q1(x), Q2(x) ∈ Z[x] are two quadratic
polynomials, then we have from Gelfond’s Lemma

1
16

H(Q1) H(Q2) ≤ H(P ) ≤ 16 H(Q1) H(Q2). (4)

Since for quadratic polynomials we have sep(Qi)� H(Qi)−1, we only have
to check the proximity of the roots α and β of Q1(x) and Q2(x), respectively.
Theorem A.1 from [1, p. 223] states that in our separable case

|α− β| ≥ 2−13−5/2 ·H(Q1)−2 H(Q2)−2 ·max{1, |α|}max{1, |β|} � H(P )−2.

Hence, we proved that e(RM4) ≤ 2, which concludes the proof of Theorem
1.

4 Polynomial growth of coefficients

In Section 2 we exhibited a family of reducible monic polynomials Pn(x)
whose coefficients grow exponentially in n such that sep(Pn) � H(Pn)−2.

We will show that this is not possible if the coefficients grow polynomi-
ally. More precisely, let Pn(x) = P (n, x) ∈ Z[n, x] be a polynomial which is
monic of degree 4 in x and such that for every positive integer n′, polyno-
mial Pn′(x) ∈ Z[x] is reducible. This is the exact meaning of conditions in
the first statement of Theorem 2. Hilbert’s Irreducibility Theorem (see e.g.
Zannier [7]) implies that

Pn(x) = Qn,1(x)Qn,2(x),

where Qn,1(x) and Qn,2(x) are monic polynomials in x whose coefficients are
integer polynomials in n. Note that because of the previous section, the case
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of a reducible monic polynomial with a linear factor is not very interesting.
Therefore, we will assume that Qn,1(x) and Qn,2(x) are irreducible quadratic
polynomials in x without common roots, so

Qn,1(x) = x2 + r(n)x+ s(n), Qn,2(x) = x2 + a(n)x+ b(n),

where r(n), s(n), a(n), b(n) ∈ Z[n]. For the sake of simplicity, we will most
often omit n. As already mentioned, we can assume that the closest roots
of P are a root of Q1 and a root of Q2. So, without loss of generality, let us
take

2 sep(P ) = 2ε = −r +
√
r2 − 4s+ a+

√
a2 − 4b.

After some manipulation we get that ε satisfies the following equality

ε4 − 2(a− r)ε3 + (r2 + a2 − 3ra+ 2s+ 2b)ε2

− (a− r)(−ra+ 2s+ 2b)ε+ (s2 + b2 − rsa− rab− 2bs+ sa2 + br2) = 0.
(5)

Notice that the last term is just the resultant Resx(Q1, Q2) of polynomials
Q1 and Q2:

Res(Q1, Q2) = Res(Q1, Q2 −Q1) = (b− s)2 + (a− r)(as− br).

Let us suppose that ε� H−2, where by Gelfond’s Lemma H = H(P ) �
H(Q1) H(Q2). It can be mentioned here that all the constants in O,�,�, �
in the first part of this section depend at most on the coefficients of r, s, a, b.
Since P (x) is a separable integer polynomial, it follows that Res(Q1, Q2) is
an integer polynomial in n and |Res(Q1, Q2)| ≥ 1. Now we get from (5) and
(4) that

H−2 � ε� |Res(Q1, Q2)|
| ε3︸︷︷︸
O(H−6)

− 2(a− r)ε2︸ ︷︷ ︸
O(H−3)

+ (r2 + a2︸ ︷︷ ︸
O(H2)

− 3ra+ 2s+ 2b︸ ︷︷ ︸
O(H)

)ε

︸ ︷︷ ︸
O(1)

−(a− r)(−ra+ 2s+ 2b)|

and
H−2 � ε� |Res(Q1, Q2)|

|O(1)− 2as+ 2rb︸ ︷︷ ︸
O(H)

+ra2 − r2a+ 2rs− 2ab|
. (6)

Because of Gelfond’s Lemma, |r|, |s|, |a|, |b| � H and |ar| � H which implies
that |a| � H1/2 or |r| � H1/2. Without loss of generality we can suppose
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that |a| � H1/2. Thus we get |ra2| = |ra| · |a| � H3/2 and |ab| = |a| · |b| �
H3/2. We also have |− r2a+ 2rs| = |r| · |ra−2s| = |r|O(H) so the inequality
(6) becomes

H−2 � ε� 1
max{O(H3/2), |r|O(H)}

.

It implies that |r| � H, so from |r| � H, we get |r| � H. Also, |Res(Q1, Q2)| =
O(1). Since r, s, a, b are polynomials in n and |ra| � H, |rb| � H, we con-
clude that a and b are constants.

If we now have degn s < degn r then

degn Res(Q1, Q2) = degn
(
(b− s)2 + (a− r)(as− br)

)
≥ degn r + degn s,

so |Res(Q1, Q2)| � H, which leads to a contradiction. Therefore, degn s =
degn r and hence |s| � |r| � H→∞.

The leading coefficient of Res(Q1, Q2) as a polynomial in n, i.e. the
coefficient that belongs to the monomial of degree 2 degn r = 2 degn s, is the
leading coefficient of s2 − ars+ br2, i.e. k2

s − akrks + bk2
r , where ks, kr are

leading coefficients of s and r, respectively. If it were 0, then −ks/kr ∈ Q
would be a root of x2 + ax+ b which is impossible, since by our assumption
this polynomial is irreducible. Thus degn Res(Q1, Q2) = 2 degn r ≥ 2 and
this is in contradiction with the condition |Res(Q1, Q2)| = O(1).

We conclude that sep(Pn)� H(Pn)−2 cannot hold in this case, and this
proves the first statement of Theorem 2.

Although the previous result of this section shows that we cannot have
a family of reducible monic quartic integer polynomials with polynomial
growth of coefficients that has the best possible exponent for root separation
in this case, i.e. −2, we can still construct families with the exponent as
close to −2 as we like. The construction that follows is similar to the one in
Section 2.

We look at the family of polynomials Pk,n(x) indexed with n ∈ N in
variable x. As before, we will usually omit n and write simply Pk(x). We
define

Pk(x) = (x2 + nx+ 1)︸ ︷︷ ︸
Qk(x)

(x2 + nx+ 1 +Ak+1x+Ak)︸ ︷︷ ︸
Rk(x)

= (x2 + n︸︷︷︸
r

x+ 1︸︷︷︸
s

)
(
x2 + (Ak+1 + n)︸ ︷︷ ︸

a

+ (Ak + 1)︸ ︷︷ ︸
b

)
,

where
(
Ak(n)

)
k∈N0

is defined recursively by

A0(n) = 1, A1(n) = n, Ak+1(n) = nAk(n)−Ak−1(n) for n ≥ 2.
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It is easy to see that degnAk = k, so we get (implied constants are absolute
from now on)

H(Pk) � nk+2.

Let us look at the resultant:

Resx(Qk, Rk) = (b− s)2 − r(b− s)(a− r) + s(a− r)2

= A2
k − nAkAk+1 +A2

k+1

= A2
k +Ak+1(Ak+1 − nAk)

= A2
k −Ak+1Ak−1

= A2
k − (nAk −Ak−1)Ak−1

= Ak(Ak − nAk−1) +A2
k−1

= A2
k−1 −AkAk−2

= . . . = A2
1 −A2A0 = n2 − (n2 − 1) · 1 = 1.

The roots of Qk(x) are

α1 =
−n−

√
n2 − 4

2
, α2 =

−n+
√
n2 − 4

2
,

and the roots of Rk(x) are

β1 =
−(Ak+1 + n)−

√
(Ak+1 + n)2 − 4(Ak + 1)

2
,

β2 =
−(Ak+1 + n) +

√
(Ak+1 + n)2 − 4(Ak + 1)

2
.

Therefore,

α1 � −n, α2 � −
1
n
, β1 � −nk+1, β2 =

Ak + 1
β1

� −1
n
,

so we have

1 = Res(Qk, Rk) = 1212 |α1 − α2|︸ ︷︷ ︸
�n

|α1 − β1|︸ ︷︷ ︸
�nk+1

|α2 − β1|︸ ︷︷ ︸
�nk+1

sep(Pk),

and it follows that

sep(Pk) � n−2k−3 = n−2(k+2)n � H(Pk)
−2+ 1

k+2 .

Hence, we proved the last statement of Theorem 2.
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