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Abstract. The article establishes a chain of inequalities with power sums
using Hölder’s and Cauchy’s inequalities and their conversions. Subsequently,

applications are made to power sums whose terms are composed of Fibonacci
numbers, for which the sum can be calculated with an appropriate choice of

exponents.

1. Introduction

Fibonacci sequence. The Fibonacci sequence is defined recursively with

F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1, n = 2, 3 . . . .

Fibonacci numbers can be calculated using the formula

Fn =
1√
5
(ϕn − (ϕ−

√
5)n), (1.1)

where ϕ = 1+
√
5

2 , n ∈ N.

In [14], the following inequality with Fibonacci numbers can be found.

Theorem 1. Let n be a positive integer and ℓ an integer. Then,(
F ℓ
1 + F ℓ

2 + . . .+ F ℓ
n

)( 1

F ℓ−4
1

+
1

F ℓ−4
2

+ · · ·+ 1

F ℓ−4
n

)
≥ F 2

nF
2
n+1 (1.2)

holds, where Fn is the nth Fibonacci number.

The previous theorem is generalized in the paper [1].

Theorem 2. Let r, s ∈ R with r + s ≥ 4. Then, for n ≥ 1,
n∑

k=1

F r
k

n∑
k=1

F s
k ≥ (FnFn+1)

2
. (1.3)

The sign of equality is valid in (1.3) if and only if n = 1, 2 or n ≥ 3, r = s = 2.

Power sums, Hölder and Cauchy inequality. We present some results that
will be needed in the exposition.

Let us denote, for α ∈ R and x = (x1, . . . , xn) ∈ Rn
+

S[α]
n (x) =

n∑
i=1

xα
i . (1.4)
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Proposition 1. If α > β > 0 then

(
S[α]
n (x)

)1/α
≤
(
S[β]
n (x)

)1/β
. (1.5)

(See [9, p. 4].)

Theorem 3 (Hölder). Let x, y ∈ Rn
+.

(i) If p > 1 and q = p
p−1 , then

n∑
i=1

xiyi ≤
(
S[p]
n (x)

)1/p (
S[q]
n (y)

)1/q
. (1.6)

(ii) If 0 < p < 1 and q = p
p−1 , then the reverse inequality holds in (1.6).

(See [9, p.26] and [15, p.113].)

Corollary 1 (Cauchy). Let x, y ∈ Rn
+.

n∑
i=1

xiyi ≤
(
S[2]
n (x)

)1/2 (
S[2]
n (y)

)1/2
. (1.7)

([9, p.16] and [15, p.131].)

Theorem 4 (Hölder’s conversions). Let x, y ∈ Rn
+,

1
p + 1

q = 1, 0 < m < M,

m ≤ xi/y
q/p
i ≤ M, i = 1, . . . , n.

(i) If p > 1, then

(M −m)

n∑
k=1

xp
k + (mMp −Mmp)

n∑
k=1

yqk ≤ (Mp −mp)

n∑
k=1

xkyk (1.8)

and if 0 < p < 1, then reversed inequality in (1.8) is valid.
(ii) If p > 1, then(

n∑
k=1

xp
k

)1/p( n∑
k=1

yqk

)l/q

≤ λ

n∑
k=1

xkyk (1.9)

where

λ = |Mp −mp| |p(M −m)|−1/p |q (Mp −mMp)|−1/q
.

If 0 < p < 1, then reversed inequality in (1.9) is valid.

(See [11, p.64] and[15, p.114].)

Theorem 5 (Cauchy’s conversions). Let x, y ∈ Rn
+ and

0 < m1 ≤ xi ≤ M1, 0 < m2 ≤ yi < M2, i = 1, . . . , n.

Then, the following transformations of Cauchy’s inequality hold:
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1 ≤
(∑n

k=1 x
2
k

) (∑n
k=1 yk

2
)

(
∑n

k=1 xkyk)
2 ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2

, (1.10)

∑n
k=1 xk

2∑n
k=1 xkyk

−
∑n

k=1 xkyk∑n
k=1 yk

2
≤

((
M1

m2

) 1
2

−
(
m1

M2

) 1
2

)2

, (1.11)

(
n∑

k=1

x2
k

)(
n∑

k=1

y2k

)
−

(
n∑

k=1

xkyk

)2

≤ n2

4
(M1M2 −m1m2)

2
, (1.12)

n∑
k=1

yk
2 +

m2

M1

M2

m1

n∑
k=1

xk
2 ≤

(
M2

m1
+

m2

M1

) n∑
k=1

xkyk. (1.13)

The above theorem can be found in [11, p. 61]. The inequality (1.10) was proven
in [13], (1.11) in [17], (1.12) in [12], and (1.13) in [6].

2. Preliminary results

Theorem 6. Let p > 1, q = p
p−1 , x = (x1, . . . , xn) ∈ Rn

+.

(i) If xi ≥ 1, i = 1, . . . , n, and if u, v ∈ R, α = u
p + v

q and α ≥ β > 0, then(
S[u]
n (x)

)1/p (
S[v]
n (x)

)1/q
≥ S[α]

n (x) ≥

≥ 1

n
α
β −1

(
S[β]
n (x)

)α/β
≥ S[β]

n (x) ≥
(
S[α]
n (x)

)β/α
. (2.1)

(ii) If u, v ∈ R, such that α = u
p + v

q and 0 ≤ α < β, then(
S[u]
n (x)

)1/p (
S[v]
n (x)

)1/q
≥ S[α]

n (x) ≥
(
S[β]
n (x)

)α/β
. (2.2)

Proof. (i)(
n∑

k=1

xu
k

)1/p( n∑
k=1

xv
k

)1/q

=

(
n∑

k=1

(
(x

u/p
k )p

))1/p( n∑
k=1

(
(x

v/q
k )q

))1/q

(2.3)

≥
n∑

k=1

x
u/p
k x

v/q
k =

n∑
k=1

xα
k =

n∑
k=1

(xβ
k)

α/β (2.4)

≥ n

(
1

n

n∑
k=1

xβ
k

)α/β

(2.5)

≥
n∑

k=1

xβ
k (2.6)

≥

(
n∑

k=1

xα
k

)β/α

, (2.7)

where in (2.4) we used Hölder’s inequality with substitutions xi → x
u/p
i , yi → x

v/q
i .

Then, in (2.5), we used Jensen’s inequality for the function x 7→ xα/β , α ≥ β,
and in (2.6), we used the monotonicity of the exponential function x 7→ bx, b =
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1
n

∑n
k=1 x

β
k ≥ 1.

(ii) Similar as in (i)-part, we apply Hölder’s inequality and then the moment in-
equality (1.5). □

Remark 1. Observe that the condition xi ≥ 1, i = 1, . . . , n in the (i)-part of the

Theorem can be weakened to the condition 1
n

∑n
k=1 x

β
k ≥ 1, as used in (2.5).

The above proof can also be adapted for the following theorem, which uses the
reverse Hölder inequality.

Theorem 7. Let 0 < p < 1, q = p
p−1 , x = (x1, . . . , xn) ∈ Rn

+.

(i) If u, v ∈ R, α = u
p + v

q and α ≥ β > 0, then

(
S[u]
n (x)

)1/p (
S[v]
n (x)

)1/q
≤ S[α]

n (x) ≤
(
S[β]
n (x)

)α/β
. (2.8)

(ii) Let xi ≥ 1, i = 1, . . . , n. If u, v ∈ R, such α = u
p + v

q and 0 ≤ α < β, then(
S[u]
n (x)

)1/p (
S[v]
n (x)

)1/q
≤ S[α]

n (x) ≤ 1

n
α
β −1

(
S[β]
n (x)

)α/β
≤ S[β]

n (x) ≤
(
S[α]
n (x)

)β/α
.

(2.9)

The results from Theorems 6 and 7 can be further extended using the conversions
from Theorem 4.

Theorem 8. Let u, v ∈ R, such that α = u
p + v

q . If x = (x1, . . . , xn) ∈ Rn
+,

m = min
i
{x

u−v
p

i } and M = max
i

{x
u−v
p

i }.
(i) If p > 1 then

(M −m)S[u]
n (x) + (mMp −Mmp)S[v]

n (x) ≤ (Mp −mp)

n∑
k=1

S[α]
n (x) (2.10)

and if 0 < p < 1 then reversed inequality in (2.10) is valid.
(ii) If p > 1, then (

S[u]
n (x)

)1/p (
S[v]
n (x)

)l/q
≤ λS[α]

n (x) (2.11)

where

λ = |Mp −mp| |p(M −m)|−1/p |q (Mp −mMp)|−1/q
.

If 0 < p < 1 then reversed inequality in (2.11) is valid.

Proof. By substituting xi → x
u/p
i and yi → x

v/q
i into Theorem 4, we observe that

the condition m ≤ xi/y
q/p
i ≤ M is fulfilled for m = min

i
x

u−v
p

i and M = max
i

x
u−v
p

i ,

and that the inequalities (1.8) and (1.9) transform into (2.10) and (2.11). □

Similarly, from the Cauchy conversions in Theorem 5, we obtain the following
theorem:

Theorem 9. Let x ∈ Rn
+, u, v ∈ R, α = u

2 + v
2 and

m1 = min
i
{xu/2

i }, M1 = max
i

{xu/2
i } and m2 = min

i
{xv/2

i }, M2 = max
i

{xv/2
i }.

Then
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1 ≤ S
[u]
n (x)S

[v]
n (x)(

S
[α]
n (x)

)2 ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2

, (2.12)

S
[u]
n (x)

S
[α]
n (x)

− S
[α]
n (x)

S
[v]
n (x)

≤

((
M1

m2

) 1
2

−
(
m1

M2

) 1
2

)2

, (2.13)

S[u]
n (x)S[v]

n (x)−
(
S[α]
n (x)

)2
≤ n2

4
(M1M2 −m1m2)

2
(2.14)

and

S[v]
n (x) +

m2

M1

M2

m1
S[u]
n (x) ≤

(
M2

m1
+

m2

M1

)
S[α]
n (x) . (2.15)

3. Applications

In this section, we provide applications by estimating the sums of powers of
sequences whose elements include Fibonacci numbers. The inequalities become in-
teresting when we have exponents for which the sum can be calculated explicitly.

In the papers [1], [2], and [14] the identity

n∑
i=1

F 2
i = FnFn+1 (3.1)

is used. Using our notation, xi = Fi, i = 1, . . . , n (3.1) can be rephrased as

S[2]
n (x) = FnFn+1. (3.2)

If we relate (3.2) with Theorems 6 and 7 under β = 2 and observing that condi-
tion xi ≥ 1 is satisfied, we get the following Theorem.

Theorem 10. (i) Let p > 1, q = p
p−1 and let u, v ∈ R such that α = u

p + v
q ≥ 2.

Then (
n∑

i=1

Fu
i

)1/p( n∑
i=1

F v
i

)1/q

≥
n∑

i=1

Fα
i ≥

≥ 1

n
α
2 −1

(FnFn+1)
α/2 ≥ FnFn+1 ≥

(
n∑

i=1

Fα
i

)2/α

. (3.3)

(ii) Let p > 1, q = p
p−1 and let u, v ∈ R such that α = u

p + v
q ≤ 2. Then(

n∑
i=1

Fu
i

)1/p( n∑
i=1

F v
i

)1/q

≥
n∑

i=1

Fα
i ≥ (FnFn+1)

α/2
. (3.4)

(iii) Let 0 < p < 1, q = p
p−1 and let u, v ∈ R such that α = u

p + v
q ≥ 2. Then(

n∑
i=1

Fu
i

)1/p( n∑
i=1

F v
i

)1/q

≤
n∑

i=1

Fα
i ≤ (FnFn+1)

α/2
.

(iv) Let 0 < p < 1, q = p
p−1 and let u, v ∈ R such that α = u

p + v
q ≤ 2. Then
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(
n∑

i=1

Fu
i

)1/p( n∑
i=1

F v
i

)1/q

≤
n∑

i=1

Fα
i ≤ (FnFn+1)

α/2 ≤

≤ 1

n
α
2 −1

(FnFn+1)
α/2 ≤ FnFn+1 ≤

(
n∑

i=1

Fα
i

)α/2

.

Remark 2.

(i) Note that if we set p = 2 (Cauchy case) in the (i)-part of Theorem 10, then
the chain of inequalities in (3.3) provides a refinement of (1.3).

(ii) Observe that the analysis of equality in (3.3) (or (1.3)) is now simpler using

the central terms
∑n

i=1 F
α
i and

1

n
α
2 −1

(FnFn+1)
α/2

.

The previous results can be extended using Hölder’s transformations from The-

orem 8, with xi = Fi and S
[2]
n (x) = FnFn+1. Observe that due to the monotonicity

of the Fibonacci sequence, we have

m = min
i
{x

u−v
p

i } = min{F
u−v
p

1 , F
u−v
p

n } andM = max
i

{x
u−v
p

i } = max{F
u−v
p

1 , F
u−v
p

n }.

Theorem 11. Let p > 1, q = p
p−1 , u, v ∈ R such that u

p + v
q = 2 and let m =

min{F
u−v
p

1 , F
u−v
p

n } and M = max{F
u−v
p

1 , F
u−v
p

n }.
(i) If p > 1 then

(M −m)

n∑
i=1

Fu
i + (mMp −Mmp)

n∑
i=1

F v
i ≤ (Mp −mp)FnFn+1 (3.5)

and if 0 < p < 1 then reversed inequality in (2.10) is valid.
(ii) If p > 1, then (

n∑
i=1

Fu
i

)1/p( n∑
i=1

F v
i

)l/q

≤ λFnFn+1. (3.6)

where
λ = |Mp −mp| |p(M −m)|−1/p |q (Mp −mMp)|−1/q

.

If 0 < p < 1 then reversed inequality in (3.6) is valid.

We will apply Cauchy’s transformations from Theorem 9 to the following identity

xi = FiFi+1, i = 1, . . . , n; S[1]
n (x) = F 2

n+1 −
1 + (−1)n

2
(3.7)

(see [8]).
Here, again due to the monotonicity of the sequence xi, we have that for any

u, v ∈ R
m1 = min

i
{xu/2

i } = min{(F1F2)
u/2, (FnFn+1)

u/2},

M1 = max
i

{xu/2
i } = max{(F1F2)

u/2, (FnFn+1)
u/2}

and similarly

m2 = min{(F1F2)
v/2, (FnFn+1)

v/2}, M2 = max{(F1F2)
v/2, (FnFn+1)

v/2}.
We now use Theorem 9 with α = 1 to utilize the identity from (3.7).
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Theorem 12. Let u, v ∈ R, u+ v = 2 and

m1 = min{(F1F2)
u/2, (FnFn+1)

u/2}, M1 = max{(F1F2)
u/2, (FnFn+1)

u/2}

m2 = min{(F1F2)
v/2, (FnFn+1)

v/2}, M2 = max{(F1F2)
v/2, (FnFn+1)

v/2}.
Then

1 ≤
∑n

i=1(FiFi+1)
u
∑n

i=1(FiFi+1)
v

FnFn+1 − 1+(−1)n

2

≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2

, (3.8)

∑n
i=1(FiFi+1)

u

FnFn+1 − 1+(−1)n

2

−
FnFn+1 − 1+(−1)n

2∑n
i=1(FiFi+1)v

≤

((
M1

m2

) 1
2

−
(
m1

M2

) 1
2

)2

, (3.9)

n∑
i=1

(FiFi+1)
u

n∑
i=1

(FiFi+1)
v −

(
FnFn+1 −

1 + (−1)n

2

)2

≤ n2

4
(M1M2 −m1m2)

2
,

(3.10)
n∑

i=1

(FiFi+1)
v +

m2

M1

M2

m1

n∑
i=1

(FiFi+1)
u ≤

(
M2

m1
+

m2

M1

)(
FnFn+1 −

1 + (−1)n

2

)
.

(3.11)

4. Concluding remarks

We have demonstrated how, by using Theorems 6, 7, 8, and 9, as well as the
identities (3.7) and (3.2) related to Fibonacci numbers, a series of inequalities can
be derived, as shown in Theorems 10, 11, and 12. In the following lines, we present
additional identities that can be utilized in a similar manner.

For i = 1, . . . , n, xi = Fi, β = 1, S[1]
n (x) = Fn+2 − 2, [8, p. 11]

xi = F2i−1, β = 1, S[1]
n (x) = F2n, [8, p. 11]

xi = F2i, β = 1, S[1]
n (x) = F2n+1 − 1, [8, p. 11]

xi = iFi, β = 1 S[1]
n (x) = Fn+2 − Fn+3 + 2, [8, p. 11]

xi = FiF3i, β = 1, S[1]
n (x) = FnFn+1F2n+1, [16]

xi = F4i−2, β = 1, S[1]
n (x) = F 2

2n, [8, p. 61]

xi =

(
n

i

)
Fi, β = 1, S[1]

n (x) = F2n, [8, p. 61]

for i = 1, . . . , 2n+ 1, xi = Fi

√(
2n+ 1

i

)
, β = 2, S

[2]
2n+1 (x) = 5nF2n+1, [8, p. 56]

Particularly interesting are those identities involving Fibonacci numbers for

which the sum S
[α]
n (x) =

∑n
i=1 x

α
i can be calculated for several different choices of

α ∈ R. For example, with the choice α = −1, xi = FiFi+2, we have (see [8])

S[−1]
n (x) = 1− 1

Fn+1Fn+2
. (4.1)
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Furthermore, by continuing the calculations, we obtain

S[1]
n (x) =

n∑
i=1

FiFi+2 =

n∑
i=1

Fi(Fi + Fi+1) =

n∑
i=1

(F 2
i + FiFi+1) =

=

n∑
i=1

F 2
i +

n∑
i=1

FiFi+1 = FnFn+1 + F 2
n+1 −

1 + (−1)n

2

= Fn+1Fn+2 −
1 + (−1)n

2
. (4.2)

These two facts are used in the following theorem.

Theorem 13. (i) Let p > 1 and let β ≤ 1. Then(
n∑

i=1

(FiFi+2)
2p−1

)1/p(
1− 1

Fn+1Fn+2

) p−1
p

≥ Fn+1Fn+2 −
1 + (−1)n

2
≥

≥ 1

n
1
β−1

(
n∑

i=1

(FiFi+2)
β

)1/β

≥
n∑

i=1

(FiFi+2)
β ≥

(
Fn+1Fn+2 −

1 + (−1)n

2

)β

.

(ii) Let p > 1 and let β > 1. Then(
n∑

i=1

(FiFi+2)
2p−1

)1/p(
1− 1

Fn+1Fn+2

) p−1
p

≥ Fn+1Fn+2 −
1 + (−1)n

2
≥

≥

(
n∑

i=1

(FiFi+2)
β

)1/β

.

(iii) Let 0 < p < 1 and let β > 1. Then(
n∑

i=1

(FiFi+2)
2p−1

)1/p(
1− 1

Fn+1Fn+2

) p−1
p

≤ Fn+1Fn+2 −
1 + (−1)n

2
≤

≤ 1

n
1
β−1

(
n∑

i=1

(FiFi+2)
β

)1/β

≥
n∑

i=1

(FiFi+2)
β ≤

(
Fn+1Fn+2 −

1 + (−1)n

2

)β

.

(iv) Let 0 < p < 1 and let β ≤ 1. Then(
n∑

i=1

(FiFi+2)
2p−1

)1/p(
1− 1

Fn+1Fn+2

) p−1
p

≤ Fn+1Fn+2 −
1 + (−1)n

2
≤

≤

(
n∑

i=1

(FiFi+2)
β

)1/β

.

Proof. First, observe that the condition xi = FiFi+2 ≥ 1, i = 1, . . . , n is satisfied
in Theorems 6 and 7. In the expression α = u

p + v
q from the mentioned theorems,

we choose α = 1 and v = −1, and we utilize the identities (4.1) and (4.2). □
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Cauchy, Fibonacci, Lucas, and Vandermonde. Here, we simply mention that
some interesting inequalities can be obtained through the direct application of
Cauchy’s inequalities.
(i) If we set xi = i, yi = Fi, i = 1, . . . , n then

∑n
i=1 xiyi = nFn+2 − Fn+3 + 2 (see

[8, p. 11]). By application of Cauchy inequality (1.7) we get

(nFn+2 − Fn+3 + 2)
2 ≤ (2n+ 1)n (n+ 1)

6
FnFn+1 (4.3)

(ii) Let us take xi =

(
n
i

)
, yi = Fi, i = 0, 1, . . . , n. Then from [8, p. 61] we know∑n

i=0 xiyi = F2n. Now we use Vandermonde identity

n∑
i=0

(
n
i

)2

=

(
2n
n

)
,

(3.1) and Cauchy inequality to get

F 2
2n ≤

(
2n
n

)
FnFn+1. (4.4)

(iii) The above model can also be applied to Lucas numbers (and similar sequences)

Ln = Fn+1 + Fn−1, n ≥ 1,

and L0 := 2. From [8, p. 111] we have
n∑

i=0

(
n

i

)
FiFn−i = (1/5) (2nLn − 2) (4.5)

and from [8, p. 56] we have

2n+1∑
i=0

(
2n+ 1

i

)
F 2
i = 5nF2n+1.

We set xi = Fi

√(
2n+1

i

)
, yi = F2n−i

√(
2n+1
2n−i

)
, i = 0, 1, . . . 2n + 1. Using (4.5) for

n → 2n+ 1, symmetry of binomial coefficients and Cauchy inequality we get

22n+1L2n+1 ≤ 5n+1F2n+1 + 2.

Thus, we have proven the following theorem.

Theorem 14. For any n ∈ N, the following holds

(nFn+2 − Fn+3 + 2)
2 ≤ (2n+ 1)n (n+ 1)

6
FnFn+1, (4.6)

F 2
2n ≤

(
2n
n

)
FnFn+1, (4.7)

22n+1L2n+1 ≤ 5n+1F2n+1 + 2. (4.8)
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