On a variation of a congruence of Subbarao
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Abstract

Here, we study positive integers n such that n¢(n) = 2 (mod o(n)),
where ¢(n) and o(n) are the Euler function and the sum of divisors
function of the positive integer n, respectively. We give a general inef-
fective result showing that there are only finitely many such n whose
prime factors belong to a fixed finite set. When this finite set consists
only of the two primes 2 and 3 we use continued fractions to find all
such positive integers n.



1 Introduction

We write ¢(n) and o(n) for the Euler function and the sum of divisors func-
tion of the positive integer n, respectively. There are many open problems
concerning the characterization of the positive integers n fulfilling certain
congruences involving ¢(n) and o(n). For example, a known open problem
due to Lehmer asks if there are any composite integers n such that n =1
(mod ¢(n)) (see [7]). A different problem due to Subbarao concerns finding
composite integers n such that no(n) = 2 (mod ¢(n)) (see [9]). See also
section B37 in [4] for other problems and results of a similar kind.

In this paper, we study a congruence similar to Subbarao’s congruence,
namely

ng(n) =2 (mod o(n)). (1)

Congruence (1) was recently proposed and investigated by Diaz in [3]. It is
easy to see that prime numbers n satisfy (1). In [3], it was shown that the
only positive integers n which are prime powers of exponent a > 1 satisfying
(1) are n = 8, 9. It was also shown that if n is a composite integer satisfying
(1) and if we put
b no(n) — 2
S o)
then n can be bounded in terms of k. This follows from the minimal order
¢(n) > n/loglogn of the Euler function, as well as the maximal order
o(n) < nloglogn of the sum of divisors function, which together imply

that
non) =2 _ noln) ___n

= o(n) o(n) ~ (loglogn)?’

yielding that n < k(loglog k)?.

Here, we prove two results about congruence (1). First, we let P =
{p1,...,pr} be a finite set of primes and let Sp = {p{* ---pi* : a; > 0} be
the set of all positive integers whose prime factors belong to P. Our first
result is the following:

Theorem 1 For any finite set of primes P there are only finitely many
positive integers n € Sp satisfying congruence (1).

For a positive integer n let P(n) be the largest prime factor of n. Theo-
rem 1 has the following immediate corollary.

Corollary 1 We have P(n) — oo as n goes to infinity through solutions of
congruence (1).



The proof of Theorem 1 uses a result of Herndndez and Luca [6] whose
proof uses Schmidt’s Subspace Theorem and finiteness results about the
number of non-degenerate solutions to S—unit equations. As such, it is
ineffective. That is, given P, we do not know how to write down a specific
upper bound depending on P on the largest solution n € Sp of congruence
(1). Our next result is an effective version of Theorem 1 when P = {2,3}.
Quite likely, our method of proof extends to all sets P consisting of only two
primes but we have not worked out the details of such an extension.

Theorem 2 If P = {2,3}, then the only n € Sp satisfying congruence (1)
aren=1,2,3,8,9.

2 The proof of Theorem 1

Let us comment on the situation when n = p® for some a > 2. Put D :=
o(p*) = (p»™1 —1)/(p — 1). Then p**! = 1 (mod D). But also n¢(n) =
2 (mod D), or p**1(p — 1) = 2 (mod D). Hence, p>*tD(p — 1) = 2p?
(mod D). Using also p®™! =1 (mod D), we get that 2p® =p—1 (mod D).
Thus, D | 2p® — p+ 1. The expression 2p> — p + 1 is never 0 when p is a
prime, so D < 2p? — p+ 1. Thus,

Pt —1<(p-1)(2p*-p+1).

If a > 4, we then get that p°> — 1 < p**l —1 < (p—1)(2p® —p + 1),
which is impossible for p > 2. Thus, a € {2,3}. If a = 2, we then get
p>+p+1|2p®—p+1, which leads to p> +p+ 1 | p— 3. This is possible
only when p = 3, which gives the solution n = 9. If ¢ = 3, we then get
p>+p>+p+1]2p*—p+1, which leads to p> +p> +p+1|2p*> +3p+ 1.
Thus, p? < p?+2p, so p < 2. This leads to the solution n = 8 to congruence
(1).
Now let P = {p1,...,pr}. We assume that p; < p2 < --- < pg. There
is no loss of generality in assuming that P consists of all primes p < py.
Hence, p; is just the jth prime number. Now say n = pi'---pi* € Sp

satisfies congruence (1), where 1 < iy < --- < iy < k and a; are positive

for j =1, oS There is no loss of generality in assuming that s > 2. Put
+ . — —

uj = p?j” for j=1,...,s and put v := n¢(n)/2 = pflal Loop2as—l(p;, —

1)---(pi, —1)/2. Observe that u; and v are all members of Sp for j =
1,...,s. Moreover, u; and v are multiplicatively independent because u; is
a prime power and v has at least two distinct prime factors, namely p;, and
Pi,- Let j be such that u; = max{u; : 1 <t < s}. We may assume that



a; > 3, otherwise u; < pz, foralli=1,...,s, so we have only finitely many
possibilities for n. Then

2
s

2k
<uit,

2a1

a

giving that u; > v'/?¢. Since (u; — 1)/(pi; — 1) divides 2(v — 1), it follows
that )
uj — 1/2
ged(uj —1Lv—1)> —L—— >
where we used the fact that a; > 3. However, a result of Herndndez and
Luca from [6] asserts that if € > 0 is fixed, then there are only finitely many

pairs of elements (u,v) in Sp such that

-

ged(u — 1,v — 1) < max{u, v},

and such that u and v are multiplicatively independent. Note that u; < v for
a; > 3. Since we have already established that u; and v are multiplicatively
independent, the above result applied with ¢ := 1/4k gives us only finitely
many possibilities for v. Hence, only finitely many possibilities for n¢(n),
and in particular for n, which is what we wanted to prove. The theorem is
therefore proved.

3 Proof of Theorem 2

We assume that n = 2%3°, where a and b are positive integers. Let M :
201 — 1, N := (3" —1)/2. Then 2°*' = 1 (mod M) and 3°*!
(mod N). But we also have ng(n) = 2 (mod M N), which gives 2223201
(mod MN). Thus, 22(¢+1)32(+1) = 216 (mod MN). Since 20+
(mod M), we get that 32t1) = 216 (mod M). Also, since 3°+!
(mod N), we get that 22(*+1) =216 (mod N). Since M divides 22(*+1) —
and N divides 32(+1) — 1, we get that both M and N divide

[T
— = = o~

92(a+1) 4 32(b+1) _ 917

Let us now show that a and b are both even and that M and N are coprime.
Let D := ged(M, N). Then 29+ = 31 =1 (mod D), so D divides 1+ 1 —
217 = —215 = —5 x 43. But if 5 divides M, then 4 | a + 1, so, in particular,
2 | a+1, which implies that 3 | M. This leads to 3 | ng(n)—2 = 22e320-1 1,
which is false. Hence, D cannot be a multiple of 5 and a+1 is odd, therefore
a is even. If 43 divides M, then 2°T! = 1 (mod 43), which implies again
that a + 1 is even, which is a contradiction. Hence, M and N are coprime



and a is even. Let us show that b is also even. If not, then b+ 1 is even, so
3%+ — 1 is a multiple of 8. Thus, 4 | N | 2223%—1 — 2 which is impossible.
Hence, b+ 1 is odd and therefore both M and N are odd. Since M N divides
22(at1) 4 32(b+1) _ 917 and this last number is even, we get that this last
number is a multiple of 2M N = (22! — 1)(3**! — 1). Let 2 := 2°*! and
y := 31, We get the equation

2?4y - 21T =c(x —1)(y — 1) (2)

with some positive integer c¢. Since a and b are even, we have the fol-
lowing congruences: z = 0 (mod 8), ¥ = 3 (mod 8), y?> = 9 (mod 16),
r =2 (mod 3), 22 =1 (mod 3), y = 0 (mod 3). Using these congruences,
from (2), we conclude that ¢ = 0 (mod 8) and ¢ = 0 (mod 3); i.e., c =0
(mod 24).

We shall next ”diagonalize” the equation (2). Namely, let

X :=cy—c— 2z, (3)
Y i=cy—c—2y. (4)

Then
(c4+2)Y?—(c—2) X% —(—=860c+1736) = —4(c—2)(z?4+9?—217—c(z—1)(y—1)) = 0.
Hence, we get the Pellian equation

(c+2)Y? — (¢ — 2)X?% = —860c + 1736. (5)

From (5), we see that X/Y is good rational approximation of the irrational

number if—% More precisely, we have
X Jet2) 860c — 1736 < 860(c — 2) <@
Y c—2|  (Vet2Y +ve—2X)\/e—2Y ~ V2 —4y? Y%’

The rational approximation of the form

X c+2

Y c—2

860
< W

(6)

is not good enough to conclude that % is a convergent of continued fraction

27
Theorem 1]), we know that

expansion of ,/g# but by Worley’s theorem [10, Theorem 1] (see also [1,

X Tpry1 £ upg

Y rquer ugr’

b}



for some k£ > —1 and nonnegative integers r and u such that ru < 2 x 860 =
1720. Since c is even, we have the following continued fraction expansion

[c+ 2 —_—
c_9 =[1,(c—2)/2, 2]

(see e.g. [5]). Let X = d(rpry1 * upr), Y = d(rqrr1 £ uqy), where d?ru <
1720. Then, by [2, Lemmal, we have

(c+2)Y% — (c—2)X? = d®(=1)"(uPtpy1 + 2ruspis — r2teen), (1)

where {s;}r>_1 and {tx}r>_1 are sequences of integers appearing in the
continued fraction algorithm for quadratic irrational \/g From [5], we
learn that sy = ¢ — 2, top, = ¢ — 2, top+1 = 4. Let us check whether it
is possible that the expression on the right hand side of (7) is identically
equal to the right hand side of (5); i.e., to —860c+ 1736. For k even, we get
d?((4u? —2ru+2r2) +c(2ruc—r?)), while for k odd, we get —d?(c(u?+2ru) —
(4r% 4 4ru + 2u?)). Comparing these two expression with —860c + 1736, we
first see that d = 1 or d = 2, and then that in both cases the resulting
system of two equations has no integers solutions.

It remains to consider all possible triples of integers d,r,u satisfying
d*ru < 1720, and check whether the corresponding right-hand sides of (7)
have nonempty integer intersection with —860c + 1736, and lastly compute
the corresponding positive integer ¢. There are many such ¢’s (the largest
is 739586), but only three of them satisfy the condition ¢ = 0 (mod 24).
These ¢’s are 48, 288 and 23328.

Let us solve the corresponding three Pellian equations. The equations
are:

25Y2 - 23X? = —19772, (8)
145Y2 — 143X2 = —122972, (9)
11665Y2 — 11663X2? = —10030172. (10)

Using bounds for the fundamental solutions of Pellian equations (see e.g.
[8]), we find that all solutions of equation (8) are given by (Xo, X;) =
(58,192) or (192,58), X = 48X)_1 — Xj_o for all k > 2 and (Yp,Y;) =
(48,182) or (182,48), Y}, = 48Yy_1 — Yo for all £ > 2. Assume now that
for X, Y defined by (3) and (4) there exists an index k such that X = X},
and Y = Y. Then (X,Y) = (10,0), (0,38), (0, 10) or (38,0) (mod 48). But
on the other hand, X =0 (mod 16), Y =0 (mod 6), and none of these four
pairs satisfies this condition.



Completely analogous arguments apply to other two equations, since
both other ¢’s are also divisible by 24. The fundamental solutions of (9) are
(Xo, X1) = (38,1992), (Yo,Y1) = (24,1978), and we get (X,Y) = (14,0),
(0,10),(0,14) or (10,0) (mod 24), while the fundamental solutions of (10)
are (Xo, X1) = (218,23112), (Y5, Y1) = (216,23110), and we get (X,Y) =
(2,0),(0,22),(0,2) or (22,0) (mod 24). In both cases, none of the pairs
modulo 24 satisfies the conditions X = 0 (mod 16), Y = 0 (mod 6). This
completes the proof of Theorem 2.
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