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Abstract

Here, we show that (k, `, n, r) = (8, 2, 4, 3) is the only solution in positive integers of the
Diophantine equation

F k
1 + F k

2 + · · ·+ F k
n−1 = F `

n+1 + · · ·+ F `
n+r,

where Fm is the mth Fibonacci number.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn for all n ≥ 0. (1)

The following conjecture was proposed in [1].
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Conjecture 1. The only quadruple (k, `, n, r) of positive integers satisfying the Diophantine
equation

F k
1 + F k

2 + · · ·+ F k
n−1 = F `

n+1 + · · ·+ F `
n+r (2)

is (8, 2, 4, 3).

Conjecture 1 is a version involving powers of Fibonacci numbers of the classical problem
concerning balancing numbers, which are positive integers n such that the equality

1 + 2 + · · ·+ (n− 1) = (n+ 1) + · · ·+ (n+ r)

holds with some positive integer r. Several variations of this problem have been previously
considered in the literature (see [2], [10]).

The authors of [1] also show that every solution of equation (2) has ` < k and that there
is no such solution with (k, `) = (2, 1), (3, 1), or (3, 2). In particular, all solutions of equation
(2) have k ≥ 4. Observe also that n ≥ 4. Here, we confirm Conjecture 1. We record the
result as follows.

Theorem 1. Conjecture 1 holds.

Our method uses linear forms in logarithms, LLL, and some elementary considerations.

We recall that the formula

Fn =
αn − βn

α− β
holds for n ≥ 0, where (α, β) :=

(
1 +
√

5

2
,
1−
√

5

2

)
. (3)

In particular, the inequality αn−2 ≤ Fn ≤ αn−1 holds for all n ≥ 1. We will use this inequality
several times throughout.

2. Preliminary inequalities

Observe that
F k

1 + F k
2 + · · ·+ F k

n−1 > F k
n−1 > (αn−3)k = αk(n−1)−2k,

On the other hand,

F k
1 + F k

2 + · · ·+ F k
n−1 ≤ (F1 + · · ·+ Fn−1)k = (Fn+1 − 1)k < F k

n+1 < (αn)k = αnk,

where we used the known fact that the identity F1 + F2 + · · ·+ Fm = Fm+2 − 1 holds for all
m ≥ 1. Thus,

αk(n−1)−2k < F k
1 + F k

2 + · · ·+ F k
n−1 < αk(n−1)+k. (4)
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In a similar way, we also get that

α`(n+r)−2` < F `
n+1 + · · ·+ F `

n+r < α`(n+r)+`. (5)

Comparing bounds (4) and (5), we get

k(n− 1)− 2k < `(n+ r) + ` and `(n+ r)− 2` < k(n− 1) + k,

so
|k(n− 1)− `(n+ r)| < max{2k + `, k + 2`} = 2k + `. (6)

We record this as a lemma.

Lemma 2. Any positive integer solution (k, `, n, r) of equation (2) satisfies inequality (6).

3. Initial bounds on k and `

Write

N := F `
n+1 + · · ·+ F `

n+r

= F `
n+r

((
Fn+1

Fn+r

)`
+

(
Fn+2

Fn+r

)`
+ · · ·+

(
Fn+r−1

Fn+r

)`
+ 1

)
=: F `

n+r(1 + S). (7)

Observe that S ≥ 0. The inequality

Fm−1

Fm
≤ 2

3
holds for all m ≥ 3. (8)

Indeed, the above inequality is equivalent to 2Fm ≥ 3Fm−1, or 2(Fm−1 + Fm−2) ≥ 3Fm−1, or
2Fm−2 ≥ Fm−1 = Fm−2 +Fm−3, or Fm−2 ≥ Fm−3, which is indeed true for all m ≥ 3. Hence,

Fn+r−1

Fn+r

≤ 2

3
,

Fn+r−2

Fn+r

=
Fn+r−2

Fn+r−1

· Fn+r−1

Fn+r

≤
(

2

3

)2

, . . . ,
Fn+1

Fn+r

<

(
2

3

)r−1

. (9)

Thus,

S =

(
Fn+1

Fn+r

)`
+ · · ·+

(
Fn+r−1

Fn+r

)`
<
∑
j≥1

(
2

3

)j`
=

(
2

3

)`
1

1− (2/3)`
≤ 3

1.5`
, (10)

because ` ≥ 1. In a similar way, we write

N = F k
1 + · · ·+ F k

n−1

= F k
n−1

((
F1

Fn−1

)k
+

(
F2

Fn−1

)k
+ · · ·+

(
Fn−2

Fn−1

)k
+ 1

)
=: F k

n−1(1 + S1). (11)
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The argument which proved inequality (9) based on inequality (8) shows that

Fn−2

Fn−1

≤ 2

3
,

Fn−3

Fn−1

=
Fn−3

Fn−2

· Fn−2

Fn−1

≤
(

2

3

)2

, . . . ,
F2

Fn−1

<

(
2

3

)n−3

.

Furthermore,
F1

Fn−1

=
F2

Fn−1

≤
(

2

3

)n−3

.

Thus,

S1 =

(
F1

Fn−1

)k
+ · · ·+

(
Fn−2

Fn−1

)k
<

(
2

3

)k(n−3)

+
∑
j≥1

(
2

3

)jk
≤

(
2

3

)k (
1 +

1

1− (2/3)k

)
≤ 3

1.5k
, (12)

where for the last inequality we used the fact that k ≥ 4.

Since
N = F k

n−1(1 + S1) = F `
n+r(1 + S),

we get that
|F k
n−1 − F `

n+r| = |F k
n−1S1 − F `

n+rS| < M max{S, S1}, (13)

where M := max{F k
n−1, F

`
n+r}. Dividing both sides of the above inequality by M , we get

|F εk
n−1F

−ε`
n+r − 1| < 3

1.5`
, (14)

where ε = 1 or −1, according to whether M = F `
n+r or F k

n−1, respectively.

We shall use several times a result of Matveev (see [9], or Theorem 9.4 in [3]), which
asserts that if α1, α2, . . . , αK are positive real algebraic numbers in an algebraic number
field K of degree D, b1, b2, . . . , bK are rational integers, and

Λ := αb11 α
b2
2 · · ·α

bK
K − 1

is not zero, then

|Λ| > exp
(
−1.4× 30K+3 ×K4.5D2(1 + logD)(1 + logB)A1A2 · · ·AK

)
, (15)

where
B ≥ max{|b1|, |b2|, . . . , |bK |},

and
Ai ≥ max{Dh(αi), | logαi|, 0.16}, for all i = 1, 2, . . . , K. (16)

Here, for an algebraic number η we write h(η) for its logarithmic height whose formula is

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (200x), #Axx 5

with d being the degree of η over Q and

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

being the minimal primitive polynomial over the integers having positive leading coefficient
a0 and η as a root.

In a first application of Matveev’s theorem, we take K := 2, α1 := Fn−1, α2 := Fn+r.
We also take b1 := εk, and b2 := −ε`. Thus,

Λ1 := F εk
n−1F

−ε`
n+r − 1 (17)

is the expression appearing under the absolute value in the left–hand side of inequality (14).
Let us check that Λ1 6= 0. If Λ1 = 0, it follows that F k

n−1 = F `
n+r. Hence, Fn−1 and Fn+k

are multiplicatively dependent. However, Carmichael’s Primitive Divisor Theorem (see [4])
asserts that that if n > 12, then Fn has a primitive prime factor; that is, a prime factor p
such that p does not divide Fm for any m < n. In particular, if n + r > 12, then Fn−1 and
Fn+r are multiplicatively independent. A quick look at the remaining cases shows that the
only instance in which Fn−1 and Fn+r are multiplicatively dependent is when Fn−1 = 2 and
Fn+r = 8, so n = 4 and r = 2. But in this case, equation (2) is

1k + 1k + 2k = 5` + 8`,

which has no solutions anyway since its left–hand side is even and its right–hand side is odd.
Hence, indeed Λ1 6= 0.

Since ` < k, it follows that B = k. Since α1 and α2 are rational numbers, it follows that
we can take D := 1. Next, since the inequality Fm < αm holds for all positive integers m,
we can take A1 := (n− 1) logα and A2 := (n + r) logα, and then inequalities (16) hold for
both i = 1, 2. Now Matveev’s theorem tells us that

|Λ1| > exp (−C1 × (n− 1) logα× (n+ r) logα× (1 + log k)) , (18)

where
C1 := 1.4× 305 × 24.5 < 8× 108.

Taking logarithms in inequality (14) and comparing the resulting inequality with (18), we
get

−C1(logα)2(n− 1)(n+ r)(1 + log k) < log |Λ1| < −` log(1.5) + log 3,

so

`− log 3

log(1.5)
<
C1(logα)2

log(1.5)
(n− 1)(n+ r)(1 + log k), (19)

which leads to
` < 5× 108n(n+ r)(1 + log k) < 109n(n+ r) log k, (20)

because log k ≥ log 4 > 1.
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Recall now that, by Lemma 2 and the fact that n ≥ 4, we have

3k ≤ (n− 1)k ≤ (n+ r)`+ 2k + `, therefore k ≤ `(n+ r + 1). (21)

Thus,
` < 109n(n+ r) log(`(n+ r + 1)). (22)

If ` ≤ n + r, then we have an inequality which is better than inequality (22). Otherwise,
` ≥ n+ r + 1, therefore

` ≤ 2× 109n(n+ r) log `,

so
`

log `
< 2× 109n(n+ r). (23)

It is well-known and easy to prove that if A ≥ 3 and x/ log x < A, then x < 2A logA (see,
for example, [7]). Thus, taking A := 2× 109n(n+ r), inequality (23) gives us

` < 2(2× 109n(n+ r)) log(2× 109n(n+ r))

< 4× 109n(n+ r)(log(2× 109) + 2 log(n+ r))

< 4× 109n(n+ r)(22 + 2 log(n+ r))

< 4× 109n(n+ r)(16 log(n+ r))

< 6.5× 1010n(n+ r) log(n+ r).

In the above chain of inequalities, we used that fact that n + r ≥ 5, which implies that
log(n+ r) ≥ log 5 = 1.60944 . . . > 22/14 = 1.57143 . . .. Thus,

` < 6.5× 1010n(n+ r) log(n+ r). (24)

From estimate (21), we also deduce that

k < `(n+ r + 1) < 6.5× 1010n(n+ r)(n+ r + 1) log(n+ r)

< 8× 1010n(n+ r)2 log(n+ r), (25)

where we used the fact that n + r ≥ 5, which implies that (n + r + 1)/(n + r) ≤ 6/5. We
record what we have just proved.

Lemma 3. If (k, `, n, r) is a solution in positive integers of equation (2), then both inequal-
ities

` < 7× 1010n(n+ r) log(n+ r),

k ≤ `(n+ r + 1) < 8× 1010n(n+ r)2 log(n+ r)

hold.
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4. The case of small n and r

Here, we assume that n ≤ 3000, r ≤ 3000. Thus, by Lemma 3, we have

` < 7× 1010 × 3000× 6000× log 6000 < 1.1× 1019, k ≤ `(n+ r + 1) < 6.6× 1023.

Now put Γ1 := k logFn−1 − ` logFn+r. Inequality (14) tells us that

|e−|Γ1| − 1| = |Λ1| <
3

1.5`
.

Assuming that ` ≥ 5, we then have that 3/1.5` < 1/2, so that |e−|Γ1| − 1| < 1/2. This leads
to e|Γ1| < 2, therefore

|Γ1| < e|Γ1||e−|Γ1| − 1| < 6

1.5`
.

Dividing the last inequality above by ` logFn−1, we get that∣∣∣∣ logFn+r

logFn−1

− k

`

∣∣∣∣ < 6

`(logFn−1)1.5`
≤ 6

`(log 2)1.5`
.

The left–hand side above is < 1/(2`2) for all ` ≥ 14. Thus, by a criterion of Legendre, it
follows that if ` ≥ 14, then k/` is a convergent of the continued fraction of the number
γ := (logFn+r)/(logFn−1). Hence, k/` = pi/qi, where pi/qi is the ith convergent of γ and
furthermore qi < 1.1 × 1019. This gives a certain number of possibilities for the ratio k/`
once n and r are fixed. Fixing the ratio k/` = κ/λ with coprime positive integers κ and λ,
we can write k = κd and ` = λd for some positive integer d, which is the greatest common
divisor of k and `. Then, again with n, r fixed and κ and λ fixed also, inequality (14) gives

|(F εκ
n−1F

−ελ
n+r )d − 1| < 3

(1.5λ)d
,

which gives a few possibilities for d. Hence, when n and r are fixed, we get a certain number
of possibilities for the pair (k, `) = (κd, λd). All this was when ` ≥ 14, but if ` ≤ 13 and n
and r are fixed, then we have only a few possibilities for k as well. Then we test all such
possible quadruples (k, `, n, r) and check whether equation (2) is satisfied. This computation
took some 20 hours and revealed no additional solutions (k, `, n, r) to equation (2) aside from
(8, 2, 4, 3).

We record what we have obtained as follows.

Lemma 4. If (k, `, n, r) is a positive integer solution to equation (2) other than (8, 2, 4, 3),
then max{n, r} ≥ 3001.

5. A bound for r in terms of n

From now on, we assume that max{n, r} ≥ 3001. We look at the right–hand side of (2)
more closely. Recall that

N := F `
n+1 + · · ·+ F `

n+r
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(see (7)). We let t := max{n, b(n+ r)/2c} and put

N1 := F `
n+1 + · · ·+ F `

t .

Observe that N1 = 0 if r ≤ n + 1. If N1 6= 0, then r ≥ n + 2, therefore we have that
t = b(n+ r)/2c ≤ (n+ r)/2. Thus,

N1 = F `
t

((
Fn+1

Ft

)`
+

(
Fn+2

Ft

)`
+ · · ·+

(
Ft−1

Ft

)`
+ 1

)

< F `
t

(
3

1.5`
+ 1

)
≤ 3F `

t < 3(F `
2t)

1/2 ≤ 3(F `
n+r)

1/2 ≤ 3N1/2. (26)

In the above estimates, we invoked the argument used at (10) to bound S, as well as the
known fact that the inequality F2m ≥ F 2

m holds for all positive integers m. Thus, the
inequality N1 ≤ 3

√
N holds regardless of whether N1 is zero or not. Before moving further,

observe that the inequality
√
N <

αN

α(n+r)/2
(27)

holds, because this inequality is equivalent to N ≥ αn+r−2, which holds since

N ≥ F `
n+r ≥ Fn+r > αn+r−2.

Hence, using (26) and (27), we get

N1 < 3
√
N <

3αN

α(n+r)/2
<

5N

α(n+r)/2
. (28)

We next look at
N2 := N −N1 = F `

t+1 + · · ·+ F `
n+r.

Let j ∈ [t+ 1, n+ r]. Write

F `
j =

(
αj − βj

51/2

)`
=
αj`

5`/2

(
1− (−1)j

α2j

)`
. (29)

Observe that, by Lemma 3, we have that

`

α2j
<

7× 1010(n+ r)2 log(n+ r)

αn+r
<

1

α(n+r)/2
.

The last inequality holds whenever n+ r ≥ 153, which is the case for us. Since n+ r ≥ 3002,
the right–hand side above is < α−1500 < 10−300. If j is odd, then

1 <

(
1− (−1)j

α2j

)`
=

(
1 +

1

α2j

)`
= exp

(
` log

(
1 +

1

α2j

))
< exp

(
`

α2j

)
< exp

(
1

α(n+r)/2

)
< 1 +

2

α(n+r)/2
, (30)
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because the argument inside the exponential is < 10−300. Similarly, if j is even, then

1 >

(
1− (−1)j

α2j

)`
=

(
1− 1

α2j

)`
= exp

(
` log

(
1− 1

α2j

))
(31)

> exp

(
− 2`

α2j

)
> exp

(
− 2

α(n+r)/2

)
> 1− 2

α(n+r)/2
.

Formula (29), together with bounds (30) and (31), gives∣∣∣∣F `
j −

αj`

5`/2

∣∣∣∣ < αj`

5`/2

∣∣∣∣∣
(

1− (−1)j

α2j

)`
− 1

∣∣∣∣∣ <
(
αj`

5`/2

)(
2

α(n+r)/2

)
. (32)

Put

x :=
1

α(n+r)/2
.

Since x < 10−300, inequality (32) certainly implies that αj`/5`/2 < 1.5F `
j , therefore∣∣∣∣F `

j −
αj`

5`/2

∣∣∣∣ < 2x

(
αj`

5`/2

)
< 3xF `

j . (33)

The above inequality applied for j = t+ 1, . . . , n+ r, gives immediately that if we put

N3 :=
n+r∑
j=t+1

αj`

5`/2
,

then the inequality

|N2 −N3| < 3x
(
F `
t+1 + · · ·+ F `

n+r

)
= 3xN2 ≤ 3xN =

3N

α(n+r)/2
(34)

holds. It remains to estimate N3. Observe first that

N3 =
α(n+r+1)` − α(t+1)`

5`/2(α` − 1)
. (35)

In particular,∣∣∣∣N − α(t+1)`(α(n+r−t)` − 1)

5`/2(α` − 1)

∣∣∣∣ = |N −N3| ≤ N1 + |N2 −N3| <
8N

α(n+r)/2
, (36)

by estimates (28) and (34). Now, by estimate (33) for j = t+ 1, we have

α(t+1)`

5`/2
< 2F `

t+1 ≤ 2

(
Fn+r

Fn+r−t

)`
≤ 2N

F `
n+r−t

≤ 2N

α(n+r−t−2)`
,

where we used the fact that for positive integers a and b the inequality Fa+b ≥ FaFb+1 holds
(with a := n+ r − t and b := t). Hence,

α(t+1)`

5`/2(α` − 1)
<

2N

(α` − 1)α(n+r−t−2)`
<

6N

α(n+r−t−1)`
, (37)
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where we used the fact that the inequality α`/(α` − 1) < 2.62 < 3 holds for all positive
integers `. Thus, from formula (35) and estimates (36) and (37), we get that∣∣∣∣N − α(n+r+1)`

5`/2(α` − 1)

∣∣∣∣ ≤ |N −N3|+
α(t+1)`

5`/2(α` − 1)
< 8N

(
1

α(n+r)/2
+

1

α(n+r−t−1)`

)
, (38)

by (36). The above inequality (38) implies that∣∣∣∣N(α` − 1)− α(n+r+1)`

5`/2

∣∣∣∣ < 8N(α` − 1)

(
1

α(n+r)/2
+

1

α(n+r−t−1)`

)
< 8N

(
1

α(n+r)/2−` +
1

α(n+r−t−2)`

)
.

Hence, ∣∣∣∣Nα` − α(n+r+1)`

5`/2

∣∣∣∣ < N

(
1 +

8

α(n+r)/2−` +
8

α(n+r−t−2)`

)
,

so that ∣∣∣∣N − α(n+r)`

5`/2

∣∣∣∣ < 8N

(
1

α`
+

1

α(n+r)/2
+

1

α(n+r−t−1)`

)
. (39)

Let’s take a break and see what we have done so far. Let us look at the last term on the
right–hand sides both in (38) as well as in (39) above.

If t = b(n+ r)/2c, then r ≥ n, and

(n+ r − t− 1)` ≥ (n+ r − b(n+ r)/2c − 1)` ≥ ((n+ r)/2− 1)`,

so the third term on the right–hand side of (39) is majorized by the second term because
n+ r ≥ 3002.

If t = n, then (n+ r − t− 1)` = (r − 1)` ≥ r`/2 if r ≥ 2.

However, if r = 1, we then get n + r − t − 1 = 0, so the third term on the right–hand
side of both inequalities (38) and (39) is too large to be useful.

So, let us take a closer look at the case r = 1. In this case, we simply have

N = F `
n+1.

Hence, ∣∣∣∣N − α(n+1)`

5`/2

∣∣∣∣ < 3xF `
n+1 = 3xN =

3N

α(n+r)/2
, (40)

by estimate (33) with j = n+ 1 = n+ r. Furthermore, the above estimate (40) implies that∣∣∣∣ Nα`α` − 1
− α(n+2)`

5`/2(α` − 1)

∣∣∣∣ < ( α`

α` − 1

)(
3N

α(n+1)/2

)
<

8N

α(n+1)/2
.
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Hence, ∣∣∣∣N − α(n+2)`

5`/2(α` − 1)

∣∣∣∣ <
N

α` − 1
+

8N

α(n+1)/2
< 8N

(
1

α`
+

1

α(n+1)/2

)
= 8N

(
1

α(n+r)/2
+

1

α(n+r−t)`/2

)
. (41)

Comparing estimates (38) and (41), as well as (39) and (40), we get that estimates (38)
and (39) hold also when r = 1 with the exponent of α on the last term in the right–hand
side replaced by (n+ r− t)/2 (instead of n+ r− t− 1). Since n+ r− t− 1 ≥ (n+ r− t)/2
holds whenever r > 1, we can record our conclusion as follows:

Lemma 5. Let (k, `, n, r) be a solution other than (8, 2, 4, 3) of equation (2). Putting

N := F `
n+1 + · · ·+ F `

n+r,

and t := max{n, b(n+ r)/2c}, then all three inequalities∣∣∣∣N − α(n+r)`

5`/2

∣∣∣∣ < 8N

(
1

α`
+

1

α(n+r)/2
+

1

α(n+r−t)`/2

)
, (42)

∣∣∣∣N − α(n+r+1)`

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

α(n+r)/2
+

1

α(n+r−t)`/2

)
, (43)

and ∣∣∣∣N − α(t+1)`(α(n+r−t)` − 1)

5`/2(α` − 1)

∣∣∣∣ < 8N

α(n+r)/2
(44)

hold.

Now we return to
N = F k

1 + · · ·+ F k
n−1 = F k

n−1(1 + S1),

where 0 < S1 < 3/1.5k (see formula (11) and estimate (12)). Since k ≥ 4, we get that
S1 < 3/5, and in particular 5N/8 < F k

n−1 < N . Hence,

|N − F k
n−1| < F k

n−1S1 <
3N

1.5k
. (45)

Comparing estimates (45), (42) and (43), and using also the fact that α > 1.5, we get∣∣∣∣F k
n−1 −

α(n+r)`

5`/2

∣∣∣∣ < 8N

(
1

1.5`
+

1

1.5k
+

1

1.5(n+r)/2
+

1

1.5(n+r−t)`/2

)
, (46)

and ∣∣∣∣F k
n−1 −

α(n+r+1)`

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

1.5k
+

1

1.5(n+r)/2
+

1

1.5(n+r−t)`/2

)
. (47)
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We divide both sides of equations (46) and (47) by F k
n−1 and keep in mind thatN/F k

n−1 < 8/5,
to get ∣∣F−kn−1α

(n+r)`5−`/2 − 1
∣∣ < 13

(
1

1.5`
+

1

1.5k
+

1

1.5(n+r)/2
+

1

1.5(n+r−t)`/2

)
, (48)

and ∣∣F−kn−1α
(n+r+1)`5−`/2(α` − 1)−1 − 1

∣∣ < 13

(
1

1.5k
+

1

1.5(n+r)/2
+

1

1.5(n+r−t)`/2

)
. (49)

Recall that our goal in this section is to bound r. We distinguish several cases.

Case 1. r ≤ n.

In this case, by Lemma 3, we get that

` ≤ 7× 1010n(2n) log(2n) = 1.4× 1011n2(log 2 + log n)

≤ 1.4× 1011n2 × (3/2)× log n < 2.1× 1011n2 log n, (50)

where we used the fact that n ≥ 4 ≥ 22, so that log n ≥ 2 log 2. Furthermore,

k < `(n+ r + 1) = `(n+ r)

(
n+ r + 1

n+ r

)
≤ `(2n)

(
3003

3002

)
< 4.3× n3 log n, (51)

where we used the fact that n+ r ≥ 3002. We also record that

r ≤ n (52)

for future referencing.

From now on, we assume that r > n. In particular, t = b(n+ r)/2c, therefore

(n+ r − t)`/2 ≥ (n+ r)`/4. (53)

We shall apply Matveev’s theorem to bound from below the left–hand sides of (48)
and (49). Let us check that they are not zero. If the left–hand side of (48) is zero, then
α2(n+r)` = F 2k

n−15` ∈ Z, which is impossible since no power of α of positive integer exponent
is an integer. If the left–hand side of (49) is zero, we then get that

α(n+r+1)`

α` − 1
= F k

n−15`/2.

Conjugating the above relation in Q(
√

5) and multiplying the two resulting relations we get

(−1)(n+r+1)`

(α` − 1)(β` − 1)
= (−1)`F 2k

n−15`.
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The right–hand side above is an integer of absolute value larger than 1, while the left–hand
side above is the reciprocal of an integer. This is a contradiction. Hence, the left–hand sides
of (48) and (49) are non-zero.

We start with a lower bound on the left–hand side of inequality (48). For this, we take
K := 3, α1 = Fn−1, α2 := α, α3 :=

√
5. We also take b1 := −k, b2 := (n + r)`, b3 := `.

Hence,
Λ2 := αb11 α

b2
2 α

b3
3 − 1 = F−kn−1α

(n+r)`5−`/2 − 1

is the expression which appears under the absolute value in the left–hand side of inequality
(48). We have already checked that Λ2 6= 0. Observe that α1, α2, α3 are all real and belong
to the field K := Q(

√
5), so we can take D := 2. Next, since Fn−1 < αn, it follows that we can

take A1 := 2n logα > D logFn−1 = Dh(α1). Next, since h(α2) = (logα)/2 = 0.240606 . . . ,
it follows that we can take A2 := 0.5 > Dh(α2). Since h(α3) = (log 5)/2 = 0.804719 . . ., it
follows that we can take A3 := 1.61 > Dh(α3). Finally, Lemma 3 tells us that we can take

B = 1.3× 1012r4 > 8× 1010(2r)4 > 8× 1010(n+ r)4

> 8× 1010n(n+ r)2 log(n+ r) ≥ `(n+ r + 1)

≥ max{k, `(n+ r), `} = max{|b1|, |b2|, |b3|}.

Matveev’s theorem tells us that

|Λ2| > exp(−C2(1 + logB)A1A2A3), (54)

where
C2 := 1.4× 306 × 34.5 × 22(1 + log 2) < 1012.

Thus,

C2(1 + logB)A1A2A3 < 1012 × (2 logα)× 0.5× 1.61

× (1 + log(1.3× 1012) + 4 log r)n

< 8× 1011(29 + 4 log r)n

< 8× 1011(8 log r)n

< 7× 1012n log r, (55)

where we used the fact that 29 + 4 log r < 8 log r, because r ≥ 3001 (otherwise, that is
if r ≤ 3000, then we get that n < r ≤ 3000 also, which is a case already treated). Now
inequalities (15), (48), (53), and (54) show that if we put

λ1 := min{`, k, (n+ r)/2, (n+ r)`/4}, (56)

then the inequality

exp
(
−7× 1012n log r

)
<

60

1.5λ1

holds. This in term yields

λ1 <
log 60

log 1.5
+ 7× 1012(log 1.5)−1n log r < 2× 1013n log r. (57)
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We already know that ` < k. We distinguish the following cases.

Case 2. λ1 ∈ {(n+ r)/2, (n+ r)`/4}.

Inequality (57) gives in this case that

r/4 < λ1 < 2× 1013n log r, therefore r < 8× 1013n log r.

Hence,

r < 2× (8× 1013)n log(8× 1013n) = 1.6× 1014n(log(8× 1013) + log n)

< 1.6× 1014n(32.1 + log n) < 1.6× 1014 × n(33 log n)

< 6× 1015n log n, (58)

where we used the fact that n ≥ 4. With Lemma 3, we get that

` ≤ 7× 1010n(n+ r) log(n+ r) < 7× 1010n(2r)(log 2r)

< 1.4× 1011(nr)(log 2 + log r)

< 1.4× 1011 × (6× 1015)(n2 log n)(log 2 + log(6× 1015) + 2 log n)

< 9× 1026(n2 log n)(38 + 2 log n) < 1027 × (n2 log n)(40 log n)

< 4× 1028n2(log n)2. (59)

Also,

k < `(n+ r + 1) ≤ `(2r) < 8× 1028 × 6× 1015(n2(log n)2)(n log n)

< 5× 1044n3(log n)3. (60)

Now we assume that λ1 6∈ {(n + r)/2, (n + r)`/4}. Since ` < k, we get that λ1 = `.
Hence, inequality (57) gives

` < 2× 1013n log r. (61)

We next apply Matveev’s theorem to get a lower bound on the expression appearing in
the left–hand side of (49). We take K := 4, α1 := Fn−1, α2 := α, α3 :=

√
5, α4 := α` − 1.

We also take b1 := −k, b2 := (n+ r + 1)`, b3 := −`, b4 := −1. Thus,

Λ3 := F−kn−1α
(n+r+1)`5−`/2(α` − 1)−1 − 1

is the expression appearing under the absolute value in the left–hand side of inequality (49).
We have already checked that Λ3 6= 0. As for parameters, we have again D := 2 and we
can take A1 := 2n logα, A2 := 0.5, A3 := 1.61 and B := 1.3 × 1012r4 as in the previous
application of Matveev’s theorem. As for A4 observe that

Dh(α4) = 2h(α4) ≤ log(α` − 1) + max{0, log(|β` − 1|)}
≤ ` logα + log 2 < (log 2)(`+ 1) < (2 log 2)` < 1.4`,
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so we can take A4 := 1.4`. Thus, the left–hand side of (49) is

|Λ3| > exp(−C3(1 + logB)A1A2A3A4), (62)

where
C3 := 1.4× 307 × 44.5 × 22 × (1 + log 2) < 1.1× 1014.

Thus, using part of the calculation from (55), we get that the expression under the expo-
nential in (62) is bounded as

C3(1 + logB)A1A2A3A4 < 1.1× 1014(1 + log(1.3× 1012r4))× (2n logα)

× 0.5× 1.61× (1.4`)

< 1.2× 1014(n`)(29 + 4 log r)

< 1.2× 1014(n`)(8 log r)

< 1015(n`) log r. (63)

Using also inequality (61), we get that

C3(1 + logB)A1A2A3A4 < 1015 × 2× 1013n2(log r)2 < 2× 1028n2(log r)2. (64)

We now compare bound (62) with bound (49) and use also inequality (53), to get that

exp(−C3(1 + logB)A1A2A3A4) <
40

1.5λ2
,

where λ2 := min{k, (n+ r)/2, (n+ r)`/4}. Hence,

λ2 <
log 40

log 1.5
+ C3(1 + logB)A1A2A3A4(log 1.5)−1. (65)

We now distinguish the following cases.

Case 3. λ2 ∈ {(n+ r)/2, (n+ r)`/4}.

In this case, we work with inequality (64) to get that inequality (65) implies that

r/4 ≤ λ2 ≤
log 40

log 1.5
+ 2× 1028 × (log 1.5)−1n2(log r)2 < 5× 1028n2(log r)2,

giving
r < 2× 1029n2(log r)2.

One checks easily that if A > 100, then the inequality

x

(log x)2
< A
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implies x < 4A(logA)2. Indeed, for if not, since the function x/(log x)2 is increasing for
x > e2, it follows that

4A(logA)2

(log(4A(logA)2))2
≤ x

(log x)2
< A,

giving 2 logA < log(4A(logA)2), or A2 < 4A log(A)2, or A < 4(logA)2, which gives A < 75.
Applying this with A := 2× 1029n2, we get that

r < 4× (2× 1029)n2(log(2× 1029n2))2

< 8× 1029n2(log(2× 1029) + 2 log n)2

< 8× 1029n2(68 + 2 log n)2 < 8× 1029n2(70 log n)2

< 4× 1033n2(log n)2. (66)

With inequality (61), we get

` < 2× 1013n log(4× 1033n4) < 2× 1013(78 + 4 log n)

< 2× 1013n(82 log n) < 2× 1015n log n. (67)

Finally, using inequalities (66), (67) and (21), we also get

k ≤ `(n+ r + 1) ≤ 2`nr ≤ 2× 1015 × 4× 1033n3(log n)3 = 8× 1048n3(log n)3. (68)

Now we move on to the last case, namely:

Case 4. λ2 = k.

Then inequality (65) together with inequality (63) gives

k <
log 40

log 1.5
+ 1015 × (log 1.5)−1n` log r < 2.5× 1015n` log r.

From Lemma 2, we deduce that

`r < `(n+ r) < k(n+ 2) < 2.5× 1015n(n+ 2)` log r

≤ 2.5× 1015n(1.5n)` log r < 4× 1015n2` log r,

giving
r < 4× 1015n2 log r.

Hence,

r < 2× 4× 1015n2 log(4× 1015n2) < 8× 1015n2(36 + 2 log n)

< 8× 1015(26 log n) < 2.1× 1017n2 log n. (69)

With inequality (61), we get that

` < 2× 1013n log(2.1× 1017n3) < 2× 1013n(40 + 3 log n)

< 2× 1013n(32 log n) < 7× 1014n log n, (70)
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while by (21), (69) and (70), we get

k ≤ `(n+ r + 1) ≤ 2`r < 2× 7× 1014 × 2.1× 1017(n log n)(n2 log n)

< 3× 1032n3(log n)2. (71)

Let us summarize what we have done. The following lemma follows by picking up the worse
upper bounds for r, ` and k from estimates (52), (58), (66), (69) (for r), (50), (59), (67),
(70) (for `) and (51), (60), (68) and (71) (for k), respectively.

Lemma 6. If (k, `, n, r) is a solution of equation (2) with n+ r ≥ 3002, then the estimates

r ≤ 1034n2(log n)2; (72)

` ≤ 1029n2(log n)2; (73)

k ≤ 1049n3(log n)3 (74)

hold.

6. The case of the small n

Here, we treat the case when n ≤ 3000. Then, by Lemmas 2 and 6, we have

(n+ r)` ≤ k(n+ 2) ≤ 1049n3(log n)3(n+ 2) < 5× 1065 for n ≤ 3000. (75)

From inequality (48), we infer that∣∣F−kn−1α
(n+r)`5−`/2 − 1

∣∣ < 60

1.5λ3
,

where
λ3 := min{`, k, (n+ r)/2, (n+ r − t)`/2}. (76)

Put

Λ4 := F−kn−1α
(n+r)`5−`/2 − 1,

Γ4 := −k logFn−1 − (n+ r)` logα− ` log
√

5. (77)

Assume that λ3 ≥ 13. We then have that

|eΓ4 − 1| = |Λ4| <
60

1.5λ3
<

1

3
,

which gives that e|Γ4| < 3/2. Hence,

|Γ4| < e|Γ4||eΓ4 − 1| < 1.5|Λ4| <
100

1.5λ3
.
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Observe that Γ4 is an expression of the form

|x logFn−1 + y logα + z log
√

5|, (78)

where x := −k, y := (n + r)`, z := −` are integers with max{|x|, |y|, |z|} ≤ 5 × 1065 (see
(75)). For each n ∈ [4, 3000], we used the LLL algorithm to compute a lower bound for the
smallest nonzero number of the form (78) with integer coefficients x, y, z not exceeding
5 × 1065 in absolute value. We followed the method described in [5, Section 2.3.5], which
provides such bound using the approximation for the shortest vector in the corresponding
lattice obtained by LLL algorithm. In these computations, we used the PARI/GP function
qflll. The minimal such value is > 100/1.5750, which gives that λ3 ≤ 750. Observe that
since n ≤ 3000 and we already covered the range when both n and r were in [1, 3000], it
follows that r > 3000. In particular, (n+ r)/2 > 1500 and r > n, therefore t = b(n+ r)/2c.
Thus, (n + r − t)`/2 ≥ (n + r)`/4 > `. Since also k > `, we learn from this computation
that ` = λ3 and ` ≤ 750.

Next we move to inequality (49) and rewrite it as∣∣F−kn−1α
(n+r)`5−`/2(α` − 1)− 1

∣∣ < 40

1.5λ4
,

where
λ4 := min{k, (n+ r)/2, (n+ r − t)`/2}. (79)

We now put

Λ5 := F−kn−1α
(n+r)`5−`/2(α` − 1)− 1,

Γ5 := −k logFn−1 + (n+ r) logα` + log(5−`/2(α` − 1). (80)

Assume that λ4 ≥ 12. We then have that

|eΓ5 − 1| = |Λ5| <
40

1.5λ4
<

1

3
,

which gives that e|Γ5| < 3/2. Hence,

|Γ5| < e|Γ5||eΓ5 − 1| < 1.5|Λ5| <
60

1.5λ4
.

Observe that |Γ5| is an expression of the form

|x logα1 + y logα2 + logα3|, (81)

where α1 := Fn−1, α2 := α`, α3 = 5−`/2(α`− 1), and x := −k, y := (n+ r). Since n ≤ 3000,
by Lemma 6, we have that

max{|x|, |y|} ≤ 1049(n log n)3 < 2× 1062. (82)

For each n ∈ [4, 3000] and each ` ∈ [1, 750], we performed the LLL algorithm to find a lower
bound on the smallest number of the form (81) whose coefficients x, y are integers satisfying
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(82). In each case, we got that this lower bound is > 60/1.5−800, which gives that λ4 ≤ 800.
Again, we have (n + r)/2 > 1500; hence, λ4 = k or λ4 = (n + r − t)`/2. From what we
have seen, (n + r − t)`/2 ≥ (n + r)`/4 > 750` and this last number is ≥ 1500 > 800 unless
` = 1. Thus, we always have k ≤ 800, unless ` = 1, and then (n + r)/4 ≤ 800, which gives
n+ r ≤ 3200.

We first deal with the second possibility. Fix n ≤ 3000 and r such that n + r ≤ 4000.
Let ` = 1. Then

N = Fn+1 + · · ·+ Fn+r

is known. Furthermore, by inequality (11) and estimate (12), we get that N = F k
n−1(1 + S),

where 0 < S < 3/1.5k < 2/3 for k ≥ 4. Thus, (3/5)N < F k
n−1 < N , therefore

logN − log(5/3)

logFn−1

< k <
logN

logFn−1

. (83)

For n and r fixed, there is at most one k satisfying inequalities (83). When this exists, we
tested whether with this value of k the quadruple (k, 1, n, r) does indeed satisfy equation
(2). No new solution turned up.

So, from now on, we assume that k ≤ 800. Thus,

`(n+ r) ≤ k(n+ 2) ≤ 800× 3002 < 2.5× 106.

We now fix again n and apply again the LLL algorithm to get a lower bound on the minimum
absolute value of the nonzero numbers of the form (78) where now x, y, z are integer
coefficients of absolute values ≤ 2.5× 106. In all cases, we got a lower bound of 100/1.5100,
which gives that λ3 ≤ 100. Hence, ` ≤ 100. We now moved on to the number of the form
(81), and for all values of n ∈ [4, 3000] and each ` ∈ [1, 100], we applied the LLL algorithm
to find a lower bound for the absolute value of the nonzero numbers of the form (81) when
x, y are integer coefficients not exceeding 2.5 × 106 in absolute values. In all cases, we got
a lower bound larger than 60/1.5130, showing that k ≤ 130.

Now we covered the rest by brute force. That is, suppose that n ∈ [4, 3000] and ` < k

are fixed in [1, 100] and [4, 130], respectively. Then N = F k
1 + · · · + F k

n−1 is fixed and
(3/5)N < F `

n+r < N . Thus,
(3N/5)1/` < Fn+r < N1/`. (84)

For each fixed triple (k, `, n), the above inequality gives some range for r. For each of these
candidates r such that r ≥ 3001, we checked whether the quadruple (k, `, n, r) does indeed
satisfy (2). As expected, no new solutions turned up.

This completes the analysis of the case when n ≤ 3000. We record our conclusion as
follows.

Lemma 7. If (k, `, n, r) is a solution of (2) other than (8, 2, 4, 3), then n ≥ 3001. Further-
more, if ` = 1, then n+ r ≥ 4001.
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7. Three linear forms in logarithms

Now we start working on the left–hand side of equation (2) and do to it what we did to the
right–hand side of it in Section 3. Write m := bn/2c, and put

N4 :=
∑
j≤m

F k
j .

Then

N4 <

(∑
j≤m

Fj

)k

< (Fm+2)k <

(
Fn−1

Fn−m−2

)k
<

N

α(n−m−4)k
≤ N

α(n/2−4)k
<
N

αn
, (85)

because n ≥ 3001 and k ≥ 4.

Assume now that j ∈ [m+ 1, n− 1]. Formula (29) gives us that

F k
j =

(
αj − βj

51/2

)k
=
αjk

5k/2

(
1− (−1)j

α2j

)k
.

By Lemma 6, we have that

k

α2j
≤ 1049n3(log n)3

αn
<

1

αn/2
.

The last inequality holds whenever n ≥ 572, which is the case for us. Set y := 1/αn/2. Since
n ≥ 3001, it follows that y < α−1500 < 10−300. The argument used to prove inequality (32),
based on the inequalities (30) and (31) yields that∣∣∣∣∣

(
1− (−1)j

α2j

)k
− 1

∣∣∣∣∣ < 2k

α2j
< 2y,

therefore ∣∣∣∣F k
j −

αjk

5k/2

∣∣∣∣ =
αjk

5k/2

∣∣∣∣∣
(

1− (−1)j

α2j

)k
− 1

∣∣∣∣∣ < 2y

(
αjk

5k/2

)
.

Since y is small, we get, as in (33), that the inequality above implies that αjk/5k/2 < 1.5F k
j ,

therefore the inequality ∣∣∣∣F k
j −

αjk

5k/2

∣∣∣∣ < 3yF k
j (86)

holds for all j ∈ [m+ 1, n− 1]. Now we sum up the above inequalities over all j getting that
if we put

N5 :=
n−1∑

j=m+1

αjk

5k/2
,
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then the inequality

|N −N4 −N5| =

∣∣∣∣∣
n−1∑

j=m+1

F k
j −

n−1∑
j=m+1

αkj

5k/2

∣∣∣∣∣ ≤
n−1∑

j=m+1

∣∣∣∣F k
j −

αjk

5k/2

∣∣∣∣
< 3y

n−1∑
j=m+1

F k
j < 3yN (87)

holds. We now estimate N5. Clearly,

N5 =
αnk − α(m+1)k

5k/2(αk − 1)
.

Note that

α(m+1)k

5k/2(αk − 1)
≤

1.5F k
m+1

α4 − 1
< F k

m+1 <

(
Fn−1

Fn−m−1

)k
<

N

α(n−m−3)k
≤ N

α(n−6)k/2
<
N

αn
. (88)

From inequalities (85), (87) and (88), we get∣∣∣∣N − αnk

5k/2(αk − 1)

∣∣∣∣ ≤ N4 + |N −N4 −N5|+
α(m+1)k

5k/2(αk − 1)

< N

(
1

αn
+

3

αn/2
+

1

αn

)
<

4N

αn/2
. (89)

Multiplying both sides above by αk − 1, we also get that∣∣∣∣N(αk − 1)− αnk

5k/2

∣∣∣∣ < 4(αk − 1)N

αn/2
<

4N

αn/2−k
,

therefore ∣∣∣∣Nαk − αnk

5k/2

∣∣∣∣ < N

(
1 +

4

αn/2−k

)
.

Hence, ∣∣∣∣N − α(n−1)k

5k/2

∣∣∣∣ < N

(
1

αk
+

4

αn/2

)
< 4

(
1

αk
+

1

αn/2

)
. (90)

Let

A :=
αnk

5k/2(αk − 1)
and B :=

α(n−1)k

5k/2
.

From inequalities (89) and (90) together with the fact that k ≥ 4 and n ≥ 3001, which
implies that

4

(
1

αk
+

1

αn/2

)
< 0.6,
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we infer that both inequalities N < 2.5A and N < 2.5B hold. Now we put together the two
inequalities (89) and (90) involving N together with the three inequalities (42), (43) and
(44) involving also N , and get the following six inequalities:∣∣∣∣α(n−1)k

5k/2
− α(n+r)`

5`/2

∣∣∣∣ < 8N

(
1

αk
+

1

αn/2
+

1

α`
+

1

α(n+r)/2
+

1

α(n+r−t)`/2

)
< 16N

(
1

α`
+

1

αn/2
+

1

α(n+r−t)`/2

)
.∣∣∣∣α(n−1)k

5k/2
− α(n+r+1)`

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

αk
+

1

αn/2
+

1

α(n+r)/2
+

1

α(n+r−t)`/2

)
< 16N

(
1

αk
+

1

αn/2
+

1

α(n+r−t)`/2

)
.∣∣∣∣α(n−1)k

5k/2
− α(t+1)`(α(n+r−t)` − 1)

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

αk
+

1

αn/2
+

1

α(n+r)/2

)
< 16N

(
1

αk
+

1

αn/2

)
;∣∣∣∣ αnk

5k/2(αk − 1)
− α(n+r)`

5`/2

∣∣∣∣ < 8N

(
1

αn/2
+

1

α`
+

1

α(n+r)/2
+

1

α(n+r−t)`/2

)
< 16N

(
1

α`
+

1

αn/2
+

1

α(n+r−t)`/2

)
.∣∣∣∣ αnk

5k/2(αk − 1)
− α(n+r+1)`

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

αn/2
+

1

α(n+r)/2
+

1

α(n+r−t)`/2

)
< 16N

(
1

αn/2
+

1

α(n+r−t)`/2

)
.∣∣∣∣ αnk

5k/2(αk − 1)
− α(t+1)`(α(n+r−t)` − 1)

5`/2(α` − 1)

∣∣∣∣ < 8N

(
1

αn/2
+

1

α(n+r)/2

)
<

16N

αn/2
.

We will actually not use the third, fourth or sixth inequality above, we will only use the first,
second and fifth. Since each one of them involves either A or B (but not both), it follows
that dividing both sides of the respective inequality by its A or B term and using the fact
that N < 2.5 max{A,B}, we get the following three inequalities

∣∣α(n+r)`−(n−1)k5(k−`)/2 − 1
∣∣ < 40

(
1

α`
+

1

αn/2
+

1

α(n+r−t)`/2

)
; (91)

∣∣α(n+r+1)`−(n−1)k5(k−`)/2(α` − 1)−1 − 1
∣∣ < 40

(
1

αk
+

1

αn/2
+

1

α(n+r−t)`/2

)
; (92)∣∣∣∣α(n+r+1)`−nk5(k−`)/2

(
αk − 1

α` − 1

)
− 1

∣∣∣∣ < 40

(
1

αn/2
+

1

α(n+r−t)`/2

)
. (93)

We next comment on the size of (n+ r− t)`. Assume first that r ≥ n. Then t = b(n+ r)/2,
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therefore
(n+ r − t)` ≥ (n+ r − b(n+ r)/2c)` ≥ (n+ r)`/2 ≥ n/2.

Otherwise, we have t = n, therefore (n+ r − t)` = r`. But note that Lemma 2 tells us that
the inequality

k(n− 1) ≤ `(n+ r) + 2k + `

holds. This can be rewritten as

k(n− 3) ≤ `n+ r`+ ` = `(n− 3) + r`+ 4` ≤ `(n− 3) + 5r`,

giving that
(n− 3)(k − `) ≤ 5r`.

Hence, (n + r − t)` = r` ≥ (n − 3)(k − `)/5 holds when r < n. To summarize, we always
have

(n+ r − t)`/2 ≥ (n− 3)(k − `)/10. (94)

In conclusion, on the right hand–side of inequalities (91)–(93), the exponent of α in last term
which is (n+ r − t)`/2 is always of comparable size, at least, with the exponent of α in the
previous term which is n/2. We record the conclusions of this section as follows.

Lemma 8. If (k, `, n, r) is a positive integer solution of equation (2) other than (8, 2, 4, 3),
then inequalities (91)–(93) hold. Moreover, (n+ r − t)`/2 ≥ (n− 3)(k − `)/10.

8. Logarithmic bounds for ` and k

Our next goal is to bound ` and k as logarithmic functions in n. This will be achieved by
applying Matveev’s theorem to bound from below the left–hand sides of (91)–(93). Let us
see whether there are instances in which the left–hand side of one of these three inequalities
can be zero.

If the left–hand side of (91) is zero, we then get that α2(n−1)k−2(n+r)` = 5k−`. Since no
power of α of nonzero integer exponent can be an integer, it follows that (n− 1)k = (n+ r)`
and k = `, but this is impossible.

If the left–hand side of (92) is zero, we then get that

α(n+r+1)`−(n−1)k5(k−`)/2 = α` − 1. (95)

Conjugating the above relation in Q(
√

5) and multiplying the two resulting equations we get

(−1)(n+r+1)`−(n−1)k+(k−`)5k−` = (α` − 1)(β` − 1) = −α` − β` + 1 + (−1)`. (96)

It is well–known that αm + βm = Lm, where (Lm)m≥0 is the Lucas sequence given by
L0 = 0, L1 = 1 and Lm+2 = Lm+1 + Lm for all m ≥ 0. Hence, equation (96) above is
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L` − 1 − (−1)` = ±5k−`. If ` is odd, we then get L` = ±5k−`, which is impossible since no
member of the Lucas sequence is a multiple of 5. If ` is even, then L` ≥ L2 = 3, so that
L` − 1− (−1)` = L` − 2 is positive. If `/2 is odd, then

5k−` = L` − 2 = α` + β` − 2 = α` + β` + 2(αβ)`/2 = (α`/2 + β`/2)2 = L2
`/2,

which is also impossible since L`/2 cannot be a multiple of 5. Finally, if ` is a multiple of 4,
we then get that

5k−` = L` − 2 = (α`/2 − β`/2)2 = 5F 2
`/2,

so F 2
`/2 = 5k−`−1. By the Primitive Divisor Theorem, the only Fibonacci numbers which are

powers of 5 are 1 = F1 = F2 and 5 = F5. Thus, `/2 = 2, therefore ` = 4 and k − ` = 1, so
k = 5. Since α4 − 1 =

√
5α2, equation (95) also gives 4(n+ r + 1)− 5(n− 1) = 2, therefore

n = 4r + 7.

The conclusion is that the left–hand side of inequality (92) is nonzero except when
(k, `, n, r) = (5, 4, 4r + 7, r). However, later we shall use inequality (91) to get some bound
for `, and then inequality (92) to get some bound for k. If ` have already been bounded (like
it is the case when ` = 4 and k = 5), then we will move on to inequality (93).

Let us now check that the left–hand side of inequality (93) is nonzero. Assuming that it
is, we get the equation

α(n+r+1)`−nk
(
αk − 1

α` − 1

)
=

1

5(k−`)/2 .

Conjugating the above relation in Q(
√

5) and multiplying the two resulting relations, we get∣∣∣∣Lk − 1− (−1)k

L` − 1− (−1)`

∣∣∣∣ =

∣∣∣∣(αk − 1)(βk − 1)

(α` − 1)(β` − 1)

∣∣∣∣ =
1

5k−`
≤ 1

5
.

Hence, since k ≥ 4, so Lk ≥ 7, we get that

5Lk ≤ 5|Lk − 1− (−1)k| ≤ |L` − 1− (−1)`| ≤ L` + 2 < Lk + 2,

giving 4Lk < 2, which is impossible. Hence, the left–hand side of inequality (93) cannot be
zero.

We now apply Matveev’s theorem to the left–hand sides of inequalities (91)–(93).

We start with bounding ` by applying Matveev’s theorem to inequality (91). We already
checked that this is nonzero. Let λ5 := min{`, n/2, (n+ r − t)`/2}, and note that

(n+ r − t)`/2 ≥ min{n/2, (n− 3)(k − `)/10}

(see Lemma 8). From inequality (91), we obtain∣∣α(n+r)`−(n−1)k5(k−`)/2 − 1
∣∣ < 120

αλ5
. (97)
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We apply Matveev’s theorem to the left–hand side of the above inequality with K := 2,
α1 := α, α2 :=

√
5, b1 := (n + r)` − (n − 1)k, b2 := k − l, D := 2. We take as in prior

applications of this theorem A1 := logα, A2 := log 5. Furthermore, by (6), we have that
max{|b1|, |b2|} ≤ 2k+ `, and by (73) and (74), we may take B := 2.01×1049n3(log n)3. Now,
Matveev’s theorem and inequality (97) give us that

λ5 <
log 120

logα
+ 8.4× 109(1 + log(2.01× 1049n3(log n)3).

Since we know that n ≥ 3001, we get that

λ5 < 1.59× 1011 log n.

Assume that λ5 6= `. Then λ5 ≥ (n− 3)(k − `)/10. But then

n < 3 + 1.59× 1012 log n,

which gives that n < 5.02 × 1013. Now we apply continued fractions to a variant of the
inequality (97), which is∣∣∣∣∣ log

√
5

logα
− (n− 1)k − (n+ r)`

k − `

∣∣∣∣∣ < 240

αλ5(k − `) logα
<

1

2(k − `)2
. (98)

The above inequality holds because λ5 ≥ (n− 3)(k− `)/10 ≥ 299(k− `). Hence, we get that
((n − 1)k − (n + r)`)/(k − `) = pi/qi for some convergent pi/qi of γ := log

√
5/ logα. We

computed all convergents pi/qi of γ satisfying qi < 4 × 1094, which is an upper bound for
k − ` when n < 5.02× 1013 by Lemma 6. We find that all convergents in that range satisfy

|qi log
√

5− pi logα| > 240

α470
.

Hence, we conclude that λ5 ≤ 469. Since λ5 ≥ (n − 3)/2, we get that n ≤ 938, which
contradicts previously established result that n ≥ 3001. Thus, we have shown that λ5 = `,
and so

` < 1.59× 1011 log n. (99)

We will now establish a similar logarithmic bound for k using inequality (92). The cases
` = 1 and ` = 2 will be treated separately because in these cases α` − 1 is a power of α.
From (92), for ` = 1 we get ∣∣αn+r+2−(n−1)k5(k−`)/2 − 1

∣∣ < 120

αλ6
,

while for ` = 2 we get ∣∣α2n+2r+1−(n−1)k5(k−`)/2 − 1
∣∣ < 120

αλ6
,

where λ6 := min{k, n/2, (n+r−t)`/2}. The left–hand sides of the two inequalities above are
nonzero by the argument used to prove that the left–hand side of inequality (91) is nonzero,
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since assuming that it were zero, we would get that k = `, which is not allowed. Thus,
we may apply again Matveev’s theorem as previously with α1 := α, α2 :=

√
5. After some

calculation, we get the same bound for λ6 as the bound obtained previously for λ5. Hence,
λ6 < 1.59 × 1011 log n in this case. The assumption that λ6 6= k leads to a contradiction as
before, and thus we obtain that for ` ∈ {1, 2} we have

k < 1.59× 1011 log n. (100)

Assume now that ` ≥ 3 but (`, k) 6= (4, 5). From inequality (92), we get∣∣α(n+r+1)`−(n−1)k5(k−`)/2(α` − 1)−1 − 1
∣∣ < 120

αλ6
. (101)

We apply Matveev’s theorem to inequality (101). We have K := 3, α1 := α, α2 :=
√

5,
α3 = (α` − 1), b1 := (n + r + 1)` − (n − 1)k, b2 := k − l, b3 := −1, D := 2. We take
A1 := logα, A2 := log 5, A3 := `. Here we use that ` ≥ 3. Note that, by (99), we have
A3 < 1.59×1011 log n. Furthermore, by inequality (6), we have max{|b1|, |b2|, |b3|} ≤ 2k+2`,
and by inequalities (73) and (73) we may take B := 2.01× 1049n3(log n)3. Now, Matveev’s
theorem and inequality (101) give us that

λ6 <
log 120

logα
+ 2.49× 1023(1 + log(2.01× 1049n3(log n)3) log n.

Since we know that n ≥ 3001, we get that

λ6 < 3.58× 1025(log n)2. (102)

Assume that λ6 6= k. Then λ6 ≥ (n− 3)/10. But then

n < 3 + 3.58× 1026(log n)2,

which gives that n < 1.74× 1030. The application of the above described continued fraction
method for inequality (98) in this new range for n gives that ` = λ5 ≤ 705.

Now we apply the LLL algorithm, as explained in Section 6, to find a lower bound for
the smallest nonzero value of a number of form

|x logα + y log
√

5± log(α` − 1)|, (103)

with max{|x|, |y|} < 5.14× 10143, which is the bound for

|(n+ r + 1)`− (n− 1)k| ≤ 2k + 2` when n < 1.74× 1030,

by Lemma 6. The computation shows that this minimal value is > 240/α1400, which gives
that λ6 ≤ 1400. If λ6 = n/2, we get n ≤ 2880, contradicting the bound n ≥ 3000. If
λ6 = (n + r − t)`/2, then from (n − 3)(k − `)/10 ≤ λ6 ≤ 1400 and n ≥ 3000, we get that
k − ` ≤ 4 and

k < 1.6× 1011 log n. (104)
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It remains to treat the case when λ6 = k. Then, by (102), we have

k < 3.58× 1025(log n)2. (105)

We summarize the results of this section in the following lemma.

Lemma 9. Let (k, `, n, r) be a solution of equation (2). Then

` < 1.59× 1011 log n;

k < 3.58× 1025(log n)2.

If ` ∈ {1, 2}, then
k < 1.59× 1011 log n.

9. Absolute upper bound for n and the end of the proof

Now that we have upper bounds for ` and k as logarithmic functions of n (see Lemma 9), we
may apply Matveev’s theorem to the left–hand side of inequality (93), in order to obtain an
absolute upper bound for n. We have already checked that this expression is nonzero. We
take K := 3, α1 := α, α2 :=

√
5, α3 := (αk− 1)/(α`− 1), b1 := (n+ r+ 1)`−nk, b2 := k− l,

b3 := 1, D := 2. We also take A1 := logα, A2 := log 5, A3 := k. By Lemma 9, we have
A3 < 3.58 × 1025(log n)2 and by (6), max{|b1|, |b2|, |b3|} ≤ 3k + 2`, so by (73) and (73) we
may take B := 1.08×1026(log n)2. Now, Matveev’s theorem and inequality (93) give us that

min{n/2, (n+ r − t)`/2} <
(log 80) logα + 5.59× 1037(1 + log(1.08× 1026(log n)2))(log n)2.

Since, (n+ r − t)`/2 ≥ (n− 3)/10, we get an absolute upper bound for n, namely

n < 4.15× 1044. (106)

Inserting the bound for n given by (106) in the bound for k from Lemma 9, we get

k < 3.78× 1029.

Applying the continued fraction method to inequality (98) for

k − ` < 3.78× 1029

gives that ` = λ5 ≤ 155. Applying the LLL algorithm to the numbers of the form (103) with
the bounds k < 3.78× 1029 and ` < 155 gives that λ6 = k ≤ 310.

Now we consider inequality (93). For k ≤ 310 and ` ≤ min{155, k − 1}, we compute the
smallest value of |αx5k−`(αk − 1)/(α` − 1) − 1|, for an integer x. We get that this value is
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always > 80/α30. From inequality (93), we obtain that (n − 3)/10 ≤ 30, i.e. n ≤ 303, a
contradiction.

Hence, Theorem 1 is proved. Then we had a beer.
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