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Abstract. Let {a1, b, c} and {a2, b, c} be Diophantine triples with a1 < b <

a2 < c and a2 ̸= b + c − 2
√
bc+ 1. Put d2 = a2 + b + c + 2a2bc − 2r2st,

where r2 =
√
a2b+ 1, s =

√
ac+ 1 and t =

√
bc+ 1. In this paper, we prove

that if c ≤ 16µ2b3, where µ = min{a1, d2}, then {a1, a2, b, c} is a Diophantine

quadruple. Combining this result with one of our previous results implies that
if {ai, b, c, d} (i ∈ {1, 2, 3}) are Diophantine quadruples with a1 < a2 < b <

a3 < c < d, then a3 = b+ c−2
√
bc+ 1. It immediately follows that there does

not exist a septuple {a1, a2, a3, a4, b, c, d} with a1 < a2 < b < a3 < a4 < c < d

such that {ai, b, c, d} (i ∈ {1, 2, 3, 4}) are Diophantine quadruples. Moreover,

it is shown that there are only finitely many sextuples {a1, a2, a3, b, c, d} with
a1 < b < a2 < a3 < c < d such that {ai, b, c, d} (i ∈ {1, 2, 3}) are Diophantine

quadruples.

1. Introduction

A Diophantine m-tuple is defined as a set {a1, . . . , am} of m distinct positive
integers satisfying the property that aiaj + 1 is a perfect square for all i and j
with 1 ≤ i < j ≤ m. It is easy to find examples of Diophantine pairs, such as
{1, 3}, {2, 12}, {K,K+2} for a positive integer K and {F2n, F2n+2} with Fk being
the kth Fibonacci number. For a fixed Diophantine pair {a, b}, Euler found that
{a, b, a + b + 2r} is a Diophantine triple, where r =

√
ab+ 1. Such a Diophantine

triple is called regular, and it is known that the largest element c = a + b + 2r is
minimal among all the possible c’s such that {a, b, c} is a Diophantine triple with
c > max{a, b}. Note that c = a+ b+ 2r is equivalent to b = a+ c− 2

√
ac+ 1 and

to a = b+ c− 2
√
bc+ 1.

Let {a, b, c} be a Diophantine triple and r, s, t the positive integers satisfying
ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2. Define

d+ := d+(a, b, c) = a+ b+ c+ 2abc+ 2rst,

d− := d−(a, b, c) = a+ b+ c+ 2abc− 2rst.

It was found in [1] and [9], independently, that {a, b, c, d+} always forms a Dio-
phantine quadruple. Such a quadruple is called regular. Note that 0 ≤ d− < c and
that d− ≥ 1 if and only if c ̸= a+ b+ 2r. Thus, if c ̸= a+ b+ 2r, then {a, b, c, d−}
is also regular with c = d+(a, b, d−). The following conjecture posed in [1] and [9]
is still open.

Conjecture 1.1. Any Diophantine quadruple is regular.

In the previous work [3], the authors closely examined when {a1, b, c, d} and
{a2, b, c, d} with a1 < a2 < min{b, c, d} can be Diophantine quadruples, and showed
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that for a fixed Diophantine triple {b, c, d} there exist at most two positive integers
a with a < min{b, c, d} such that {a, b, c, d} is a Diophantine quadruple. The main
purpose of this paper is to show a result analogous to the above in the case where
not all a’s are smaller than min{b, c, d}. To do this, we prove the following.

Theorem 1.2. Let {a1, b, c} and {a2, b, c} be Diophantine triples with a1 < b <
a2 < c and a2 ̸= b + c − 2

√
bc+ 1. If c ≤ 16µ2b3, where µ = min{a1, d2} and

d2 = d−(a2, b, c), then {a1, a2, b, c} is a Diophantine quadruple.

Note that Theorem 1.2 rectifies [8, Theorem 1.6], which asserts the following:

Let {a1, b, c} and {a2, b, c} be Diophantine triples with

a1 < min{a2, b}, max{a2, b} < c < 16b3.

Then, {a1, a2, b, c} is a Diophantine quadruple.

In the case where a2 < b, this is nothing but [2, Theorem 1.4] and certainly true.
However, in the case where b < a2, this is incorrect, as easily seen, e.g., from the
counterexample with a1 = 1, b = 3, a2 = 85, c = 120. The incorrectness of [8,
Theorem 1.6] has caused that of [8, Theorem 1.7]. On this occasion, we replace it
with an assertion shown by a correct argument. Denote by Q(a, b) the number of
irregular Diophantine quadruples containing a fixed pair {a, b}.

Theorem 1.3. Let {a, b} be a Diophantine pair with

a < b ≤ 4a3 + 16a2 + 24a+ 16.(1.1)

Then, Q(a, b) ≤ 122.

Theorem 1.2 together with [3, Main Theorem] implies the following.

Corollary 1.4. Let {ai, b, c, d} (i ∈ {1, 2, 3}) be Diophantine quadruples with a1 <
a2 < b < a3 < c < d. Then, a3 = b+ c− 2

√
bc+ 1.

The following corollary is a direct consequence of Corollary 1.4.

Corollary 1.5. There does not exist a septuple {a1, a2, a3, a4, b, c, d} with a1 <
a2 < b < a3 < a4 < c < d such that {ai, b, c, d} (i ∈ {1, 2, 3, 4}) are Diophantine
quadruples.

Analogously to [3, Corollary 1.5], Theorem 1.2 also implies the following finite-
ness results.

Corollary 1.6. There are only finitely many sextuples {a1, a2, a3, b, c, d} with a1 <
b < a2 < a3 < c < d such that {ai, b, c, d} (i ∈ {1, 2, 3}) are Diophantine quadruples.

Corollary 1.7. There are only finitely many quintuples {a1, a2, b, c, d} with a1 <
b < a2 < c < d such that {ai, b, c, d} (i ∈ {1, 2}) are Diophantine quadruples and
a2 ̸= b+ c− 2

√
bc+ 1.

The forthcoming section is devoted to proving Theorems 1.2 and 1.3. In Section
3, the proofs of Corollaries 1.4, 1.5, and 1.7 are given in turn.

2. Proofs of theorems

We start by pointing out a result that should be better known.

Lemma 2.1. Let {A,B,C} be a Diophantine triple with A < B < C and R, S,
T the positive integers defined by AB + 1 = R2, AC + 1 = S2, BC + 1 = T 2. If
d−(A,B,C) > B then C > 4AB2 + 4B + 2A.
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Proof. The assumption d−(A,B,C) > B is equivalent to A+C +2ABC > 2RST .
Squaring this inequality, one finds C2 − 2(2AB2 + 2B +A)C +A2 − 4AB − 4 > 0,
whence the desired conclusion. □

Proof of Theorem 1.2. Put d1 = d−(a1, b, c) and d2 = d−(a2, b, c). Suppose that
c ≤ 16µ2b3 with µ = min{a1, d2}. As is well-known (see, e.g., [7, Introduction]), it
holds that

(b+ c− ai − di)
2 = 4(aidi + 1)(bc+ 1)(2.1)

and

c = 4aidib+ λi max{di, ai, b}(2.2)

for i ∈ {1, 2} with λi a rational number satisfying 1 < λi < 4. Equality (2.2)
implies

|a1d1 − a2d2| <
max{d1, d2, a2}

b
.(2.3)

If a1d1 = a2d2, then from (2.1) one has

(b+ c− a1 − d1)
2 = (b+ c− a2 − d2)

2.

It follows from the proof of [8, Theorem 1.6] that d1 = a2 and d2 = a1, which yield
that {a1, a2, b, c} is a Diophantine quadruple.

Now, assume that a1d1 ̸= a2d2. From this, we will derive a contradiction. If
max{d1, d2, a2} = d1, then by (2.2) and Lemma 2.1,

c > 4a1d1b > 16a1b
2(a1b+ 1) > 16a21b

3,

which contradicts the assumption; if max{d1, d2, a2} = d2, then by (2.2) and
Lemma 2.1,

c > 4a2d2b > 16a2b
2(a2b+ 1) > 16a22b

3,

which is a contradiction, too. It therefore remains to consider the case where
max{d1, d2, a2} = a2. Note that the proof of [8, Theorem 1.6] neglected to take
this possibility into consideration. In this case, since

|a1d1 − a2d2| = |x2
1 − x2

2| ≥ |(x2 − 1)2 − x2
2| = 2x2 − 1,

where xi =
√
aidi + 1 for i ∈ {1, 2}, one sees from (2.3) that

2x2 <
a2
b

+ 1.

Squaring both sides of this inequality, one gets

a22 − 2b(2d2b− 1)a2 − 3b2 > 0,

which yields a2 > 2b(2d2b − 1) and x2 > 2d2b − 1. If d2 ≥ 2, then x2 ≥ 2d2b + 1,
since gcd(x2, d2) = 1. If d2 = 1 and x2 = 2b, then a2 = x2

2 − 1 = 4b2 − 1. It follows
from (2.2) that

c > 4a2d2b+ a2 = 4b(4b2 − 1) + 4b2 − 1 > 16b3,

which contradicts the assumption c ≤ 16µ2b3. Noting that the hypothesis a2 ̸=
b + c − 2

√
bc+ 1 implies d2 ≥ 1, we thus deduce that x2 ≥ 2d2b + 1 in any case.

Therefore, from (2.2) we obtain

c > 4a2d2b ≥ 16d2b
2(d2b+ 1) > 16d22b

3,

which is a contradiction again. This completes the proof of Theorem 1.2. □
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In order to prove Theorem 1.3, we need a corrected version of [8, Proposition
4.2], which requires some notation.

Let {a, b, c} be a Diophantine triple with a < b and r, s, t the positive integers
satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

Eliminating c from the last two equations above, we obtain the Pellian equation

at2 − bs2 = a− b.(2.4)

By Nagell’s argument (see [11, Theorem 108a] and [6, Lemma 1]), one sees that
for any positive solution (t, s) to (2.4) there exists a solution (t0, s0) to (2.4) and a
non-negative integer ν such that

t
√
a+ s

√
b = (t0

√
a+ s0

√
b )(r +

√
ab )ν(2.5)

with

0 < |t0| ≤
√

(r − 1)(b− a)

2a
, 0 < s0 ≤

√
a(b− a)

2(r − 1)
.(2.6)

Equation (2.5) enables us to write s = σλ
ν with λ ∈ {±}, where

σ0 := σλ
0 = s0, σλ

1 = rs0 + λa|t0|, σλ
ν+2 = 2rσλ

ν+1 − σλ
ν ,(2.7)

and t0 = λ|t0|. In case (t0, s0) = (±1, 1), put

sλν = σλ
ν and cλν =

(sλν )
2 − 1

a
.

Then, {a, b, cλν} is a Diophantine triple for any ν ≥ 1 and λ ∈ {±}.
The following proposition is the corrected version of [8, Proposition 4.2].

Proposition 2.2. Let {a, b} be a Diophantine pair with (1.1). Then, there ex-
ist at most two distinct solutions (t0, s0) and (t′0, s

′
0) to (2.4) satisfying (2.6) and

(t0, s0) ̸= (±1, 1) ̸= (t′0, s
′
0) such that for any Diophantine triple {a, b, c} it holds

c ∈ {cλν , αλ
ν , β

λ
ν } for some ν and λ, where {αλ

ν} and {βλ
ν } are the sequences defined

by

αλ
ν =

(σλ
ν )

2 − 1

a
and βλ

ν =
((σ′

ν)
λ)2 − 1

a
,

where {σλ
ν } and {(σ′

ν)
λ} are the recurrent sequences given by (2.7) and

(σ′
0)

λ = s′0, (σ′
1)

λ = rs′0 + λa|t′0|, (σ′
ν+2)

λ = 2r(σ′
ν+1)

λ − (σ′
ν)

λ

with t′0 = λ|t′0|, respectively.

Proof. Note that the assumption (1.1) entails r2 = ab + 1 < 4(a + 1)4. Hence,
r ≤ 2a2 + 4a+ 1, which implies

a < b ≤ 4a3 + 16a2 + 20a+ 8.(2.8)

Thus, the hypothesis of Theorem 1.3 from [8] is satisfied.
Suppose that we need a solution (t′′0 , s

′′
0) ̸∈ {(±1, 1), (±t0, s0), (±t′0, s

′
0)} to (2.4)

satisfying (2.6) to express the third element c in a Diophantine triple {a, b, c}.
Denote by {γλ

ν } the sequence defined by γλ
ν = (((σ′′

ν )
λ)2 − 1)/a, where

(σ′′
0 )

λ = s′′0 , (σ′′
1 )

λ = rs′′0 + λa|t′′0 |, (σ′′
ν+2)

λ = 2r(σ′′
ν+1)

λ − (σ′′
ν )

λ

with t′′0 = λ|t′′0 |. We know from [8, Lemma 4.1] that

1 ≤ α < a, 1 ≤ β < a, 1 ≤ γ < a

for some α ∈ {αλ
0 , α

−
1 }, β ∈ {βλ

0 , β
−
1 }, γ ∈ {γλ

0 , γ
−
1 }. As noted in the proof of [8,

Proposition 4.2], we may assume that a ≥ 2. When a = 2, inequality (2.8) gives
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b ≤ 144, so that there are eight values for b such that {2, b} is a Diophantine pair.

From inequality (2.6) one then sees that 0 < s0 <
√
(144− 2)/(17− 1) < 3. Hence,

there are two possible values for s0, whence the desired conclusion follows.
For a ≥ 3 one has b ≤ 4a3+16a2+20a+8 < 16a3. It follows from [2, Theorem 1.4]

that if α, β, γ are different from one another, then {a, b, α, β}, {a, b, α, γ}, {a, b, β, γ}
are Diophantine quadruples, and thus {a, b, α, β, γ} is a Diophantine quintuple,
which contradicts [10, Theorem 1]. Since it is easy to prove that α ̸= β ̸= γ ̸= α (see
the proof of [8, Proposition 4.2]), this completes the proof of Proposition 2.2. □

It is also necessary to repair the assertion of [8, Proposition 4.3] as follows.

Proposition 2.3. Suppose that {a, b, c, d} is an irregular Diophantine quadruple
with (1.1) and c < d. Let {αλ

ν} and {βλ
ν } be the sequences appearing in Proposition

2.2. Then, c ≤ max{c+3 , α
+
3 , β

+
3 }.

Proof. This immediately follows as in the proof of [8, Proposition 4.3]. □

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We may assume that c < d. Proposition 2.3 implies that

c ∈ {cλν , α0, α
λ
ν , β0, β

λ
ν }

for some ν ∈ {1, 2, 3} and λ ∈ {±}. We only have to consider the cases where

c ∈ {β0, β
−
1 , β+

1 , β−
2 , β+

2 , β−
3 , β+

3 },

besides the remaining 13 cases taken into account in the proof of [8, Theorem 1.7].
It follows from that proof that

Q(a, b) ≤ 3× 2 + 6× 4 + (6× 3 + 7× 4)× 2 = 122.

□

3. Proofs of the corollaries

Proof of Corollary 1.4. Assume that a3 ̸= b+c−2
√
bc+ 1. Then, Theorem 1.2 ap-

plied for {a2, b, c} and {a3, b, c} implies that if c ≤ 16(µ′)2b3, where µ′ = min{a2, d3}
and d3 = d−(a3, b, c), then {a2, a3, b, c, d} would be a Diophantine quintuple, which
contradicts [10, Theorem 1]. Thus, c > 16(µ′)2b3. Since a3 ̸= b + c − 2

√
bc+ 1,

it holds that d3 ≥ 1. Moreover, if d3 ∈ {a1, a2}, then {d3, a3, b, c, d} would be a
Diophantine quintuple, which again contradicts [10, Theorem 1]. It follows from [3,
Corollary 1.4] that d3 > b. However, we then have c > 16(µ′)2b3 = 16a22b

3, which
contradicts [3, Main Theorem]. □

Proof of Corollary 1.6. Assume that {ai, b, c, d} (i ∈ {1, 2, 3}) are Diophantine
quadruples with a1 < b < a2 < a3 < c < d. Since both a2 and a3 cannot simultane-
ously equal c+d−2

√
cd+ 1, we know from Theorem 1.2 that d > 16c3, which means

that all the Diophantine quadruples above are irregular. Since a2+b+2
√
a2b+ 1 <

a3 + b + 2
√
a3b+ 1 ≤ c and a1a2 + 1 cannot be a square by [10, Theorem 1],

1 ≤ d2 = d−(a2, b, c) ̸= a1. Hence, it follows from [3, Corollary 1.4] that b < d2 and
from Theorem 1.2 that c > 16µ2b3 = 16a21b

3. Since b > 4000 by [4, Lemma 3.4], if
b < 4a1, then c > b5 > 4000b4, which contradicts d+(a1, b, c) < d and [5, Theorem
1.4]. We thus have b > 4a1. Therefore, {a1, b, c} is a standard triple of the second
kind in the sense of [7]. Now, we obtain c < 102171 by [7, Proposition 4] and can

conclude d < 1010
26

as in [7, Section 9]. □

Proof of Corollary 1.7. One proceeds exactly in the same way as in the proof of
Corollary 1.6. □
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