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Abstract

In this paper, we prove that the equation x2− (p2k+2+1)y2 = −p2l+1,
l ∈ {0, 1, . . . , k}, k ≥ 0, where p is an odd prime number, is not solvable
in positive integers x and y. By combining that result with other known
results on the existence of Diophantine quadruples, we are able to prove
results on the extensibility of some D(−1)-pairs to quadruples in the
ring Z[

√
−t], t > 0.
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1 Introduction

Diophantus of Alexandria raised the problem of finding four positive rational num-
bers a1, a2, a3, a4 such that aiaj + 1 is a square of a rational number for each i, j
with 1 ≤ i < j ≤ 4 and gave a solution { 1

16 ,
33
16 ,

17
4 , 105

16 }. The first example of such
a set in the ring of integers was found by Fermat and it was the set {1, 3, 8, 120}.
Replacing “+1” by “+n” suggests the following general definition:
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Definition 1 Let n be a non-zero element of a commutative ring R. A Diophantine
m-tuple with the property D(n), or simply a D(n)-m-tuple, is a set of m non-zero
elements of R such that if a, b are any two distinct elements from this set, then
ab+ n = k2, for some element k in R.

Let p be an odd prime and k a non-negative integer. We consider the Pellian
equation

x2 − (p2k+2 + 1)y2 = −p2l+1, l ∈ {0, 1, . . . , k}. (1)

The existence of positive solutions of the above equation is closely related to
the existence of a Diophantine quadruple in a certain ring. More precisely, the
entries in a Diophantine quadruple are severely restricted in that they appear as
coefficients of three generalized Pell equations that must have at least one common
solution in positive integers.

According to Definition 1, we will look at the case n = −1. Research on D(−1)-
quadruples is quite active. It is conjectured that D(−1)-quadruples do not exist
in integers (see [6]). Dujella, Filipin and Fuchs in [10] proved that there are at
most finitely many D(−1)-quadruples, by giving an upper bound of 10903 for their
number. There is a vast literature on improving that bound (e.g., see [14, 2, 13, 30]).
At present, the best known bound for the number ofD(−1)-quadruples is 3.677·1058
due to Lapkova [23] (see also [21, 22]).

Concerning the imaginary quadratic fields, Dujella [5] and Franušić [17] consid-
ered the problem of existence of D(−1)-quadruples in Gaussian integers. Moreover,
in [18] Franušić and Kreso showed that the Diophantine pair {1, 3} cannot be ex-
tended to a Diophantine quintuple in the ring Z[

√
−2]. Several authors contributed

to the characterization of elements z in Z[
√
−2] for which a Diophantine quadruple

with the property D(z) exists (see [1, 12, 27]). The problem of Diophantus for inte-
gers of the quadratic field Q(

√
−3) was studied in [19]. In [28, 29], Soldo studied the

existence of D(−1)-quadruples of the form {1, b, c, d}, b ∈ {2, 5, 10, 17, 26, 37, 50}, in
the ring Z[

√
−t], t > 0.

The aim of the present paper is to obtain results about solvability of the equa-
tion (1) in positive integers. We use obtained results to prove statements on the
extensibility of some D(−1)-pairs to quadruples in the ring Z[

√
−t], t > 0.

2 Pellian equations

The goal of this section is to determine all solutions in positive integers of the
equation (1), which is the crucial step in proving our results in the next section.
For this purpose, we need the following result on Diophantine approximations.

Theorem 1 ([31, Theorem 1], [8, Theorem 1]) Let α be a real number and let
a and b be coprime non-zero integers, satisfying the inequality∣∣∣α− a

b

∣∣∣ < c

b2
,
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where c is a positive real number. Then (a, b) = (rpm+1 ± upm, rqm+1 ± uqm), for
some integer m ≥ −1 and non-negative integers r and u such that ru < 2c. Here
pm/qm denotes the m-th convergent of the continued fraction expansion of α.

If α = s+
√
d

t is a quadratic irrational, then the simple continued fraction expansion
of α is periodic. This expansion can be obtained by using the following algorithm.
Let s0 = s, t0 = t and

an =

⌊
sn +

√
d

tn

⌋
, sn+1 = antn − sn, tn+1 =

d− s2n+1

tn
, for n ≥ 0 (2)

(see [25, Chapter 7.7]). If (sj , tj) = (sk, tk) for j < k, then

α = [a0, . . . , aj−1, aj , . . . , ak−1].

We will combine Theorem 1 with the following lemma:

Lemma 1 ([11, Lemma 1]) Let α, β be positive integers such that αβ is not a
perfect square, and let pn/qn denote the n-th convergent of the continued fraction

expansion of
√

α
β . Let the sequences (sn) and (tn) be defined by (2) for the quadratic

irrational
√
αβ
β . Then

α(rqn+1 + uqn)
2 − β(rpn+1 + upn)

2 = (−1)n(u2tn+1 + 2rusn+2 − r2tn+2),

for any real numbers r, u.

The next lemma will be useful.

Lemma 2 ([16, Lemma 2.3.]) Let N and K be integers with 1 < |N | ≤ K.
Then the Pellian equation

X2 − (K2 + 1)Y 2 = N

has no primitive solution.

The solution (X0, Y0) is called primitive if gcd(X0, Y0) = 1. Now we formulate the
main result of this section.

Theorem 2 Let p be an odd prime and let k be a non-negative integer. The equa-
tion

x2 − (p2k+2 + 1)y2 = −p2l+1, l ∈ {0, 1, . . . , k} (3)

has no solutions in positive integers x and y.

In proving Theorem 2, we will apply the following technical lemma.
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Lemma 3 If (x, y) is a positive solution of the equation

x2 − (p2k+2 + 1)y2 = −p2k+1, (4)

and y ≥ p
2k+1

2 , then the inequality√
p2k+2 + 1 +

x

y
> 2pk+1

holds.

Proof: From (4) we have

x2

y2
= p2k+2 − p2k+1

y2
+ 1. (5)

Thus we have to consider when the inequality

p2k+2 − p2k+1

y2
+ 1 >

(
2pk+1 −

√
p2k+2 + 1

)2
is satisfied. This inequality is equivalent to

pk

y2
< 4

(√
p2k+2 + 1− pk+1

)
. (6)

For x > 1, the inequality (1 + 1
x )

1
2 > 1 + 1

2x − 1
8x2 holds. Thus we have

4
(√

p2k+2 + 1− pk+1
)

= 4pk+1

((
1 +

1

p2k+2

) 1
2

− 1

)

> 4pk+1

(
1

2p2k+2
− 1

8p4k+4

)
> 4pk+1 · 1

4p2k+2

=
1

pk+1
.

Since y ≥ p
2k+1

2 , i.e.
1

pk+1
≥ pk

y2
,

we conclude that the inequality (6) holds. �
Proof of Theorem 2:
Case 1. Let 2l + 1 ≤ k + 1, i.e., l ≤ k

2 .
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By Lemma 2, we know that the equation (3) has no primitive solutions. Assume
that there exists a non-primitive solution (x, y). Then p|x and p|y, so there exist
0 < i ≤ l, x1, y1 ≥ 0, gcd(x1, y1) = 1 such that x = pix1, y = piy1. After dividing
equation (3) by p2i, we obtain

x2
1 − (p2k+2 + 1)y21 = −p2l−2i+1, 0 < 2l − 2i+ 1 ≤ k + 1.

But such x1, y1 do not exist according to Lemma 2, so we obtained a contradiction.
Case 2. Let 2l + 1 = 2k + 1, i.e., l = k.

Let us suppose that there exists a solution (x, y) of the equation (1) such that

y ≥ p
2k+1

2 . Then by applying (5) we obtain

|
√
p2k+2 + 1− x

y
| = |p2k+2 − x2

y2
+ 1| · |

√
p2k+2 + 1 +

x

y
|−1

=
p2k+1

y2
· |
√
p2k+2 + 1 +

x

y
|−1.

Lemma 3 implies

|
√
p2k+2 + 1− x

y
| < pk

2y2
. (7)

Assume that x = ptx1, y = pty1, where t, x1, y1 are non-negative integers and
gcd(x1, y1) = 1. Now the equation (1) is equivalent to

x2
1 − (p2k+2 + 1)y21 = −p2k−2t+1. (8)

Since y ≥ y1, from (7) we obtain

|
√
p2k+2 + 1− x1

y1
| < pk

2y21
.

Now, Theorem 1 implies that

(x1, y1) = (rpm+1 ± upm, rqm+1 ± uqm), (9)

for some m ≥ −1 and non-negative integers r and u such that

ru < pk. (10)

Since x1 and y1 are coprime, we have gcd(r, u) = 1.
The terms pm/qm are convergents of the continued fraction expansion of√

p2k+2 + 1. Since √
p2k+2 + 1 = [pk+1, 2pk+1]

implies that the period of that continued fraction expansion (and also of the corre-
sponding sequences (sn) and (tn)) is equal to 1. Therefore, we apply Lemma 1 for
m = 0. We obtain

(p2k+2 + 1)(rq1 ± uq0)
2 − (rp1 ± up0)

2 = u2t1 ± 2rus2 − r2t2, (11)
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where

s2 = pk+1, t1 = t2 = 1, p0 = pk+1, p1 = 2p2k+2 + 1, q0 = 1, q1 = 2pk+1.

Since the observation is similar in both signs, we shall focus on the positive sign.
By comparing (8) and (11), we obtain the equation

u2 − r2 + 2rupk+1 = p2k−2t+1. (12)

Now, we consider the solvability of (12).
If r = 0, then u2 = p2k−2t+1, and so p has to be a square, which is not possible.
If u = 0, we obtain −r2 = p2k−2t+1, and that is not possible, either.
If r = u, we have pk−2t = 2r2. Since p is an odd prime, that is not possible.
Let 0 ̸= r ̸= u ̸= 0. If t < k

2 , then from (12) we conclude that pk+1|u2 − r2.
If p|u+ r and p|u− r, then p|2 gcd(r, u), i.e., p|2 which is not possible. Therefore,
pk+1 divides exactly one of the numbers u+ r and u− r. In both cases, it follows
that u+ r ≥ pk+1. That implies

ur ≥ u+ r − 1 > pk,

which contradicts (10).
Now, let us suppose that t ≥ k

2 . Since the equation (1) is equivalent to (8) and
0 < 2k − 2t+ 1 ≤ k + 1, by Case 1 it has no solutions.

It remains to consider the case y < p
2k+1

2 . Assume that there exists a solution
of the equation (1) with this property. In that case we can generate an increasing
sequence of infinitely many solutions of the equation (1). Therefore, a solution

(x, y) such that y ≥ p
2k+1

2 will appear. This contradicts with the first part of the
proof of this case.
Case 3. Let k + 1 < 2l + 1 < 2k + 1, i.e., k

2 < l < k.
In this case, if we suppose that the equation (3) has a solution, then multiplying

(3) by p2k−2l we obtain the solution of the equation

x2 − (p2k+2 + 1)y2 = −p2k+1,

which is not solvable by Case 2. That is the contradiction, and this completes the
proof of Theorem 2. �

Proposition 1 Let p = 2.

i) If k ≡ 0 (mod 2), then the equation (3) has no solutions.

ii) If k ≡ 1 (mod 2), then in case of l > k
2 the equation (3) has a solution, and

in case of l ≤ k
2 it has no solutions.

Proof: i) If k ≡ 0 (mod 2), then the equation (3) is not solvable modulo 5.
ii) Let k ≡ 1 (mod 2). If l > k

2 , the equation (3) has the solution of the form

(x, y) = (2
2l−k−1

2 (2k+1 − 1), 2
2l−k−1

2 ),

and therefore infinitely many solutions.
If l ≤ k

2 , then 2l+1 ≤ k+1 and we can proceed as in Case 1 of Theorem 2 and
conclude that the equation (3) has no solutions. �
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3 Application to D(−1)-triples

By using results from the previous section and known results on Diophantine m-
tuples, in this section we present the results on extensibility of certain Diophantine
pairs to quadruples, in the ring Z[

√
−t], t > 0.

The following result is proved in [29]:

Theorem 3 ([29, Theorem 2.2]) Let t > 0 and let {1, b, c} be a D(−1)-triple in
the ring Z[

√
−t].

(i) If b is a prime, then c ∈ Z.

(ii) If b = 2b1, where b1 is a prime, then c ∈ Z.

(iii) If b = 2b22, where b2 is a prime, then c ∈ Z.

Remark 1 In the proof of [29, Theorem 2.2] it was shown that for every t there
exists such c > 0, while the case c < 0 is possible only if t|b− 1 and the equation

x2 − by2 =
1− b

t
(13)

has an integer solution.

Let p be an odd prime and b = 2pk, k ∈ N. We consider the extensibility of
D(−1)-triples of the form {1, b, c} to quadruples in the ring Z[

√
−t], t > 0. The

complexity of the problem depends on the number of divisors t of b−1. As b grows,
we can expect the larger set of t’s, and for each t we have to consider whether there
exists a solution of the equation (13). If it is true, then the problem is reduced to
solving the systems of simultaneous Pellian equations. A variety of different meth-
ods have been used to study such problems, including linear forms in logarithms,
elliptic curves, theory around Pell’s equation, elementary methods, separating the
problem into several subproblems depending on the size of parameters, etc. A
survey on that subject is given in [9].

Therefore, since b − 1 = 2pk − 1 has to be a square, to reduce the number of
t’s, we consider the equation of the form

2pk − 1 = q2j , j > 0, (14)

where q is an odd prime. According to [20, Lemma 2.9] (see also [4, 3]), if k > 1
the equation (14) has solutions only for (k, j) ∈ {(2, 1), (4, 1)}. If (k, j) = (2, 1), we
obtain the Pellian equation in primes. So far known prime solutions are (p, q) ∈
{(5, 7), (29, 41), (44560482149, 63018038201),
(13558774610046711780701, 19175002942688032928599)} (see [26]). If (k, j)=(4, 1),
the only solution is (p, q) = (13, 239).

Let k = 1. Suppose that j = mn, where n is an odd number. Then we have

2p = q2j + 1 = q2mn + 1 = (q2m + 1)((q2m)n−1 − (q2m)n−2 + · · · − q2m + 1).
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Since p is an odd prime, we conclude that q2m + 1 = 2p = q2mn + 1. This implies
that n = 1. This means that the only possibility for 2p = q2j + 1 is that j is a
non-negative power of 2.

Note that in all possible cases of k, i.e., k = 1, 2, 4, the equation (14) can be

written in the form 2pk = q2
l

+ 1, l > 0.

By following the same steps as in the proof of Theorem 3(ii), (iii), we can prove
more general result:

Theorem 4 Let k, t be positive integers and let {1, b, c} be a D(−1)-triple in the
ring Z[

√
−t]. If b = 2pk, where p is an odd prime, then c ∈ Z.

Remark 2 Remark 1 is also valid in the case of Theorem 4.

In proving results of this section we will use the following result of Filipin, Fujita
and Mignotte from [15] on D(−1)-quadruples in integers.

Lemma 4 ([15, Corollary 1.3]) Let r be a positive integer and let b = r2 + 1.
Assume that one of the following holds for any odd prime p and a positive integer
k:

b = p, b = 2pk, r = pk, r = 2pk.

Then the system of Diophantine equations

y2 − bx2 = r2,

z2 − cx2 = s2

has only the trivial solutions (x, y, z) = (0,±r,±s), where s is such that (t, s) is
a positive solution of t2 − bs2 = r2 and c = s2 + 1. Furthermore, the D(−1)-pair
{1, b} cannot be extended to a D(−1)-quadruple.

First we prove the following result.

Theorem 5 If p is an odd prime and k, t positive integers with t ≡ 0 (mod 2),
then there does not exist a D(−1)-quadruple in Z[

√
−t] of the form {1, 2pk, c, d}.

Proof: Let t ≡ 0 (mod 2). We have that t - 2pk − 1. Therefore, if we suppose that
{1, 2pk, c, d} is a D(−1)-quadruple in Z[

√
−t], then according to Remarks 1 and 2

we obtain c, d ∈ N. This means that there exist integers x1, y1, u1, v1, w1, such that

c− 1 = x2
1, d− 1 = y21 , 2p

kc− 1 = u2
1, 2p

kd− 1 = v21 , cd− 1 = w2
1,

or at least one of c − 1, d − 1, 2pkc − 1, 2pkd − 1, cd − 1 is equal to −tw2
2, for an

integer w2.
The first possibility contradicts with Lemma 4, i.e., a D(−1)-pair {1, 2pk} can-

not be extended to a D(−1)-quadruple in integers, while the second one contradicts
to c, d ∈ N.

�
In what follows, our main goal is to obtain some results for odd t’s. Thus, let

us consider the case of t ≡ 1 (mod 2). We have the following result:
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Theorem 6 Let k ∈ {1, 2, 4} and let 2pk = q2
l

+ 1, l > 0, where p and q are odd
primes.

(i) If t ∈ {1, q2, . . . , q2l−2, q2
l}, then there exist infinitely many D(−1)-quad-

ruples of the form {1, 2pk,−c, d}, c, d > 0 in Z[
√
−t].

(ii) If t ∈ {q, q3, . . . , q2l−3, q2
l−1}, then there does not exist a D(−1)-quadruple

of the form {1, 2pk, c, d} in Z[
√
−t].

Before we prove Theorem 6, we recall the following result.

Lemma 5 ([7, Lemma 3]) If {a, b, c} is a Diophantine triple with the property
D(l) and ab+ l = r2, ac+ l = s2, bc+ l = t2, then there exist integers e, x, y, z such
that

ae+ l2 = x2, be+ l2 = y2, ce+ l2 = z2

and

c = a+ b+
e

l
+

2

l2
(abe+ rxy).

Moreover, e = l(a+ b+ c) + 2abc− 2rst, x = at− rs, y = bs− rt, z = cr − st.
To prove the next proposition, which will be used in proving Theorem 6, we

will use Lemma 5 for l = −1.

Proposition 2 Let m,n > 0 and b = n2 + 1. If m|n and t = m2, then there exist
infinitely many D(−1)-quadruples of the form {1, b,−c, d}, c, d > 0 in Z[

√
−t].

Proof: Since Z[ni] is a subring of Z[mi], it suffices to prove the statement for
t = n2. Thus, suppose that there exist x, y ∈ Z such that

−c− 1 = −n2x2 = (nxi)2,

−bc− 1 = −n2y2 = (nyi)2.

Eliminating c, we obtain the Pellian equation

y2 − (n2 + 1)x2 = −1. (15)

All positive solutions of the equation (15) are given by

x = xj =

√
n2 + 1

2(n2 + 1)

(
(n+

√
n2 + 1)2j−1 − (n−

√
n2 + 1)2j−1

)
,

y = yj =
1

2

(
(n+

√
n2 + 1)2j−1 + (n−

√
n2 + 1)2j−1

)
, j ∈ N.

Therefore, for any j ∈ N and c = cj = n2x2
j − 1, the set {1, b,−c} is a D(−1)-triple

in Z[
√
−t]. If we apply Lemma 5 on that triple, we obtain positive integers

d± = ±2n3xjyj + (2n2 + 1)c+ n2 + 2,
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such that

d± − 1 =
(
n2xj ± nyj

)2
,

bd± − 1 =
(
n(n2 + 1)xj ± n2yj

)2
,

−cd± − 1 =
(
nci± n2xjyji

)2
.

Thus the sets {1, b,−c, d+}, {1, b,−c, d−} are D(−1)-quadruples in Z[
√
−t], except

for the case j = 1, where d− = 1.
�

Now, we are able to prove Theorem 6.

Proof of Theorem 6:
Let l ≥ 0.

(i) Suppose that t ∈ {1, q2, . . . , q2l−2, q2
l}. By Proposition 2 there exist in-

finitely many D(−1)-quadruples of the form {1, 2pk,−c, d}, c, d > 0 in Z[
√
−t].

(ii) Let us assume that t ∈ {q, q3, . . . , q2l−3, q2
l−1}. In this case, the equation

(13) is equivalent to

x2 − (q2
l

+ 1)y2 = −qs, (16)

where s is an odd integer and 0 < s ≤ 2l − 1. Theorem 2 implies that the equation
(16) has no integer solutions. Therefore, if {1, 2pk, c, d} is D(−1)-quadruple in
Z[
√
−t], then c, d > 0. By the same arguments as in Theorem 5 we conclude that

such a quadruple does not exist.
�
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