
MORE ON DIOPHANTINE SEXTUPLES

ANDREJ DUJELLA AND MATIJA KAZALICKI

1. Introduction

A Diophantine m-tuple is a set of m positive integers with the property that the product

of any two of its distinct elements is one less then a square. If a set of nonzero rationals has

the same property, then it is called a rational Diophantine m-tuple. Diophantus of Alexan-

dria found the first example of a rational Diophantine quadruple {1/16, 33/16, 17/4, 105/16},
while the first Diophantine quadruple in integers was found by Fermat, and it was the set

{1, 3, 8, 120}. It is well-known that there exist infinitely many integer Diophantine quadruples

(e.g. {k, k + 2, 4k + 4, 16k3 + 48k2 + 44k + 12} for k ≥ 1), while it was proved in [3] that an

integer Diophantine sextuple does not exist and that there are only finitely many such quintu-

ples. A folklore conjecture is that there does not exist an integer Diophantine quintuple. There

is an even stronger conjecture which predicts that all integer Diophantine quadruples {a, b, c, d}
satisfy the equation (a+b−c−d)2 = 4(ab+1)(cd+1) (such quadruples are called regular). How-

ever, in the rational case, there exist larger sets with the same property. Euler found infinitely

many rational Diophantine quintuples, e.g. he was able to extend the Fermat quadruple to the

rational quintuple {1, 3, 8, 120, 777480/8288641}. Gibbs [5] found the first rational Diophantine

sextuple

{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16},

while Dujella, Kazalicki, Mikić and Szikszai [4] recently proved that there exist infinitely many

rational Diophantine sextuples. No example of a rational Diophantine septuple is known. More-

over, we do not know any rational Diophantine quadruple which can be extended to two dif-

ferent rational Diophantine sextuples. On the other hand, by the construction from [4], we

know that there exist infinitely many rational Diophantine triples, each of which can be ex-

tended to rational Diophantine sextuples in infinitely many ways. In particular, there are in-

finitely many rational Diophantine sextuples containing the triples {15/14,−16/21, 7/6} and

{3780/73, 26645/252, 7/13140}. The construction from [4] uses elliptic curves induced by Dio-

phantine triples, i.e. curves of the form y2 = (x+ab)(x+ac)(x+ bc) where {a, b, c} is a rational

Diophantine triple, with torsion group Z/2Z× Z/6Z over Q.

Piezas [7] studied Gibbs’s examples of rational Diophantine sextuples which do not fit into the

construction from [4] and realized that most of them follow a common pattern: they contain two

regular subquadruples with two common elements (see Proposition 1). By studying sextuples
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of that special form, he obtained new simpler parametric formulas for rational Diophantine

sextuples, and also obtained infinitely many sextuples {a, b, c, d, e, f} with fixed products ab and

cd (e.g. ab = 24 and cd = 9/16).

In this paper, we will reformulate results from [7] in terms of the geometry of a certain

algebraic variety parameterizing rational Diophantine quadruples, in fact the fiber product of

three Edwards curves over Q(t), and obtain a method for generating (new) parametric formulas

for rational Diophantine sextuples.

2. Construction

2.1. Correspondence. Let {a, b, c, d} be a rational Diophantine quadruple with elements in Q
or Q(t), and let

ab+ 1 = t212 ac+ 1 = t213 ad+ 1 = t214

bc+ 1 = t223 bd+ 1 = t224 cd+ 1 = t234.

It follows that (t12, t34, t13, t24, t14, t23,m
′ = abcd) defines a point on an algebraic variety C

defined by the following equations:

(t212 − 1)(t234 − 1) = m′

(t213 − 1)(t224 − 1) = m′

(t214 − 1)(t223 − 1) = m′.

Conversely, the points (±t12,±t34,±t13,±t24,±t14,±t23,m
′) on C determine two rational Dio-

phantine quadruples ±(a, b, c, d) (for example a2 = (t212−1)(t213−1)/(t223−1)) provided that the

elements a, b, c and d are rational, distinct and non-zero. Note that if one element is rational,

then all the elements are rational.

The projection (t12, t34, t13, t24, t14, t23,m
′) 7→ m′ defines a fibration of C over the projective

line, and a generic fiber is the product of three curves D : (x2 − 1)(y2 − 1) = m′. Any point

on C corresponds to the three points Q1 = (t12, t34), Q2 = (t13, t24) and Q3 = (t14, t23) on D.

The elements of the quadruple corresponding to these three points are distinct if and only if no

two of these points can be transformed from one to another by changing signs and switching

coordinates, e.g. for the points (t12, t34), (−t34, t12) and (t14, t23), we have that a = d.

2.2. Extending quadruples to sextuples. The following proposition gives a criterion for

extending quadruples to sextuples.

Proposition 1 (T. Piezas [7]). Let {a, b, c, d} be a rational Diophantine quadruple, and x1 and

x2 the roots of

(abcdx+ 2abc+ a+ b+ c− d− x)2 = 4(ab+ 1)(ac+ 1)(bc+ 1)(dx+ 1).

If x1x2 ̸= 0 and

(1) (abcd− 3)2 = 4(ab+ cd+ 3),
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then {a, b, c, d, x1, x2} is a Diophantine sextuple. Furthermore,

(a+ b− x1 − x2)
2 = 4(ab+ 1)(x1x2 + 1)

(c+ d− x1 − x2)
2 = 4(cd+ 1)(x1x2 + 1).

Note that x1 and x2 coincide with the extensions of rational Diophantine quadruples given in

[1, Theorem 1], and the condition (1) implies that x1x2 + 1 =
(
a+b−c−d
abcd−1

)2
.

In this section, we will reformulate Proposition 1 in terms of the geometry of the algebraic

variety C.
The condition (1) is equivalent to t12t34 = ±t12 ± t34, or t34 = ±t12/(t12 ± 1). For the rest

of the paper, we set t12 = t, t34 = t/(t − 1) and m′ = (t2 − 1)( t2

(t−1)2
− 1) = 2t2+t−1

t−1 , and thus

condition (1) is satisfied.

The curve D over Q(t)

D : (x2 − 1)(y2 − 1) =
2t2 + t− 1

t− 1

is birationally equivalent to the elliptic curve

E : S2 = T 3 − 2 · 2t
2 − t+ 1

t− 1
T 2 +

(2t− 1)2(t+ 1)2

(t− 1)2
T.

The map is given by T = 2(x2 − 1)y + 2x2 − (2−m′), and S = 2Tx, where m′ = 2t2+t−1
t−1 .

Denote by P =

[
(2t− 1)2(t+ 1)

t− 1
,
2t(2t− 1)2(t+ 1)

t− 1

]
∈ E(Q(t)) a point of infinite order on E,

and by R =

[
(t+ 1)(2t− 1)

(t− 1)
,
2(t+ 1)(2t− 1)

t− 1

]
a point of order 4. The point (t12, t34) ∈ D(Q(t))

corresponds to the point P ∈ E(Q(t)).

Proposition 2. The Mordell-Weil group of E(Q(t)) is generated by P and R.

Proof. It is enough to prove that the specialization homomorphism at t0 = 6 is injective. Then

one can easily check that the specializations of points P and R generate the Mordell-Weil group

of Et0(Q).

We use the injectivity criterion from Theorem 1.3 in [6]. It states that given an elliptic

curve y2 = x3 + A(t)x2 + B(t)x, where A,B ∈ Z[t], with exactly one nontrivial 2-torsion point

over Q(t), the specialization homomorphism at t0 ∈ Q is injective if the following condition

is satisfied: for every nonconstant square-free divisor h(t) ∈ Z[t] of B(t) or A(t)2 − 4B(t) the

rational number h(t0) is not a square in Q.

The claim follows (after clearing out the denominators in the defining equation of E). �

If Q ∈ E is the point that corresponds to the point (x, y) ∈ D, then the points −Q and

Q + R correspond to the points (−x, y) and (y,−x). Hence the triple (Q1, Q2, Q3) ∈ E(Q(t))3

corresponds to the quadruple whose elements are not distinct if and only if there are two points,

say Qi and Qj , such that Qi = ±Qj + kR, where k ∈ {0, 1, 2, 3}.
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If instead of m′, we fix on C coordinates t12, t13, t23 we will obtain an elliptic curve on C
consisting of points (t34, t24, t14,m

′) which satisfy

(t234 − 1) =
m′

(t212 − 1)

(t224 − 1) =
m′

(t213 − 1)

(t214 − 1) =
m′

(t223 − 1)
.

Thus, to the point (t12, t34, t13, t24, t14, t23,m
′) on C that corresponds to the rational quadruple

{a, b, c, d}, we associate the elliptic curve Eabc : y
2 = (x+ ab)(x+ ac)(x+ bc) together with the

point W = [abcd, abc · t14t24t34]. A short calculation shows that if we denote by V = [1, t12t13t23]

a point on Eabc, then x1 and x2 from Proposition 1 are given by

x1 =
x(W + V )

abc
and x2 =

x(W − V )

abc
.

For more details on using the elliptic curve Eabc for extending rational Diophantine triples and

quadruples see [1, Theorem 1], [2, Theorem 1] and [4, Proposition 2.1].

2.3. Degenerate case. In this subsection we fixQ1 = P and investigate conditions under which

the point (Q1, Q2, Q3) ∈ E(Q(t))×E(Q(t))×E(Q(t)) corresponds to the degenerate Diophantine

sextuple (i.e. x1x2 = 0). We call such triple degenerate. Following the notation from the

previous section, we see that the triple is degenerate if and only if ±W±V = [0, abc] ∈ Eabc(Q(t))

for some choice of the signs.

Proposition 3. Let Q2, Q3 ∈ E(Q(t)). The triple (Q1, Q2, Q3) ∈ E(Q(t))×E(Q(t))×E(Q(t))

is degenerate if and only if ±Q1 ±Q2 ±Q3 = R for some choice of the signs.

Proof. Let r = x(Q2) and s = x(Q3). Direct calculation shows that the constant term of the

polynomial from Proposition 1 is zero if and only if g(r, s)h(r, s) = 0 where

g(r, s) =
(
(−1 + t)2rs− (1 + t)2(−1 + 2t)(r + s) + (1 + t)2(−1 + 2t)2

)2 − 16rst2(1 + t)2(−1 + 2t),

h(r, s) =
(
(−1 + t)2rs− (1− t)2(−1 + 2t)(r + s) + (1 + t)2(−1 + 2t)2

)2 − 16rst2(1− t)2(−1 + 2t).

One can check that r and s satisfy this equation if ±Q1 ± Q2 ± Q3 = R for some choice of

the signs.

Conversely, both g(r, s) = 0 and h(r, s) = 0 define a curve that is birationally equivalent to

E. Hence, we have a degree four map from “the degeneracy locus” in E × E to E given by

(Q2, Q3) 7→ (x(Q2), x(Q3)). Since we already have 8 irreducible components in “the degeneracy

locus” (one for the each choice of the signs), the claim follows.

�
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2.4. Rationality. Given a triple (Q1, Q2, Q3) ∈ E(Q(t))× E(Q(t))× E(Q(t)), where Q1 = P ,

we want to know if the corresponding Diophantine quadruple is rational. It is enough to prove

that one element is rational.

A short calculation shows that for the point (S, T ) ∈ E(Q(t)) we have

(2) x2 − 1 =

(
S

2T

)2

− 1 = T

(
T − 2t2+t−1

t−1

2T

)2

=: f(T ).

Since
a2 = f(Q1)f(Q2)f(Q3)

m′ ≡ x(Q1)x(Q2)x(Q3)m
′ ≡ (2t− 1)x(Q2)x(Q3)

≡ x(−P +R)x(Q2)x(Q3) (mod Q(t)×2)

for the rationality of a it is enough to prove that x(−P +R)x(Q2)x(Q3) is a square in Q(t).

Since the point (0, 0) ∈ E(Q(t)) is a point of order 2, the usual 2-descent homomorphism

E(Q(t)) → Q(t)×/Q(t)×2, which is for non-torsion points defined by (T, S) 7→ T (note that

(0, 0) 7→ 1), implies the following proposition.

Proposition 4. Let Q2, Q3 ∈ E(Q(t)).

a) If Q2 +Q3 ≡ O mod 2E(Q(t)) then a2 ≡ (2t− 1) mod Q(t)×2.

b) If Q2 +Q3 ≡ R mod 2E(Q(t)) then a2 ≡ (t− 1)(t+ 1) mod Q(t)×2.

c) If Q2 +Q3 ≡ P mod 2E(Q(t)) then a2 ≡ (t− 1)(t+ 1)(2t− 1) mod Q(t)×2.

d) If Q2 +Q3 ≡ P +R mod 2E(Q(t)) then a2 ≡ 1 mod Q(t)×2.

Remark 1. In the cases a) and b) we can still obtain parametric families of Diophantine sextuples

if we specialize to those t′s for which 2t− 1 and (t− 1)(t+ 1) are squares (e.g. if we specialize

t to t2+1
2 and t2+1

2t ). Concerning the case c), the elliptic curve y2 = (x − 1)(x + 1)(2x − 1) has

Mordell-Weil group isomorphic to Z/2Z+ Z/4Z.

Remark 2. The proposition covers all the possibilities, since the Mordell-Weil group of E(Q(t))

is generated by P and R (see Proposition 2).

3. Examples

3.1. Family corresponding to (P, 2P, 4P ). For an illustration, we calculate a parametric

family {a, b, c, d, e, f} of rational Diophantine sextuples that corresponds to the triple (P, 2P, 4P ).

It follows from Proposition 3 that the triple is not degenerate. The rationality of the sextuple

will follow if we replace t by t2+1
2 (see part a) of Proposition 4). Then, the corresponding

Diophantine quadruple is equal to

a =
(t8 − 8t6 − 14t4 + 32t2 − 27) · (t8 + 26t4 − 40t2 − 3)

64 · (t− 1) · t · (t+ 1) · (t4 − 2t2 + 5) · (t4 + 6t2 − 3)
,

b =
16 · t · (t− 1)2 · (t+ 1)2 · (t2 + 3) · (t4 − 2t2 + 5) · (t4 + 6t2 − 3)

(t8 − 8t6 − 14t4 + 32t2 − 27) · (t8 + 26t4 − 40t2 − 3)
,

c =
t · (t8 − 8t6 − 14t4 + 32t2 − 27) · (t8 + 26t4 − 40t2 − 3)

(t− 1) · (t+ 1) · (t2 − 3)2 · (t2 + 1)2 · (t4 − 2t2 + 5) · (t4 + 6t2 − 3)
,

d =
4 · t · (t2 − 3)2 · (t2 + 1)2 · (t4 − 2t2 + 5) · (t4 + 6t2 − 3)

(t− 1) · (t+ 1) · (t8 − 8t6 − 14t4 + 32t2 − 27) · (t8 + 26t4 − 40t2 − 3)
.
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Using Proposition 1 (let e = x1 and f = x2), we find that e = e1/e2 and f = f1/f2 are equal to

e1 = (t+ 1) · (t2 − 2t+ 3) · (t2 + 2t− 1) · (t6 − 2t5 + t4 + 12t3 + 7t2 − 2t− 9)

· (t6 + 2t5 − 3t4 + 4t3 − 17t2 + 18t+ 3)

· (t12 − 4t11 + 6t10 + 20t9 − t8 + 24t7 − 12t6 − 88t5 − 177t4 + 364t3 − 90t2 − 60t+ 81)

· (t12 + 4t11 − 2t10 − 4t9 − 41t8 + 40t7 + 100t6 − 72t5 + 63t4 + 212t3 − 66t2 − 180t+ 9),

e2 = 64 · (t− 1) · t · (t2 − 3)2 · (t2 + 1)4 · (t4 − 2t2 + 5) · (t4 + 6t2 − 3) · (t8 − 8t6 − 14t4 + 32t2 − 27)

· (t8 + 26t4 − 40t2 − 3),

f1 = (t− 1) · (t2 − 2t− 1) · (t2 + 2t+ 3) · (t6 − 2t5 − 3t4 − 4t3 − 17t2 − 18t+ 3) · (t6 + 2t5 + t4 − 12t3 + 7t2 + 2t− 9)

· (t12 − 4t11 − 2t10 + 4t9 − 41t8 − 40t7 + 100t6 + 72t5 + 63t4 − 212t3 − 66t2 + 180t+ 9)

· (t12 + 4t11 + 6t10 − 20t9 − t8 − 24t7 − 12t6 + 88t5 − 177t4 − 364t3 − 90t2 + 60t+ 81),

f2 = 64 · t · (t+ 1) · (t2 − 3)2 · (t2 + 1)4 · (t4 − 2t2 + 5) · (t4 + 6t2 − 3) · (t8 − 8t6 − 14t4 + 32t2 − 27)

· (t8 + 26t4 − 40t2 − 3).

3.2. Rank two examples. If we specialize t to t2 + 1, the elliptic curve E will have another

point of infinite order (independent of P ), S =
[
(2+t2)2

t2
, (2+t2)2(1+t2)

t3

]
. Now the triple (P, 2P +

S,R+S−P ) is not degenerate and satisfies the condition of Proposition 4(d). Our construction

gives the following family of rational Diophantine sextuples

a =
(t3 + 3t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (2t− 1)

2 · (t− 2) · (t− 1) · (t2 + t+ 1) · (t+ 1)
,

b =
2 · (t− 1) · (t2 + t+ 1) · (t+ 1) · (t2 + 2) · (t− 2) · t2

(t3 + 3t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (2t− 1)
,

c =
(t3 + 3t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (t− 2)

2 · (2t− 1) · (t− 1) · (t2 + t+ 1) · (t+ 1) · t2
,

d =
2 · (2t2 + 1) · (2t− 1) · (t− 1) · (t2 + t+ 1) · (t+ 1)

t2 · (t3 + 3t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (t− 2)
,

e =
8 · t2 · (t− 1) · (2t+ 1) · (t+ 2) · (t+ 1) · (t2 + 1)

(t− 2) · (2t− 1) · (t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (t3 + 3t2 + t+ 1)
,

f =
3 · (3t2 + 2t+ 1) · (t2 + 2t+ 3) · (t4 + 1) · (t4 + 4t2 + 1)

2 · (t− 1) · (t− 2) · (2t− 1) · (t+ 1) · (t2 + t+ 1) · (t3 + t2 + 3t+ 1) · (t3 + 3t2 + t+ 1)
.

If we further require 2(t2 + 1) to be a square, then the resulting parametrization t 7→ 1 +(
4t2−8t−4
4t2+8t−4

)2
yields a point K on E

K =

[
(t2 − 2t+ 1) · (t2 + 2t+ 3) · (t2 + 2t+ 1)2

(t2 − 2t− 1)2 · (t2 + 2t− 1)2
,
4(t2 − 2t+ 1) · (t2 + 1) · (t2 + 2t+ 3) · (t2 + 2t+ 1)2

(t2 + 2t− 1)2 · (t2 − 2t− 1)3

]
,

with the property that 2K = S. When we apply our construction to the triple (P,K,−2K+R),

we obtain a very simple family of sextuples also found by Piezas [7]
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a =
(t2 − 2t− 1) · (t2 + 2t+ 3) · (3t2 − 2t+ 1)

4t · (t2 − 1) · (t2 + 2t− 1)
,

b =
4t · (t2 − 1) · (t2 − 2t− 1)

(t2 + 2t− 1)3
,

c =
4t · (t2 − 1) · (t2 + 2t− 1)

(t2 − 2t− 1)3
,

d =
(t2 + 2t− 1) · (t2 − 2t+ 3) · (3t2 + 2t+ 1)

4t · (t2 − 1) · (t2 − 2t− 1)
,

e =
−t · (t2 + 4t+ 1) · (t2 − 4t+ 1)

(t− 1) · (t+ 1) · (t2 + 2t− 1) · (t2 − 2t− 1)
,

f =
(t− 1) · (t+ 1) · (3t2 − 1) · (t2 − 3)

4t · (t2 + 2t− 1) · (t2 − 2t− 1)
.
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