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Abstract. In this paper we prove that if {a, b, c} is a Diophantine triple with
a < b < c, then {a + 1, b, c} cannot be a Diophantine triple. Moreover, we
show that if {a1, b, c} and {a2, b, c} are Diophantine triples with a1 < a2 <

b < c < 16b3, then {a1, a2, b, c} is a Diophantine quadruple. In view of these
results, we conjecture that if {a1, b, c} and {a2, b, c} are Diophantine triples
with a1 < a2 < b < c, then {a1, a2, b, c} is a Diophantine quadruple.

1. Introduction

A set of m positive integers {a1, . . . , am} is called Diophantine m-tuple if aiaj+1
is a perfect square for all i and j with 1 ≤ i < j ≤ m. The second author proved
in [9] that there does not exist a Diophantine sextuple and that there exist only
finitely many Diophantine quintuples. Recently, it was shown by He, Togbé and
Ziegler [17] that there does not exist a Diophantine quintuple, thus confirming a
folklore conjecture. On the other hand, the stronger conjecture asserting that all
Diophantine quadruples are regular is still open. Here a Diophantine quadruple
{a, b, c, d} with a < b < c < d is called regular if d = d+ := a + b + c + 2abc +
2RST with R :=

√
ab+ 1, S :=

√
ac+ 1, T :=

√
bc+ 1 (see [1]). For Diophantine

quadruples {a, b, c, d} with a < b < c < d containing various pairs {a, b} or triples
{a, b, c}, such as

• {k − 1, k + 1} with k ≥ 2 an integer [4, 13],
• {k, 4k ± 4} with k a positive integer [12, 14],
• {K,A2K±2A, (A+1)2K±2(A+1)} with A, K positive integers [6, 15, 16],
• {a, b, c} with c ≥ 200b4 [7],

it is known that d must be equal to d+.
In proving each of the results above, the starting point is to transform the con-

ditions that ad + 1 = X2, bd + 1 = Y 2, cd + 1 = Z2 for some positive integers X,
Y , Z into the system of Pellian equations

aZ2 − cX2 = a− c,

bZ2 − cY 2 = b− c,

and the crucial part is where an upper bound for Z is deduced by using Baker’s
method or hypergeometric method. In any case, the condition that “ab + 1 is a
perfect square” is not essentially required for the upper bound. This consideration
leads us to expect that the following holds.
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Conjecture 1.1. Suppose that {a1, b, c} and {a2, b, c} are Diophantine triples with
a1 < a2 < b < c. Then, {a1, a2, b, c} is a Diophantine quadruple.

Conjecture 1.1 together with the result due to He, Togbé and Ziegler [17] implies
the following.

Conjecture 1.2. Suppose that {a1, b, c, d} is a Diophantine quadruple with a1 <
b < c < d. Then, {a2, b, c, d} is not a Diophantine quadruple for any integer a2
with a1 ̸= a2 < b.

Taking the contraposition of Conjecture 1.1, one finds that if a1a2 + 1 is not
a perfect square for positive integers a1 and a2, then at least one of the triples
{a1, b, c} and {a2, b, c} is not a Diophantine triple for any integers b and c with
max{a1, a2} < b < c. The first theorem of this paper gives an example of such a
pair {a1, a2}.

Theorem 1.3. Suppose that {a, b, c} is a Diophantine triple. Then, {a+1, b, c} is
not a Diophantine triple.

The second theorem of this paper also supports the validity of Conjecture 1.1.

Theorem 1.4. If c < 16b3, then Conjecture 1.1 holds.

Theorem 1.4 together with [7, Theorem 1.4] and [17, Theorem 1] immediately
implies the following.

Corollary 1.5. If either c < 16b3 or c ≥ 200b4, then Conjecture 1.2 holds.

The organization of this paper is as follows. The proof of Theorem 1.3 is given
in Sections 2 to 4. In Section 2, we express b in terms of a. We show that under a
certain assumption (see Assumption 2.2) implying “b and c are minimal”, b appears
in a sequence (bν) (ν = 1, 2, . . . ), and we determine the fundamental solutions to
the system of Pellian equations obtained from the conditions on the squareness. We
also show the size relations for the indices of sequences which are given as solutions
to the system. In Section 3 we give the proof of Theorem 1.3 in the case where
b ≥ b2 using hypergeometric method developed in [20] (see Theorem 3.2), and in
Section 4 we prove Theorem 1.3 in the case where b = b1 using Baker’s method on
linear forms in two logarithms (see Theorem 4.3). Finally in Section 5 we prove
Theorem 1.4 by making use of the properties of regular Diophantine quadruples.

2. Fundamental solutions

Let {a, b, c} be a Diophantine triple. Suppose that {a+ 1, b, c} is a Diophantine
triple. We may assume that

b < c.

Let s and t be positive integers satisfying

ab+ 1 = s2 and (a+ 1)b+ 1 = t2.

These equations imply the Pellian equation

at2 − (a+ 1)s2 = −1.(1)

Since the least positive solution to the Pellian equation X2 − a(a + 1)Y 2 = 1 is
(X,Y ) = (2a+1, 2), following the argument of Nagell [19, Theorem 108a] (see also
[8, Lemma 1]), we see that there exists a solution (t0, s0) to (1) satisfying

0 < s0 ≤ 1, |t0| ≤ 1(2)

such that any positive integer solution (t, s) to (1) can be expressed as

t
√
a+ s

√
a+ 1 = (t0

√
a+ s0

√
a+ 1)(2a+ 1 + 2

√
a(a+ 1))ν(3)
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for some non-negative integer ν. It is obvious from (2) that s0 = 1 and t0 = ±1.
Since any positive integer solution (t, s) to (1) with (t0, s0) = (−1, 1) is also obtained
from (t0, s0) = (1, 1), we may take t0 = 1. It follows from (3) that any positive
integer solution (t, s) to (1) is given by s = σν , where

σ0 = 1, σ1 = 4a+ 1, σν+2 = 2(2a+ 1)σν+1 − σν .

Put bν = (σ2
ν − 1)/a. The smallest values of bν ’s are the following:

b0 = 0, b1 = 16a+ 8, b2 = 256a3 + 384a2 + 176a+ 24,

b3 = 4096a5 + 10240a4 + 9472a3 + 3968a2 + 736a+ 48.

We may assume that b = bν ≥ b1.
Moreover, there exist positive integers x, y, z such that

ac+ 1 = x2, (a+ 1)c+ 1 = y2, bc+ 1 = z2,

from which we deduce the following system of Pellian equations

az2 − bx2 = a− b,(4)

(a+ 1)z2 − by2 = a+ 1− b.(5)

By [8, Lemma 1], we can describe the solutions to (4) and (5) as follows.

Lemma 2.1. There exist solutions (z0, x0) and (z1, y1) to (4) and (5), respectively,
satisfying

1 ≤x0 ≤

√
a(b− a)

2(s− 1)
<

√
s+ 1

2
,

1 ≤|z0| ≤
√

(s− 1)(b− a)

2a
<

√
b
√
b

2
√
a
,

1 ≤y1 ≤

√
(a+ 1)(b− a− 1)

2(t− 1)
<

√
t+ 1

2
,

1 ≤|z1| ≤

√
(t− 1)(b− a− 1)

2(a+ 1)
<

√
b
√
b

2
√
a+ 1

such that any positive integer solutions (z, x) and (z, y) to (4) and (5), respectively,
can be expressed as

z
√
a+ x

√
b = (z0 + x0

√
b)(s+

√
ab)m,

z
√
a+ 1 + y

√
b = (z1 + y1

√
b)(t+

√
(a+ 1)b)n

for some non-negative integers m and n.

By Lemma 2.1, we may write z = vm = wn for some non-negative integers m
and n, where

v0 = z0, v1 = sz0 + bx0, vm+2 = 2svm+1 − vm,(6)

w0 = z1, w1 = tz1 + by1, wn+2 = 2twn+1 − wn.(7)

Note that (6) and (7) immediately imply that

z20 ≡ z21 ≡ 1 (mod b).(8)

In what follows, until the end of the proof of Theorem 1.3, we assume that “b and
c are minimal” among the b’s and c’s for which Theorem 1.3 is not valid, in other
words, we put the following.
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Assumption 2.2. At least one of {a, b′, b} and {a+ 1, b′, b} is not a Diophantine
triple for any b′ with 0 < b′ < b.

Lemma 2.3. If the equation vm = wn has a solution, then both m and n are even
and z0 = z1 = ε, where ε ∈ {±1}.

Proof. Suppose first that both m and n are even. By [8, Lemma 3] we have z0 = z1.
Putting d0 := (z20 − 1)/b, which is an integer by (8), we see from Lemma 2.1 that
d0 < b. It is clear that ad0 + 1 = x2

0, (a + 1)d0 + 1 = y21 and bd0 + 1 = z20 , which
means that either d0 = 0 or both {a, b, d0} and {a+1, b, d0} are Diophantine triples.
In view of Assumption 2.2, we must have d0 = 0 and z0 = ±1.

Suppose second that m is odd and n is even. By [8, Lemma 3] we have bx0 −
s|z0| = |z1| and z0z1 < 0. Putting z′ := |z1| = bx0 − x|z0| and d0 := ((z′)2 − 1)/b,
we see from (8) and Lemma 2.1 that d0 is an integer with d0 < b. Since ad0 + 1 =
(sx0 − a|z0|)2, (a+ 1)d0 + 1 = y21 , bd0 + 1 = (z′)2, we deduce from Assumption 2.2
that d0 = 0 and |z1| = bx0 − x|z0| = 1. However, the last equality does not hold,
since b ≥ b1 = 16a+ 8 and

bx0 − s|z0| =
b(b− a)− z20
bx0 + s|z0|

>
2b
√
a−

√
b− 2a

√
a

2
√
2a(s+ 1)

> 5.

Therefore, this case does not occur.
Suppose third that m is even and n is odd. By [8, Lemma 3] we have by1−t|z1| =

|z0| and z0z1 < 0. Putting z′ := |z0| = by1 − t|z1| and d0 := ((z′)2 − 1)/b, one may
arrive at a contradiction in the same way as in the previous case.

Suppose finally that bothm and n are odd. By [8, Lemma 3] we have bx0−x|z0| =
by1−t|z1| and z0z1 > 0. Putting z′ := bx0−s|z0| = by1−t|z1| and d0 := ((z′)2−1)/b,
one may again arrive at a contradiction similarly to the previous two cases. �

The following lemma is easily deduced from Lemma 2.3 together with [9, Lemma
3 and its proof].

Lemma 2.4. If vm = wn has a solution, then n ≤ m ≤ 2n.

The previous result can be strengthened as follows.

Lemma 2.5. If vm = wn has a solution with m ≥ 2 then m > n.

Proof. If ε = 1, then v2 = 2s(b + s) − 1 < 2t(b + t) − 1 = w2. If ε = −1, then
v2 = 2s(b − s) + 1 = 2(s − a)b − 1 and w2 = 2t(b − t) + 1 = 2(t − a − 1)b − 1.
Since t = s+ 1 entails b = t2 − s2 is odd, which is not possible having in view that
bν = (σ2

ν − 1)/a and σν ≡ 1 (mod 4a) for any positive ν, we deduce that v2 < w2.
For n ≥ 3, we see from s ≤ t− 2 that

vn = 2svn−1 − vn−2 < 2svn−1 < 2swn−1 ≤ 2twn−1 − 4wn−1

< 2twn−1 − wn−2 = wn.

By induction, we conclude that if vm = wn, then m > n for m ≥ 2. �

3. Proof of Theorem 1.3: The case b ≥ b2

Lemma 3.1. If vm = wn has a solution with m > 0, then

m > (a+ 1)−1/2b1/2.

Proof. By (6), (7) and Lemma 2.3 we have

εam2 + 2sm ≡ ε(a+ 1)n2 + 2tn (mod 16b),

that is,

ε{am2 − (a+ 1)n2} ≡ 2(tn− sm) (mod 16b).(9)
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Suppose that m ≤ (a+ 1)−1/2b1/2. Then, since

max{am2, (a+ 1)n2} ≤ (a+ 1)m2 ≤ b,

max{sm, tn} ≤ tm ≤ (a+ 1)−1/2b1/2
√

(a+ 1)b+ 1 < 2b,

congruence (9) is in fact an equality. Thus we have

{(a+ 1)n2 − am2}{2b+ ε(tn+ sm)} = 2(m2 − n2).(10)

In the previous proof we have shown that m ̸= n. Since both m and n are even
by Lemma 2.3, we see from Lemma 2.4 that

n+ 2 ≤ m ≤ 2n and |am2 − (a+ 1)n2| ≥ 4.

It follows from (10) that

2|2b+ ε(tn+ sm)| ≤ m2 − n2,

which yields

4b ≤ 2(tn+ sm) +m2 − n2 ≤ 2
√

(a+ 1)b+ 1(m− 2) + 2m
√
ab+ 1 +

3

4
m2

<

{
2
√

(a+ 1)b+ 1

(
1− 2

√
a+ 1

b

)
+ 2

√
ab+ 1 +

3

4

√
b

a+ 1

}√
b

a+ 1
.

Thus, we have

2 ≤

√
1 +

1

(a+ 1)b

(
1− 2

√
a+ 1

b

)
+

√
ab+ 1

(a+ 1)b
+

3

8(a+ 1)
,

which is a contradiction, since√
1 +

1

(a+ 1)b

(
1− 2

√
a+ 1

b

)
< 1 and

√
ab+ 1

(a+ 1)b
+

3

8(a+ 1)
< 1.

Therefore, we obtain m > (a+ 1)−1/2b1/2. �

Theorem 3.2. Let a be a positive integer and N a multiple of a(a+1). Assume that

N ≥ 4.652a(a+1)2. Then, the numbers θ1 =
√
1 + (a+ 1)/N and θ2 =

√
1 + a/N

satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} >
(
1.604 · 1028N

)−1
q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(10(a+ 1)N)

log(2.15a−1(a+ 1)−1N2)
< 2.

Proof. The proof proceeds along the same lines as the one of [5, Theorem 2.2] or
[11, Theorem 2.5]. For 0 ≤ i, j ≤ 2 and integers a0, a1, a2, let pij(x) be the
polynomial defined by

pij(x) :=
∑
ij

(
k + 1/2

hj

)
(1 + ajx)

k−hjxhj

∏
l ̸=j

(
−kij
hl

)
(aj − al)

−kil−hl ,

where kil = k + δil with δil the Kronecker delta,
∑

ij denotes the sum over all

non-negative integers h0, h1, h2 satisfying h0+h1+h2 = kij −1, and
∏

l ̸=j denotes

the product from l = 0 to l = 2 omitting l = j (which is the expression (3.7) in [20]
with ν = 1/2). Substituting x = 1/N we have

pij(1/N) =
∑
ij

(
k + 1/2

hj

)
C−1

ij

∏
l ̸=j

(
−kij
hl

)
,
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where

Cij :=
Nk

(N + aj)k−hj

∏
l ̸=j

(aj − al)
kil+hl .

We take a0 = 0, a1 = a, a2 = a + 1 and N = a(a + 1)N0 for some integer N0. If
j = 0, then

|Ci0| =
aki1+h0+h1−k(a+ 1)ki2+h0+h2−kN

Nk−h0
0

and ak(a+ 1)kNkC−1
i0 ∈ Z.

If j = 1, then

|Ci1| =
aki0+h0+h1−kNk

{(a+ 1)N0 + 1}k−h1
and akNkC−1

i1 ∈ Z.

If j = 2, then

|Ci2| =
(a+ 1)ki0+h0+h2−kNk

(aN0 + 1)k−h2
and (a+ 1)kNkC−1

i2 ∈ Z.

Thus we have {a(a + 1)N}kC−1
ij ∈ Z for all i, j. It follows from the proof of [5,

Theorem 2.2] that

pijk := 2−1{4a(a+ 1)N}k 4.09 · 10
13

1.6k
· pij(1/N) ∈ Z

and if we put θ0 = 1, we have

|pijk| < pP k and

∣∣∣∣∣∣
2∑

j=0

pijkθj

∣∣∣∣∣∣ < lL−k,

where

p =
4.09 · 1013

2

(
1 +

a

2N

)1/2
< 2.073 · 1013,

P =
32(1 + 2a+3

2N )a(a+ 1)N

1.6(2a+ 1)
< 10(a+ 1)N,

l =
4.09 · 1013

2
· 27
64

(
1− a+ 1

N

)−1

< 9.667 · 1012,

L =
1.6

4a(a+ 1)N
· 27
4

(
1− a+ 1

N

)2

N3 >
2.15N2

a(a+ 1)
.

Now, one can deduce Theorem 3.2 from [3, Lemma 3.1], noting that N ≥ 4.652a(a+
1)2 implies

λ = 1 +
log(10(a+ 1)N)

log(2.15a−1(a+ 1)−1N2)

and

C−1 < 4p · 10a(a+ 1)N

a
· (2l)λ−1 < 1.604 · 1028(a+ 1)N.

�

Lemma 3.3. (cf. [8, Lemma 12]) Let N = a(a+1)b and let θ1, θ2 be as in Theorem
3.2. Then all positive solutions to the system of Pellian equations (4) and (5) satisfy

max

{∣∣∣∣θ1 − (a+ 1)sx

a(a+ 1)z

∣∣∣∣ , ∣∣∣∣θ2 − aty

a(a+ 1)z

∣∣∣∣} <
b

2a
z−2.

Lemma 3.4. If m ≥ 1, then z = vm > (s+
√
ab)m.
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Proof. By (6) and Lemma 2.3, we have

vm =
1

2
√
a

{
(ε
√
a+

√
b)(s+

√
ab)m + (ε

√
a−

√
b)(s−

√
ab)m

}
.(11)

Note that b ≥ b1 = 16a+ 8. If ε = 1, then

vm >

√
a+

√
b

2
√
a

(s+
√
ab)m

{
1− 1

(s+
√
ab)2m

}
> (s+

√
ab)m.

If ε = −1, then

vm > (s+
√
ab)m

{
3

2
−

√
b+

√
a

2
√
a

· 1

(s+
√
ab)2m

}
> (s+

√
ab)m.

�

By (7) and Lemma 2.3, we also have

wn =
1

2
√
a+ 1

{
(ε
√
a+ 1 +

√
b)(t+

√
(a+ 1)b)n(12)

+ (ε
√
a+ 1−

√
b)(t−

√
(a+ 1)b)n

}
.

Applying standard techniques to vm = wn with (11) and (12), we have

0 < Λ := m logα− n log β + log γ < α1−2m,(13)

where

α := s+
√
ab, β = t+

√
(a+ 1)b and γ =

√
a+ 1(

√
b+ ε

√
a)

√
a(
√
b+ ε

√
a+ 1)

.

Inequality (13) is necessary for the reduction procedure and the proof in the case
where b = b1 = 16a+ 8.

Now we are ready to prove Theorem 1.3 in the case where b ≥ b2 = 256a3 +
384a2 + 176a+ 24.

Proof of Theorem 1.3 in the case b ≥ b2. Suppose that b ≥ b2 and Assumption 2.2
holds. We apply Theorem 3.2 with N = a(a + 1)b, p1 = (a + 1)sx, p2 = aty and
q = a(a+ 1)z. Combining it with Lemma 3.3 shows that

z2−λ <
b

2a
· 1.604 · 1028a(a+ 1)b(a(a+ 1))λ.

Since

2− λ =
log(0.215(a+ 1)−1b)

log(2.15a(a+ 1)b2)
,

we have

log z <
log(8.02 · 1027a2(a+ 1)3b2) log(2.15a(a+ 1)b2)

log(0.215(a+ 1)−1b)
,

which together with Lemmas 3.1 and 3.4 implies that

(a+ 1)−1b1/2 <
log(8.02 · 1027a2(a+ 1)3b2) log(2.15a(a+ 1)b2)

log(s+
√
ab) log(0.215(a+ 1)−1b)

.

Since the right-hand side is a decreasing function of b, we see from b ≥ b2 >
256(a3 + a2) that

f(a) := 16a <
log(5.256 · 1032a8(a+ 1)3) log(1.4091 · 105a7(a+ 1))

log(32a2) log(55.04a3(a+ 1)−1)
.

Assume that a ≥ 4. Then the right-hand side of the above equation is less than

log(1.0266 · 1033a11) log(1.7614 · 105a8)
log(32a2) log(44.032a2)

=: g(a).
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Since f(a) is an increasing function while g(a) is a decreasing function and f(4) >
50 > g(4), we have f(a) > g(a) for a ≥ 4, which is a contradiction, Hence, a ≤ 3.

In the case where 1 ≤ a ≤ 3, we repeat the reasoning from the previous paragraph
assuming b ≥ b3 > 4096(a5+a4) and we readily arrive at a contradiction. Therefore,
it remains to consider the pairs (a, b) = (1, 840), (2, 3960), (3, 10920).

A program implementing the variant of Baker-Davenport Lemma [2, Lemma]
from [10, Lemma 5] returned the bound m < 5, which is not compatible with
Lemma 3.1 because b ≥ b2 > 256a3. �

4. Proof of Theorem 1.3: The case b = b1

Lemma 4.1. If vm = wn has a solution with m ≥ 2, then

(m− 0.001) logα− n log β < 0.

Proof. Since

α3 logα = (s+
√
ab)3 log(s+

√
ab) > 2000

and γ > 1, one may deduce from (13) that

Λ < α−3 < 2000−1 logα < 0.001 logα+ log γ.

This immediately shows the desired inequality. �
Lemma 4.2. If vm = wn has a solution with m ≥ 2 and b = b1 = 16a+ 8, then

n > 2(ν − 0.001)a logα,

where ν := m− n.

Proof. By Lemma 4.1 we have

ν − 0.001

n
=

m− 0.001

n
− 1 <

log β

logα
− 1 <

β − α

α logα

<
2 + (

√
a+ 1−

√
a)
√
b

2
√
ab logα

<
4
√
a+

√
b

4a
√
b logα

<
1

2a logα
,

from which the desired inequality follows. �
Theorem 4.3. ([18, Corollary 2]) Assume that α1 and α2 are real, positive and
multiplicatively independent algebraic numbers in a field K of degree D. Set

Λ := b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Let A1 and A2 be real numbers greater than
one such that

logAi ≥ max {h(αi), | logαi|/D, 1/D} (i = 1, 2).

Set

b′ :=
b1

D logA2
+

b2
D logA1

.

Then,

log Λ > −24.34D4 (max{log b′ + 0.14, 21/D, 1/2})2 logA1 logA2.

Rewriting Λ as

Λ = log(ανγ)− n log

(
β

α

)
,

we apply Theorem 4.3 with

b1 = n, b2 = 1, α1 =
β

α
, α2 = ανγ, D = 4.
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We have

h(α) =
1

2
logα and h(β) =

1

2
log β.

Since the conjugates of γ whose absolute values are greater than one are
√
a+ 1(

√
b+

√
a)

√
a(
√
b+

√
a+ 1)

,

√
a+ 1(

√
b−

√
a)

√
a(
√
b−

√
a+ 1)

,

√
a+ 1(

√
b+

√
a)

√
a(
√
b−

√
a+ 1)

,

and the leading coefficient of the minimal polynomial of γ is a divisor of a2(b−a−1)2,
we see that

h(γ) ≤ 1

4
log
{
a1/2(a+ 1)3/2(b− a)(

√
b+

√
a)(

√
b+

√
a+ 1)

}
< logα.

Hence,

h(α1) = h(β/α) ≤ h(β) + h(α) =
1

2
(logα+ log β),

h(α2) = h(ανγ) ≤ νh(α) + h(γ) <
(ν
2
+ 1
)
logα.

Moreover, since

γ ≤
√
a+ 1(

√
b−

√
a)

√
a(
√
b−

√
a+ 1)

≤
√
2 · 16a+ 8 + (

√
2− 1)

√
16a+ 8−

√
2

15a+ 7
< 2,

we have
logα2

D
<

ν logα+ log 2

4
<
(ν
2
+ 1
)
logα.

Thus, we may take

logA1 =
1

2
(logα+ log β), logA2 =

(ν
2
+ 1
)
logα,

which together with n ≤ m− 2 yields

b′ =
n

2(ν + 2) logα
+

1

2(logα+ log β)
<

m

2(ν + 2) logα
.

Since

β =
t+

√
(a+ 1)b

s+
√
ab

· α < 1.41α

and
logα+ log β < log(1.41α2) < 2.15 logα,

it follows from (13) and Theorem 4.3 that

m− 0.5

2(ν + 2) logα
< 52.331

(
max

{
log

(
m

2(ν + 2) logα

)
, 5.25

})2

.(14)

If log(m/(2(ν + 2) logα)) ≤ 5.25, then

m < 382(ν + 2) logα.

If log(m/(2(ν + 2) logα)) > 5.25, then inequality (14) implies that

m < 6960.2(ν + 2) logα.(15)

Thus, inequality (15) holds in any case. Combining Lemma 4.2 with (15), we obtain

2(ν − 0.001)a < 6960.2(ν + 2),

which yields
a < 6964

It therefore remains to prove the theorem for a < 6964.
Two steps of the reduction process ended with the bound m < 5. From Lem-

mas 2.4 and 2.5 one deduces m = 4, n = 2, and it is now an easy task to explicitly
compute the relevant values vm, wn and see they are different.
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5. Proof of Theorem 1.4

Put

di := ai + b+ c+ 2aibc− 2risiu for i ∈ {1, 2},
where

ri :=
√
aib+ 1, si :=

√
aic+ 1, u :=

√
bc+ 1.

It is well known that 0 ≤ di < c and it holds

(b+ c− ai − di)
2 = 4(aidi + 1)(bc+ 1)(16)

for i ∈ {1, 2}. Moreover, if di > 0, then {ai, di, b, c} is a Diophantine quadruple, in
particular, ti :=

√
aidi + 1 is an integer.

Noting that

c = 4aidib+ λi max{di, b},(17)

with λi a rational number satisfying 1 < λi < 4, we have

4(a1d1 − a2d2)b = λ2 max{d2, b} − λ1 max{d1, b}.(18)

Thus we obtain

|a1d1 − a2d2| <
max{d1, d2, b}

b
.(19)

If max{d1, d2, b} = b, then from (18) we get 4|a1d1−a2d2| = |λ2−λ1| < 3, which
implies that |a1d1 − a2d2| < 1 and a1d1 = a2d2.

If max{d1, d2, b} = d1, suppose that a1d1 ̸= a2d2. Then we have

|a1d1 − a2d2| = |t21 − t22| ≥ |t21 − (t1 − 1)2| = 2t1 − 1,

which together with (19) shows that

2t1 <
d1
b

+ 1.

Squaring both sides of this inequality yields

d21 − 2b(2a1b− 1)d1 − 3b2 > 0,

which means that d1 > 2b(2a1b− 1). This in turn implies that t1 > 2a1b− 1. As t1
is coprime with a1, for a1 ≥ 2 one has t1 ≥ 2a1b+1. Assuming a1 = 1 and t1 = 2b,
one obtains d1 = t21 − 1 = 4b2 − 1 and, by (17),

c > 4b(4b2 − 1) + 4b2 − 1 > 16b3.

Thus, t1 ≥ 2a1b+ 1 holds in any case. Then from (17) it follows that

c > 4a1d1b ≥ 16a1b
2(a1b+ 1) > 16b3,

which contradicts the hypothesis c < 16b3. Hence, we get a1d1 = a2d2.
If max{d1, d2, b} = d2, then a1d1 < a2d2 and in the same way as in the previous

case we obtain d2 > 2b(2a2b − 1) and c > 16b3, a contradiction. Hence, this case
cannot occur.

Therefore, we have seen that a1d1 = a2d2.
Equation (16) together with a1d1 = a2d2 implies that

(b+ c− a1 − d1)
2 = (b+ c− a2 − d2)

2.

Since ai < b and di < c, we obtain a1 + d1 = a2 + d2, which combined with
a1d1 = a2d2 yields d1 = a2 and d2 = a1. This implies that {a1, a2, b, c} is a
Diophantine quadruple.
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[14] B. He, K. Pu, R. Shen and A. Togbé, A note on the regularity of the Diophantine pair
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